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Abstract

Mitochondrial translation, essential for synthesis of the electron transport chain complexes in the mitochondria, is governed
by nuclear encoded genes. Polymorphisms within these genes are increasingly being implicated in disease and may also
trigger adverse drug reactions. Statins, a class of HMG-CoA reductase inhibitors used to treat hypercholesterolemia, are
among the most widely prescribed drugs in the world. However, a significant proportion of users suffer side effects of
varying severity that commonly affect skeletal muscle. The mitochondria are one of the molecular targets of statins, and
these drugs have been known to uncover otherwise silent mitochondrial mutations. Based on yeast genetic studies, we
identify the mitochondrial translation factor MEF2 as a mediator of atorvastatin toxicity. The human ortholog of MEF2 is the
Elongation Factor Gene (EF-G) 2, which has previously been shown to play a specific role in mitochondrial ribosome
recycling. Using small interfering RNA (siRNA) silencing of expression in human cell lines, we demonstrate that the EF-G2mt
gene is required for cell growth on galactose medium, signifying an essential role for this gene in aerobic respiration.
Furthermore, EF-G2mt silenced cell lines have increased susceptibility to cell death in the presence of atorvastatin. Using
yeast as a model, conserved amino acid variants, which arise from non-synonymous single nucleotide polymorphisms
(SNPs) in the EF-G2mt gene, were generated in the yeast MEF2 gene. Although these mutations do not produce an obvious
growth phenotype, three mutations reveal an atorvastatin-sensitive phenotype and further analysis uncovers a decreased
respiratory capacity. These findings constitute the first reported phenotype associated with SNPs in the EF-G2mt gene and
implicate the human EF-G2mt gene as a pharmacogenetic candidate gene for statin toxicity in humans.
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Introduction

The primary function of the mitochondria is the aerobic

production of ATP, a process that is reliant on a series of protein

complexes that comprise the electron transport chain. Several

components of the electron transport chain are encoded in the

mitochondrial genome, the translation of which is governed largely

by nuclear encoded genes. Increasingly, mutations within these

genes are being implicated with respiratory deficiency, an

underlying factor in a number of diseases, including myopathies

and liver failure [1,2,3,4]. For example, pathogenic mutations in

the human mitochondrial elongation factor genes, EF-G1mt and

EF-Tu(mt), have been implicated with severe lactic acidosis and

encephalopathy [1,2,3]. Recently a mutation in a novel gene,

believed to be a member of the class of mitochondrial peptide

release factors, was identified in patients exhibiting symptoms of

Leigh syndrome [4].

In addition to disease, there is also emerging evidence that

respiratory deficiencies are responsible for adverse drug reactions.

Consequently, treatment with certain drugs have uncovered

otherwise silent mitochondrial mutations [5,6]. The group of

cholesterol-lowering drugs, statins, are one example. The primary

target of statins is 3-hydroxy-3-methylglutaryl-coenzyme A

(HMG-CoA) reductase, the rate limiting enzyme of the sterol

synthesis pathway, but increasingly, studies are reporting signs of

statin-induced mitochondrial dysfunction [7,8]. This is believed to

be a factor in the myopathic side-effects of statins. Approximately

0.1 to 0.5 percent of statin users experience severe myopathic

symptoms (defined as serum creatine kinase levels more than 10

times the upper limit of normal) and many more suffer milder

musculoskeletal pain [9,10]. Frequently such patients present

symptoms that are similar to those of patients with mitochondrial

myopathies [11]. To date, there have been several case studies

reporting the presence of a subclinical MELAS (mitochondrial

encephalopathy, lactic acidosis and stroke-like episodes) mutation

within the mitochondrial DNA (mtDNA) of patients who have

developed severe myopathic symptoms following statin medication

[12,13,14]. It is expected that existing weakness in mitochondrial
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function can be exacerbated upon exposure to statin, leading to

the uncovering of previously asymptomatic mutations in mito-

chondrial genes.

The yeast Saccharomyces cerevisiae has been the model of choice for

studies of mitochondrial function. In addition to mitochondrial

similarities with human cells, the ability of yeast to survive in the

absence of mtDNA, the simplicity with which both nuclear and

mtDNA can be manipulated and the extensive number of tools

and resources available specifically for yeast research has greatly

contributed to an understanding of potentially pathogenic

mutations [15,16,17]. Statins were first isolated as secondary

metabolites from fungi, the presumption being that the strong

antifungal properties of statins provide an ecological advantage for

the producer over other fungi, similar to that of antibiotics. We

and others have demonstrated that upon exposure to statin, yeast,

as well as having reduced cell viability, also display evidence of

mitochondrial dysfunction [18,19,20].

In this study, we identify a nuclear gene encoding a

mitochondrial translation factor as a modulator of atorvastatin

toxicity in yeast (MEF2) and human cell lines (EF-G2mt). The

eukaryotic mitochondrial protein synthesis system consists of four

phases; initiation, elongation, termination and ribosome recycling,

each carefully orchestrated by a series of nuclear encoded proteins

[21,22]. The human EF-G2mt gene, originally named a mito-

chondrial elongation factor based on sequence homology with

bacterial EF-G, has since been shown to function as a ribosome

recycling factor [23,24]. EF-G2mt is believed to interact with the

already known ribosome recycling factor (RRF1) to promote

dissociation of the ribosomal subunits following termination of

translation [23]. In bacteria, the dual role of translocation and

ribosome recycling are shared by a single EF-G protein [25].

Eukaryotic cells harbour two EF-G proteins in their mitochondria

and it appears that these have distinct functions, the EF-G1mt

protein for translocation and the EF-G2mt protein for ribosome

recycling [23,26]. The human EF-G2mt protein is conserved

across the majority of eukaryotic species [23]. With its yeast Mef2p

counterpart, the human EF-G2mt protein shares greater than 32

percent homology and four of the five protein domains. We use

the atorvastatin-sensitive phenotype of the yeast MEF2 gene to

uncover naturally occurring human variants of EF-G2mt that have

respiratory deficient phenotypes. These findings have ramifica-

tions for patient drug response and possibly also for disease.

Results

Identification of the yeast MEF2 gene as a cell mediator
of atorvastatin toxicity

In light of the emerging evidence that mitochondria are

important in dictating statin toxicity, which in turn can reveal

underlying respiratory defects that have important health impli-

cations, experiments were designed to discover mitochondrial

lesions that affect statin sensitivity. Two published fitness profiling

experiments in yeast have observed statin sensitivity in hundreds of

heterozygous deletion mutants following statin exposure for 20

generations of growth [27,28]. Using the Gene Ontology term

finder available on the Saccharomyces genome database website

(www.yeastgenome.org), we discovered approximately 14–17% of

genes conferring statin-sensitivity are associated with the mito-

chondria. One of the most sensitive of these mitochondrial

associated genes was the MEF2 gene, encoding a mitochondrial

translation factor believed to have a role in ribosome recycling

[23,27].

The growth of deletion mutants in a competition style assay is a

very sensitive method of detecting differences in growth rate.

However, these assays are prone to a higher incidence of false

positive and non-replicable results [29]. To confirm the MEF2

phenotype, a number of yeast deletion mutants that ranked as the

most statin sensitive in the fitness profiling experiments were

compared [27,28]. Both heterozygous and haploid mutants were

tested and cell viability was assessed after five days exposure to

110 mM atorvastatin. The concentration of 110 mM atorvastatin is

approximate to those concentrations used in the original genome-

wide fitness profiling screens (62.5 mM and 125 mM atorvastatin)

[27]. Furthermore, during a previous investigation of the effects of

different atorvastatin concentrations in yeast, we have shown that

110 mM atorvastatin does not inhibit cell growth but is sufficient to

cause a significant decrease in intracellular ergosterol (approxi-

mately 85%), accompanied by loss of cell viability after prolonged

exposure (5 days) [18]. Of the heterozygous mutants tested, only

the hmg1D/HMG 1 strain was confirmed to be sensitive to

atorvastatin (Figure 1A). However, of the haploid mutants tested,

three displayed a statin hypersensitive phenotype (Figure 1B). The

mef2D mutant emerged as the strain which exhibited the greatest

loss of cell viability in the presence of atorvastatin, with an almost

20-fold reduction in cell viability compared with the wild-type.

The hmg1D strain displayed a 5-fold reduction in cell viability and

disruption of the HTZ1 gene, encoding a histone protein, resulted

in a 2-fold loss of cell viability (Figure 1B).

Yeast mutants defective in mitochondrial translation undergo

rapid loss of mtDNA and we have previously shown this to be the

case for the mef2D mutant [30]. Consequently, mef2D is r0

(completely devoid of mtDNA). To determine whether atorvasta-

tin-sensitivity is the consequence of abrogation of the MEF2 gene

or simply from the absence of mtDNA, mef2D statin sensitivity was

compared with that of ethidium bromide generated cytoplasmic r0

mutants. In order to ensure that there were no secondary site

mutations in the mef2D deletion mutant that originated from the S.

cerevisiae gene deletion collection, new mef2D haploid strains were

created. Results show that although the r0 strains were more

sensitive to atorvastatin than the respiratory positive parent, they

did not display the same degree of sensitivity as mef2D (Table 1).

Author Summary

The mitochondria are responsible for producing the cell’s
energy. Energy production is the result of carefully
orchestrated interactions between proteins encoded by
the mitochondrial DNA and by nuclear DNA. Sequence
variations in genes encoding these proteins have been
shown to cause disease and adverse drug reactions in
patients. The cholesterol-lowering drugs statins are one
class of drugs that interfere with mitochondrial function.
Statins are one of the most prescribed drugs in the
western world, but many users suffer side effects,
commonly muscle pain. In severe cases this can lead to
muscle breakdown and liver failure. In this study, we
discover that disruption of a mitochondrial translation
gene, EF-G2mt, impedes respiration and increases cell
death when exposed to statin. Using the simple unicellular
organism yeast as a model, the activity of naturally
occurring human EF-G2mt variants is tested. Three of
these variants render yeast cells more sensitive to statin.
Patients who possess these EF-G2mt variations may be
more susceptible to statin side effects. Importantly, the
test for statin sensitivity also led to the discovery of
mutants that have a reduced energy production capacity.
The decreased ability to produce energy is linked to a
number of diseases, including myopathies and liver failure.

EF-G2mt/MEF2 Modulates Statin Toxicity
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Therefore, mutation of the MEF2 gene is a critical determinant of

statin sensitivity through mtDNA dependent and independent

functions.

Silencing of the human EF-G2mt gene compromises
OXPHOS and exacerbates atorvastatin toxicity in human
cell lines

The human EF-G2mt gene, ortholog of the yeast MEF2 gene,

encodes a recently characterised mitochondrial ribosome recycling

factor [23], but to date, no functional analysis has been performed

for this gene. To determine whether the EF-G2mt gene is essential

for human cell function and to ascertain whether depletion

influences statin toxicity, an siRNA pool comprising of four

individual EF-G2mt targeted siRNAs was used to silence EF-G2mt

expression in the human rhabdomyosarcoma (RD) cell line. The

RD cell line has previously been established as a skeletal muscle

model for mitochondrial disorders and has also been used in

studies of statin toxicity [31,32,33]. At 72 hours post-transfection,

greater than 80 percent silencing was consistently achieved and

cells remained viable. Cells were then re-transfected at this time

point to enable continued depletion of EF-G2mt activity. This

strategy had previously uncovered an essential role for cell viability

for the first discovered ribosomal recycling factor gene, RRF1 [34].

However, at 72 hours post-re-transfection (six days after the initial

transfection), RD cells remained viable even though EF-G2mt

mRNA concentration had decreased by 99.9 percent. Addition-

ally, there was no decrease in mtDNA levels upon EF-G2mt

silencing as analysed using quantitative PCR (Figure S1) [35].

Although gross inhibition of mitochondrial translation in human

cell lines results in loss of cell viability [34], a more subtle

mitochondrial phenotype may be masked by the phenomenon of

the Crabtree effect whereby many human cell lines, when grown

in the presence of glucose, derive their energy almost solely by

fermentative means [36]. To circumvent this effect and force cells

to rely on mitochondrial respiration as their primary energy

source, galactose was used to replace glucose as the carbon source

[37]. Silencing of EF-G2mt led to a marked decline in the growth

of RD cells at four days post-transfection, which was maintained

for a period of seven days (Figure 2). This growth defect on

galactose medium signals an impairment in oxidative phosphor-

ylation (OXPHOS).

Based on the findings in yeast, it was predicted that decreased

EF-G2mt activity would also enhance the effects of atorvastatin

toxicity. EF-G2mt silenced RD cells were subjected to various

concentrations of atorvastatin in medium containing either

galactose or glucose as the carbon source for a period of 48 hours.

In glucose medium, there was no difference in statin sensitivity

between the EF-G2mt silenced cells and those transfected with the

non-targeting control. However, based on IC50 values (defined

here as a 50% loss of viability at 48 hours) in galactose medium,

EF-G2mt silenced cells were over 20 percent more sensitive to

atorvastatin than cells transfected with the non-targeting siRNA

pool (Table 2). These results confirm a role for the human EF-

G2mt gene in cell resistance to atorvastatin in a human skeletal

muscle cell line. Notably, a similar increase in sensitivity (17%) was

observed using the human hepatic HepG2 cell line (a model for

statin-induced liver toxicity), although it should be noted that

HepG2 cells are approximately 10 times more statin resistant than

RD cells and this elevation in atorvastatin sensitivity was not

statistically significant in these experiments (Table 2).

EF-G2mt protein variants, when created in yeast Mef2p,
increase atorvastatin toxicity

A global alignment of the amino acid sequence of the human

EF-G2mt protein (Isoform I, AAH15712.1) with the yeast Mef2

protein (CAA59392) reveals 32.1% amino acid sequence identity

(Figure 3 and Figure S2). At the commencement of this study,

there were nine published non-synonymous Single Nucleotide

Polymorphisms (SNPs) in the human EF-G2mt gene, of which five

were either conserved or semi-conserved in the yeast MEF2 gene.

Three of these variants, EF-G2mtI627T, EF-G2mtE594G and EF-

G2mtK334R, are considered rare, with a heterozygosity frequency

below one percent. One of the variants, EF-G2mtR744G, has a

Figure 1. Viability of yeast heterozygous and haploid deletion
mutants in atorvastatin after 5 days. (A) Percentage cell viability of
heterozygous deletion mutants in 110 mM atorvastatin relative to
viability in the solvent control. (B) Percentage cell viability of haploid
deletion mutants in 110 mM atorvastatin relative to viability in the
solvent control. Data represent mean 6 SEM (n = 3). A one-way ANOVA,
followed by a Dunnett’s multiple comparison test, was used to compare
the mean percentage viability of the mutant strains to that of the wild-
type. *P,0.05, ***P,0.001.
doi:10.1371/journal.pgen.1002755.g001

Table 1. Percentage cell viability relative to solvent control
after 5 days exposure to 110 mM atorvastatin.

Mean % viability ± SEMa

Wild-type 18.262.66***

mef2D 1.0260.194

r0 8.0160.720**

aThree independent replicates were performed.
A one-way ANOVA, followed by a Dunnett’s multiple comparison test, was used
to compare the viability of the mef2D strains to that of the wild-type and r0

strains.
**P,0.01,
***P,0.001.
doi:10.1371/journal.pgen.1002755.t001

EF-G2mt/MEF2 Modulates Statin Toxicity
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heterozygosity frequency of three percent and the EF-G2mtR774Q

allele has a heterozygosity frequency greater than 20 percent.

These five SNPs were selected for functional analysis using the

yeast MEF2 gene as a model.

For each of the five selected human EF-G2mt variants, single

nucleotide base pair substitutions were constructed directly into

the chromosomal copy of the yeast MEF2 gene to replace the

codon specific to the wild-type amino acid residue with a codon

that corresponds to the amino acid present in the human EF-

G2mt protein variants. The Mef2p variants constructed were

mef2K769Q, mef2R740G, mef2I616T, mef2D578G and mef2K308R which

correspond to EF-G2mtR774Q, EF-G2mtR744G, EF-G2mtI627T, EF-

G2mtE594G and EF-G2mtK334R respectively. To assess for respira-

tory competence, mef2 mutants were grown on medium containing

the non-fermentable carbon source glycerol. After 72 hours, all

five mutants were proficient in the production of colonies on both

glucose and glycerol medium. The number and size of colonies

produced by the mutant strains on glycerol medium was equal to

that of the wild-type, indicating that all mutants are respiratory

competent (Figure 4A). Moreover, based on measurements of cell

growth in both glucose and glycerol liquid medium, there were no

growth defects exhibited by any of the mef2 mutants (Table S1).

Mitochondrial DNA stability was measured periodically for up to

32 generations. The frequency of cells which spontaneously lose

mtDNA amongst populations of each mef2 mutant remained equal

to that of the wild-type (approximately 2 to 3%), verifying that

mtDNA is stable over successive generations.

The five mef2 mutants were then assayed for atorvastatin

sensitivity. Following five days of exposure to 110 mM atorvastatin,

three of the mef2 mutants exhibited a statin hypersensitive

phenotype. Viability of the mef2I616T, mef2D578G and mef2K308R

mutants was reduced to 20.3, 22.8 and 24.2 percent respectively

(Figure 4B). The two other mef2 mutants, mef2K769Q and

mef2R740G, did not exhibit a statin sensitive phenotype. The

unmasking of a phenotype for the mef2K308R, mef2D578G and

mef2I616T variants by atorvastatin is a strong indicator that these

mutations have an effect on Mef2p function. A similar effect

conferred by these alleles in the human EF-G2mt protein could

have vital consequences for statin users.

Atorvastatin-sensitive mef2 mutants also have reduced
respiration rates

Although no obvious growth phenotype was observed, the

statin-sensitive phenotype of three of these mutants indicates a

subtle defect in mitochondrial function. Staining of mef2 mutant

cells with the nucleic acid staining dye 49,6-diamidino-2-

phenylindol (DAPI) confirmed the presence of mtDNA nucleoids

in cells of all five mutants and quantification of mtDNA copy

number using quantitative PCR (qPCR) [38] showed that mtDNA

levels were the same as that of the wild-type (Figure S3). It

Figure 2. Growth of siRNA transfected RD cells in glucose and galactose medium. At 24 hours post-transfection, cells were seeded into
wells of a 96-well plate in DMEM medium containing 10% fetal bovine serum and either 4.5 g/L glucose (left panel) or 4.5 g/L galactose (right panel).
Cell proliferation was determined daily using a luminescent cell viability assay. An untransfected cell line and the rho0 cell line were included as
controls. Cell proliferation is shown as a percentage of the maximum cell growth (100%) of the untransfected control. Error bars represent the mean
6 SEM for three independent measurements.
doi:10.1371/journal.pgen.1002755.g002

Table 2. IC50 values for EF-G2mt silenced cells exposed to atorvastatin.

IC50 95% confidence interval P

RD Cells Untransfected control 18.9 16.1 to 22.2

Non-targeting siRNA 18.6 15.7 to 22.0

EF-G2mt targeting siRNA 15.0* 13.8 to 16.4 0.023*

HepG2 Cells Untransfected control 186.9 149.1 to 234.3

Non-targeting siRNA 184.8 148.9 to 228.8

EF-G2mt targeting siRNA 152.4 129.3 to 179.6 0.138

IC50 values of EF-G2mt silenced cells were compared to their respective non-targeting siRNA transfected cell lines using the extra sum-of-squares F-test.
*P,0.05.
doi:10.1371/journal.pgen.1002755.t002

EF-G2mt/MEF2 Modulates Statin Toxicity
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therefore appears that the EF-G2mt equivalent mutations do not

destabilise Mef2p function so as to compromise mtDNA stability.

To investigate the possibility of a respiratory phenotype, oxygen

consumption for the three statin-sensitive mef2 mutant cultures was

measured (in the absence of atorvastatin) using a non-invasive

oxoluminescent device [35]. All three mutants, mef2K308R,

mef2D578G and mef2I616T, exhibited a significantly reduced respi-

ration capacity, approximately one third lower than that of the

wild-type (Figure 5). The two mef2 mutants that did not display an

atorvastatin-sensitive phenotype had respiration rates much closer

to that of the wild-type. Together, these results demonstrate a

respiratory phenotype conferred by at least three of the EF-G2mt

equivalent mef2 variants and this correlates with the inability of

these mef2 mutants to tolerate atorvastatin toxicity.

Interestingly, the partially respiratory deficient mef2 mutants

exhibit a greater statin sensitivity than the ethidium bromide

generated r0 strains, which are completely devoid of respiratory

function (Table 1). This, in support of the mef2D results, indicates

the role of a non-respiratory function of MEF2 in the statin

response. In addition to a lack of mtDNA, we have previously

shown, by staining cells with MitoTracker Red CMXRos, that

the mef2D strain has a reduced mitochondrial membrane

potential (DY) and that mitochondria appear fewer, with a

tendency to aggregate [30]. The MitoTracker Red CMXRos

probe enters the mitochondrial matrix dependent on DY. This

same method was used to test DY and mitochondrial morphology

in the mef2 mutants. Cells were visualised using a laser scanning

confocal microscope and, in contrast to the mef2D strain, all five

mef2 mutants displayed mitochondria that stain brightly and are

arranged in a tubular network, typical of mitochondria in wild-

type yeast. Staining of the three partially respiratory deficient

mutants is shown in Figure 6. These results indicate that the mef2

mutations do not disrupt the function of Mef2p in maintaining

DY and so does not explain the enhanced statin sensitivity of

these mutants. It is known that statin toxicity can cause loss of

DY [39]. Therefore one possibility is that atorvastatin acts

synergistically with a mutated Mef2p to exacerbate loss of DY
and compromise cell viability. However, other mechanisms, such

as modulation of the mitochondrial retrograde response, cannot

be discounted [40].

Figure 3. EF-G2mt protein variants. Alignment of the protein amino acid sequence of the human EF-G2mt protein with the yeast Mef2 protein.
Dark shaded areas represent conserved amino acid residues and grey shaded areas represent semi-conserved residues. EF-G2mt SNPs that are
semiconserved in yeast MEF2 are shown in italics and fully conserved SNPs are depicted in bold. The five alleles selected for functional
characterisation are outlined. The five EF-G2mt protein domains are represented below the alignment. Global alignment of protein sequences was
performed using Lalign and the BioEdit sequence alignment editor was used to generate the graphical representation.
doi:10.1371/journal.pgen.1002755.g003

Figure 4. Functional characterisation of EF-G2mt equivalent SNPs in the yeast MEF2 gene. (A) Growth of wild-type, mef2 deletion strain
and mef2 mutants in yeast medium containing either glucose as the carbon source or the non-fermentable carbon source glycerol. Cells from
exponentially growing cultures were serially diluted and 5 ml of each dilution spotted onto each plate. Growth was assessed after 72 hours incubation
at 30uC. (B) Percentage cell viability of yeast mef2 mutants in 110 mM atorvastatin relative to viability of the wild-type strain following exposure to
atorvastatin for 5 days. Data represent mean 6 SEM (n = 3). A one-way ANOVA followed by a Dunnett’s multiple comparison test was used to
compare the mean percentage viability of the mef2 variants to that of the wild-type. ***P,0.001.
doi:10.1371/journal.pgen.1002755.g004

EF-G2mt/MEF2 Modulates Statin Toxicity

PLoS Genetics | www.plosgenetics.org 5 June 2012 | Volume 8 | Issue 6 | e1002755



Protein homology modelling of the human EF-G2mt
protein predicts function of EF-G2mt protein variants

The crystal structure of the human EF-G2mt protein has not yet

been elucidated. Therefore, to gain insight into the molecular

effects of the five chosen amino acid variations, a computational

model of the EF-G2mt protein was constructed using the SWISS-

MODEL server [41]. The model is based on the experimentally

determined crystal structure of the Thermus. thermophilus EF-G

protein [42] which shares 39 percent identity with the human EF-

G2mt protein and four of the five EF-G2mt protein domains. As

the N-terminal and C-terminal regions of the EF-G2mt protein

share particularly low homology with the template, the initial 65

and final 10 amino acid residues could not be accurately modelled.

For this reason, the location of amino acid variant EF-G2mtR774Q,

positioned very close to the C-terminus, was omitted (Figure 7A).

Stereochemical quality of the model was assessed by generating a

Ramachandran plot using PROCHECK. Eighty seven percent of

residues fall within the most favoured regions of the plot,

indicating ideal stereochemistry.

Using the in silico model, we can make some hypothetical

predictions about the function of the protein variants. The human

EF-G2mtK334R variant, which corresponds to the respiratory

compromised yeast mef2K308R variant, is located on a coil close

to the surface of the GTP-binding domain (domain I) that is highly

conserved in EF-G2mt homologs from all major eukaryotic species.

The presence of GTP is essential for ribosome dissociation at the

termination of translation, and subsequent hydrolysis of GTP is

then required in order to release the EF-G2mt protein from the

ribosome [23]. The EF-G2mtE594G and EF-G2mtI627T variants,

equivalent to the respiratory compromised mef2D578G and

mef2I616T mutants respectively, are both located in domain IV

and occur close to the EF-G2mt protein surface. The EF-

G2mtE594G variant is expected to diminish the largely negative

electrostatic surface potential of this domain, thereby interfering in

the protein’s interaction with both the mitochondrial ribosome

and Rrf1 [23,25]. The EF-G2mtI627T variant is located on an alpha

helix whose structural integrity is disturbed by the threonine

hydroxyl group. The final two EF-G2mt protein variants, in which

the corresponding mef2 mutants did not exhibit a phenotype, are

located in domain V, the C-terminal region that accelerates (but is

not essential for) the ribosome recycling action of the EF-G2mt

protein [23].

In the last year, data from the 1000 Genomes project has

expanded the number of known polymorphisms in the human

genome and a further 11 non-synonymous SNPs have been

discovered within the human EF-G2mt gene (dbSNP, National

Centre for Biotechnology Information (NCBI)) [43]. Of these, one

is fully conserved in the S. cerevisiae Mef2 protein and another five

are semi-conserved (Figure 3 and Figure S2). The location of five

Figure 5. Oxygen consumption rates of mef2 mutant cultures.
Figure depicts the rate of oxygen consumption per minute per 30 mL
of yeast culture at an OD600 of 0.2. Data represent mean 6 SEM (n = 3).
A one-way ANOVA followed by a Dunnett’s multiple comparison test
was used to compare the mean oxygen consumption rate of mef2
variants to that of the wild-type. ***P,0.001.
doi:10.1371/journal.pgen.1002755.g005

Figure 6. Visualisation of mitochondrial membrane potential. Cells were stained with MitoTracker Red CMXRos and observed using a laser
scanning confocal microscope. To better visualise mitochondrial structure within the mef2 deletant, cells were stained with a 106 concentration of
MitoTracker Red. Scale bar represents 5 mm.
doi:10.1371/journal.pgen.1002755.g006

EF-G2mt/MEF2 Modulates Statin Toxicity
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Figure 7. In silico model of the human EF-G2mt protein. (A) Model depicting four of the five amino acid variants that were functionally
characterised in this study. (B) Five newly discovered variants that have yet to be functionally characterised. Helices are shown as ribbons, beta-sheets
are depicted as flat broad arrows and loops and coils appear as thin tubes. The five protein domains of the EF-G2mt protein are distinguished by
different colours. Domain I, the GTP binding domain is shown in blue, domain II is purple, domain III is orange, domain IV is cyan and domain V is
green. Model was visualised using the Visual Molecular Dynamics program (VMD), version 1.8.7 (University of Illinois).
doi:10.1371/journal.pgen.1002755.g007
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of these variants is shown on the EF-G2mt protein model in

Figure 7B. Although experimental confirmation is essential, based

on the findings above it is hypothesised that the domain IV (EF-

G2mtK621N and EF-G2mtF609Y) and domain I (EF-G2mtV165G)

variants will affect protein activity. Therefore, these naturally

occurring EF-G2mt variants may have respiratory deficient

consequences.

Discussion

By exploiting the genetic tractability of yeast, complemented

by siRNA silencing studies in human cell lines, we have identified

a mitochondrial translation factor as a mediator of atorvastatin

toxicity and also made fundamental discoveries about the

function of human variants within the EF-G2mt gene. The

human EF-G2mt gene, ortholog of the yeast MEF2 gene, was

originally identified as a mitochondrial elongation factor gene.

However, a recently published comprehensive analysis of the EF-

G2mt protein has shown that it functions as a ribosome recycling

factor, interacting with the first discovered ribosome recycling

factor protein, Rrf1, to dissociate the ribosomal subunits at the

termination of translation [23]. In yeast, deletion of the MEF2

gene results in loss of mtDNA [30], a circumstance which would

be lethal in higher eukaryotic cells without the supplementation

of uridine and pyruvate [44]. Nevertheless, siRNA silencing

experiments show that in contrast to its RRF1 counterpart,

knockdown of human EF-G2mt expression does not compromise

cell viability in glucose medium. Furthermore, silencing of EF-

G2mt expression does not deplete cellular mtDNA content. It is

possible that some compensatory mechanism enables ribosome

recycling to continue to a sufficient degree to maintain cell

viability in fermentative cell lines.

When galactose is used as the carbon source instead of glucose,

the ATP produced via glycolysis is insufficient for cell energy

requirements; therefore, there is a greater reliance on the

production of ATP through the oxidative metabolism of gluta-

mine. This more closely resembles the metabolic activity of cells in

a human physiological system [37,45]. By using galactose to force

reliance on the mitochondria for cell energy production, it was

shown that reduced EF-G2mt activity does indeed compromise cell

proliferation in respiring cells. It is consequently expected that the

EF-G2mt gene is essential for cell function in a human system.

Furthermore, in support of the notion that abnormalities in

mitochondrial function sensitise cells to statin toxicity, the growth

defect of EF-G2mt silenced cells in galactose medium was even

further exacerbated upon exposure to atorvastatin.

For cells in which mitochondrial function is challenged,

exposure to mitochondrial toxicants, such as statins, places

additional stress on mitochondrial function and this has the

potential to trigger pathogenicity. Indeed we have shown that r0

strains, lacking respiratory capacity, are more sensitive to

atorvastatin than those with a functioning mitochondrial genome

in both yeast and human cells. Studies have shown that statins

exert their mitochondrial toxicity effects by inhibiting function of

the electron transport chain but there is also evidence of non-

respiratory mitochondrial consequences [46,47,48]. These include

a loss of mitochondrial membrane potential, aberrant mitochon-

drial morphology and apoptosis [39]. These effects, in combina-

tion with the absence of respiratory function may explain the

hypersensitivity of r0 cells to statin.

The hypersensitivity of respiratory deficient cells to statins may

have clinical ramifications for patients that have variations within

mitochondrial functioning genes. Statins have been known to

aggravate clinically silent disease associated mutations resulting in

myopathies. In fact, mutations (which in many cases were

asymptomatic) for three common myopathic diseases; carnitine

palmitoyltransferase II deficiency, McArdle disease and myoade-

nylate deaminase deficiency (AMPD deficiency), are thought to be

the underlying determinants responsible for statin-induced myop-

athy in up to 10 percent of patients showing adverse effects [5].

There are also reports of the statin-induced triggering of MELAS

syndrome in patients whose MELAS mutations were clinically

silent [13,14]. As MELAS syndrome arises from mutations in

mtDNA, it strongly implicates mitochondrial dysfunction in

susceptibility to statin toxicity. This is further supported by the

identification of two commonly occurring SNPs in the human

COQ2 gene that are associated with an increased risk of statin

intolerance [49]. The COQ2 gene is required for the synthesis of

coenzyme Q10, an essential component of the mitochondrial

electron transport chain [49].

Despite the presence of a number of SNPs within the EF-G2mt

gene, the function of these variants for cell fitness had never been

investigated. In this study, five EF-G2mt equivalent SNPs were

selected for functional analysis in the yeast MEF2 gene. Unlike the

mef2D deletant, all mef2 mutants grew proficiently on both glucose

and the non-fermentable carbon source glycerol. Furthermore, the

mutations had no effect on mtDNA stability, DY or mitochondrial

morphology. However, exposure of the mutants to toxic concen-

trations of atorvastatin has uncovered a phenotype for three of the

mef2 mutants; mef2K308R, mef2D578G and mef2I616T, equivalent to

the EF-G2mtK334R, EF-G2mtE594G and EF-G2mtI627T alleles

respectively. In silico protein homology modelling reveals these

three mutations are located in either the GTP binding domain

(domain I) of the EF-G2mt protein or an external domain (domain

IV) necessary for ribosomal interaction.

Based on the observations that statins exacerbate clinically silent

disease associated mutations, it was predicted that the three

mutations compromise mitochondrial function in a subtle yet

potentially significant way. The subsequent observation that

oxygen consumption was significantly reduced in the statin-

sensitive mef2 mutants confirmed this hypothesis and demonstrates

a sub-optimal mitochondrial function for the three EF-G2mt

equivalent mef2 mutants. This sub-optimal mitochondrial function

is expected to contribute to the atorvastatin-sensitive phenotype of

the three mef2 mutants. However, comparison of the statin

sensitive phenotype of the mef2K308R, mef2D578G, mef2I616T and

mef2D mutants with cytoplasmic r0 strains indicates that statin

sensitivity is not fully explained by the reduced respiratory capacity

of these mutants and further studies are required to completely

elucidate the precise mechanism.

This study constitutes the first report of a phenotype associated

with EF-G2mt, demonstrating an essential role for aerobic

respiration in human cell lines and an importance for cell

tolerance to atorvastatin. Atorvastatin constituted the focus of this

study and is the highest selling and also one of the more potent of

the statins [50]. Although the various statins have been shown to

differ in their cellular toxicity effects, all of them have been

implicated with mitochondrial dysfunction [48,50,51,52,53]. It

would therefore be expected that a mitochondrial mediator of

atorvastatin toxicity may also mediate cell response to the other

statins. In support of this, preliminary experiments confirm that

the atorvastatin sensitive mef2 mutants also exhibit sensitivity to

lovastatin.

With an estimated 38 million people around the world

undertaking statin treatment [9], the identification of novel

biomarkers for statin toxicity has the potential to personalise

therapy for millions of individuals. To date, only a handful of

genes have been associated with statin toxicity [9], but the finding
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of the EF-G2mt gene as a potential pharmacogenetic candidate has

strengthened the association between existing mitochondrial

dysfunction and statin hypersensitivity. Importantly, the discovery

of naturally occurring human polymorphisms within the EF-G2mt

gene that affect respiratory function indicates that these variants,

either alone or in combination with other polymorphisms, have

significant pathogenic consequences. This opens avenues for

further clinical investigations into a possible association between

EF-G2mt variants and disease.

Materials and Methods

Chemicals
Atorvastatin calcium was purchased from 7 Chemicals (India).

Stock solutions were prepared by dissolving atorvastatin in

methanol at a concentration of 20 mg/mL and solutions were

stored at 220uC. 5-fluoroorotic acid and geneticin (G418) were

purchased from Sigma.

Yeast strains and media
The haploid wild-type S. cerevisiae strains used were of the

background BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0) and

BY4742 (MATa his3D1 leu2D0 lys2D0 ura3D0). The diploid strain

was BY4743 (MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0

MET15/met15D0 ura3D0/ura3D0) [54]. The mef2D/MEF2, mef2D
and the cytoplasmic r0 strains were previously described [30].

Prior to experiments, yeast strains were cultured in liquid YEPD

(1% yeast extract, 2% peptone, 2% dextrose) medium for

24 hours, subcultured and then grown to exponential phase in

Synthetic Complete (SC) medium (0.67% Difco yeast nitrogen

base without amino acids, 2% dextrose, 0.79 g L21 amino acid

supplement (Sunrise Science Products, Australia)). Cells were

incubated at 30uC with shaking.

Statin viability assay in yeast
Triplicate exponential phase cultures grown in SC medium

were diluted to an optical density (OD595 nm) of 0.2 and 1.25 mL

of this culture was added to 3.75 mL SC medium with the

appropriate concentration of atorvastatin. After a maximum of

five days growth, cells were diluted and plated onto solid YEPD

(YEPD plus 2% agar) medium and viability counts were

performed 48 hours later.

Cell culture
HepG2 cells and RD Cells are from the American Type Culture

Collection (ATCC). Cells were cultured at 37uC and 5% CO2 in

Dulbecco’s Modified Eagle’s Medium (DMEM) medium (Gibco)

containing 4.5 g/L glucose and 10% fetal bovine serum (FBS)

(Bovogen Biologicals, Australia). For experiments in which

galactose was used as the carbon source, cells were grown in

glucose free DMEM with 10% fetal bovine serum and 4.5 g/L

galactose. To generate the r0 cell lines, used as respiratory

deficient controls, HepG2 and RD cells were cultured for eight

weeks in DMEM medium containing 100 ng/mL ethidium

bromide and supplemented with 10% FBS, 50 mg/mL uridine

and 100 mg/mL sodium pyruvate [31,44]. Following ethidium

bromide treatment, r0 cells were maintained in medium

supplemented with uridine and sodium pyruvate. Depletion of

mtDNA was confirmed using qPCR.

Cell transfection with siRNA
The ON-TARGETplus SMARTpool, comprising of four

siRNAs targeting the EF-G2MT transcript (NM_170691) was

purchased from Dharmacon (cat. # L-017534-01-0005, Dharma-

con, Thermo Fisher Scientific, Lafayette, CO.). The correspond-

ing ON-TARGETplus non-targeting SMARTpool (cat. #D-

001810-10-05) and DharmaFECT transfection agents were also

purchased from Dharmacon. DharmaFECT agent 2 (0.2 mL/

100 mL) and DharmaFECT agent 4 (0.4 mL/100 mL) were used to

transfect RD cells and HepG2 cells respectively. All siRNAs were

used at a final concentration of 25 nM. To transfect cells, equal

volumes of the siRNA and transfection agent were mixed, allowed

to incubate for 30 minutes, and 100 mL of the solution was added

to 400 mL DMEM medium containing 10% FBS. This solution

was added to the attached cells which had been washed in PBS.

Gene expression silencing was assessed at 72 hours post-transfec-

tion by qPCR. For experiments in which cells were re-transfected,

the above procedure was performed again at 72 hours subsequent

to the initial transfection.

Cell proliferation assay
At 24 hours post-transfection, approximately 16104 cells/well

of each culture were seeded into eight wells (one for each day of

the eight-day proliferation assay) of a 96-well plate and allowed to

attach overnight. Each day, the number of viable cells in one of the

eight wells was assessed using the CellTiter-Glo assay (Promega) as

described above. Cell medium was changed every two days.

IC50 assays
Approximately 56104 cells/well were seeded into wells of a 96-

well plate. For siRNA transfected cells, seeding occurred at

24 hours post-transfection. Following overnight incubation to

enable attachment, media was changed to DMEM containing

10% FBS plus the appropriate atorvastatin concentration.

Atorvastatin concentrations ranged from 0 to 128 mM for RD

cells and 0 to 1024 mM for HepG2 cells. Cell survival after

48 hours in the presence of atorvastatin was estimated using the

CellTiter-Glo luminescent cell viability assay (Promega), which

measures intracellular ATP concentration. The assay was

performed according to the manufacturer’s instructions and

luminescence was quantified using a Tecan Genios microplate

reader. IC50 values were calculated from dose-response curves that

were generated using least-squares linear regression.

Construction of SNP mutations in yeast MEF2 gene
Codon modifications used to alter yeast Mef2p amino acid

residues to those of the corresponding EF-G2mt variants are

A2305C, A2219G, T1848C, A1734G and A924G for the yeast

mef2K769Q, mef2R740G, mef2I616T, mef2D578G and mef2K308R respec-

tively. The GenBank accession number for the MEF2 sequence

used was NC_001142.9. The single base pair substitutions were

created in the yeast MEF2 gene according to the double-strand

break mediated delitto perfetto method [55]. The pGSKU plasmid

containing the CORE-I-SceI cassette was kindly provided by

Francesca Storici (Georgia Tech, Atlanta, GA). The CORE-I-SceI

cassette was PCR amplified with chimeric primers (Table S2) that

contain 50 bp homologous to the site of insertion and 20 bp for

amplification of the cassette. Cassette amplification was performed

in 50 mL PCR reactions (25 mL 26 Phusion Flash PCR Master

mix (Finnzymes), 0.5 mM each primer and approximately 1–10 ng

purified pGSKU plasmid) using a PTC-200 thermal cycler (MJ

Research) (Initial denaturation, 98uC for 10 seconds; denature,

98uC for 1 second; anneal/extend, 72uC for 75 seconds; repeat

denature and anneal/extend for 30 cycles; final extension, 72uC
for 1 min). Cells were transformed with 10 mL of the concentrated

PCR product as previously described [55]. Transformants were

selected by plating onto synthetic medium lacking uracil (0.67%

Difco yeast nitrogen base without amino acids, 2% dextrose,
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0.79 g L21 uracil dropout amino acid supplement (Sunrise

Science Products, Australia) and 2% agar) and after 24 hours,

G418 resistance was checked by replica plating onto solid YEPD

containing 200 mg/mL G418 (Sigma). Colony PCR was per-

formed to confirm accurate integration of the cassette. Cells

containing the integrated CORE-I-SceI cassette were then

transformed with 0.5 nM of each strand of a pair of comple-

mentary 80 bp oligonucleotides (Table S2) containing the desired

substitution and possessing 40 bp on either side of the oligo which

is targeted to the regions adjacent to the integrated marker

(GeneWorks, Adelaide). To induce the I-SceI mediated double

strand break at the recombination site, prior to transformation

cells were cultured in 50 mL of synthetic complete medium

containing 2% galactose instead of glucose and incubated at 30uC
with shaking for a period of six to eight hours. Following

transformation, cells were plated onto solid YEPD medium and

after 24 hours, replica plated onto synthetic complete medium

containing 1 g/L 5-fluoroorotic acid and 60 mg/L uracil to

check for loss of the URA3 marker. Loss of the CORE-I-SceI

cassette was confirmed using colony PCR (primers listed in Table

S2) and the resulting PCR product was sequenced to ensure the

desired mutation was present. Due to complete disruption of the

MEF2 gene during insertion of the cassette, all resulting mef2

mutants were lacking mtDNA. Therefore, to reintroduce

mtDNA, mutant strains were mated with the wild-type of

opposite mating type (the BY4741 strain (MATa)). Diploid strains

were then sporulated and dissected, resulting in 2:2 segregation of

wild-type and mef2 mutant colonies, all of which were r+.

Sequencing was used to identify the colonies which possessed the

desired mutation.

Measurements of oxygen utilisation
Cell respiration was measured by monitoring dissolved oxygen

levels in 30 mL of exponential phase yeast cells at an optical

density of 0.2 in YEPD medium. Cells were cultured in 50 mL

Erlenmeyer flasks sealed with a rubber bung to minimise the

exchange of oxygen with the external environment. Each flask was

equipped with a PreSens PSt3 oxygen sensitive spot (NomaCorc)

and the percentage of dissolved oxygen in the medium was

measured using an oxoluminescent device, the NOMASense

oxygen analyser system (NomaCorc) [35], every 15 minutes until

percent oxygen reached below 10% for the wild-type strain.

Visualisation of mitochondrial membrane potential (DY)
MitoTracker Red CMXRos (Molecular Probes) was added

directly to a 500 mL volume of exponential phase culture in YEPD

to a final concentration of 250 nM (16) or 2500 nM (106). Cells

were incubated at 30uC for 30 minutes, washed with fresh

medium and resuspended in YEPD medium. Cells were mounted

onto a glass slide and viewed immediately using a laser scanning

confocal microscope (Zeiss LSM 710, Carl Zeiss Microimaging,

Germany) controlled using the ZEN 2010 software (Carl Zeiss

Microimaging, Germany). The excitation line used was 543 nm

and the laser power was set at 2%. Cells were viewed using 6306
optical magnification and 36 digital magnification. All samples

were analysed using the same settings.

Protein homology modelling
The protein model of the human EF-G2mt protein was based on

the crystal structure of the Thermus thermophilus EF-G protein (Protein

Data Bank 2bm0) [42]. This shares 39% residue identity. Selection

of the T. thermophilus template and homology modelling was carried

out using the SWISS-MODEL server in ‘project mode’ to enable

alignment inspection prior to modelling [41]. The completed model

was then submitted to the SWISS-MODEL suite of quality check

programs which tests for model quality and stereochemistry using

algorithms such as ANOLEA [56] and PROCHECK [57]. The

model was visualised using the Visual Molecular Dynamics program

(VMD), version 1.8.7 (University of Illinois) and this software was

also used for the assignment of protein secondary structure and the

assessment of electrostatic potential.

Bioinformatics
All sequences, both yeast and human, were obtained from the

Ensembl database. There are three known human EF-G2mt

protein isoforms but isoform I (AAH15712.1) was used throughout

this study. Human EF-G2mt SNPs were identified using the dbSNP

database available on the National Center for Biotechnology

Information (NCBI) website (www.ncbi.nlm.nih.gov/SNP/index.

html). The Lalign program available on the Swiss EMBnet server

(www.ch.embnet.org/software/lalign_form.html) was used to gen-

erate global alignments of protein sequences, based on the

BLOSUM50 matrix [58]. Graphical representations were con-

structed using the BioEdit version 7.0.5 sequence alignment editor.

Supporting Information

Figure S1 Quantitative PCR analysis of mtDNA levels for EF-

G2mt siRNA transfected RD cells relative to the non-targeting

siRNA control. The mtDNA/nDNA ratio was determined using

qPCR at 72 hours post-transfection. Cells were re-transfected

and mtDNA was analysed again following another 72 hours.

The nuclear r18S gene and the mitochondrial ND1 gene were

used to determine the quantity of nuclear DNA and mtDNA

respectively.

(TIF)

Figure S2 Global protein alignment of human EF-G2mt and

yeast Mef2p. Red shaded boxes along the EF-G2mt protein

sequence indicate amino acid variations resulting from non-

synonymous SNPs in the human EF-G2mt gene. A corresponding

red shaded box in the yeast Mef2p alignment designates a fully

conserved amino acid residue and a blue shaded box represents a

semi-conserved residue.

(PDF)

Figure S3 Quantitative PCR analysis of mtDNA levels of the

yeast mef2 mutants relative to the wild-type. The mtDNA/nDNA

ratio was determined using qPCR. There was no detection of

mtDNA in the r0 mef2D deletion mutant, denoted ND. Data

represents the mean 6 SEM (n = 3). The nuclear ACT1 gene and

the mitochondrial COX1 gene were used to determine the quantity

of nuclear DNA and mtDNA respectively.

(TIF)

Table S1 Growth rate of mef2 mutants in glucose and glycerol

medium. Triplicate exponential phase cultures were diluted to an

optical density (OD595 nm) of 0.2 and 50 ml of this culture added to

150 ml of YEPD in wells of a 96-well plate. Cell growth was

monitored by measuring OD at 595 nm every hour for 15 hours

in a Tecan Genios microplate reader. Cell doubling time was

calculated using the formula ln 2/k, where k is the maximal slope

of the curve when ln(OD595) is plotted against time. Data represent

the mean cell doubling time 6 SEM (n = 3). A one-way ANOVA

was used to compare mean cell doubling time of mutants with that

of the wild-type. ***P,0.001.

(PDF)

Table S2 Oligonucleotides used in this study.

(PDF)
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