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Abstract The phylogenetic structure and community com-
position were analysed in an existing data set of marine
bacterioplankton communities to elucidate the evolutionary
and ecological processes dictating the assembly. The com-
munities were sampled from coastal waters at nine locations
distributed worldwide and were examined through the use
of comprehensive clone libraries of 16S ribosomal RNA
genes. The analyses show that the local communities are
phylogenetically different from each other and that a major-
ity of them are phylogenetically clustered, i.e. the species
(operational taxonomic units) were more related to each
other than expected by chance. Accordingly, the local com-
munities were assembled non-randomly from the global pool
of available bacterioplankton. Further, the phylogenetic struc-
tures of the communities were related to the water temperature
at the locations. In agreement with similar studies, including
both macroorganisms and bacteria, these results suggest that
marine bacterial communities are structured by “habitat filter-
ing”, i.e. through non-random colonization and invasion de-
termined by environmental characteristics. Different bacterial
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types seem to have different ecological niches that dictate their
survival in different habitats. Other eco-evolutionary process-
es that may contribute to the observed phylogenetic patterns
are discussed. The results also imply a mapping between
phenotype and phylogenetic relatedness which facilitates the
use of community phylogenetic structure analysis to infer
ecological and evolutionary assembly processes.

Introduction

Ecological communities are the product of both contempo-
rary biotic and abiotic forces as well as historical (phyloge-
netic) contingencies [37, 38]. For example, biogeography,
local adaptive radiation, intra- and inter-specific interactions
together with effects imposed on a community by habitat
characteristics, e.g. temperature, salinity and nutrient avail-
ability, dictate the community assemblage. These processes
often act in concert, and their relative strength varies at
different temporal, geographical and phylogenetic scales
[5, 36]. Phylogenetic structure analysis (mean relatedness
between members of the community) together with the
assumption that ecological differences among species map
onto phylogenetic relatedness has been used extensively to
elucidate community dynamics (reviewed in [3, 25, 34]).
The methods have mainly been used and developed to study
ecological and evolutionary processes to determine the
assembly of plant communities, but they have also been
applied to microbial communities [14].

A phylogenetically clustered local community contains
species that are, on average, more related to each other than
would be expected if assembled randomly from an appro-
priately defined pool of available species. This pattern has
been interpreted as a community largely shaped by the
abiotic environment at the site (‘“habitat”) in which the
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community is found [36]. This conclusion is based on the
notion that habitat characteristics inflict selection pressure
on the potential community members in a way such that
only a non-random subset of the available (global or region-
al) species pool is able to colonize or invade and persist. A
common term for this abiotic-driven assembly process is
“habitat filtering”. In contrast, an overdispersed phylogeny,
i.e. that the species are less related than expected, is sug-
gested to imply that inter-specific competition can be an
important structuring process. This idea is based on the
hypothesis that phylogenetically closely related species can-
not coexist because they share critical traits (and therefore
niches) whereas more distantly related species do not [11,
36]. A majority of the studies published on phylogenetic
structure show communities to be clustered. However, few
have considered that the results are scale dependent. The
geographical scale influences the result indirectly by dictat-
ing the null (or pool) community to which the phylogeny of
interest is compared [35]. Also, the dominating ecological
and evolutionary processes are different at different geo-
graphical scales. For example, phylogenetic structure anal-
ysis can reveal signals of competitive exclusion at small
(within-habitat) scales and niche conservatism at large (re-
gional) scales [29, 36]. The temporal scale can also have a
direct influence as both colonization and speciation are
functions of time [5]. Finally, studies of meadow plant
communities show that the taxonomic level at which the
phylogeny is analysed influences the phylogenetic structure
results [28, 29]. The scaling problem gets apparent in our
use of the term “habitat”. Here we use the term to indicate a
site and its characteristics, without further reference to other
biological relevant habitat definitions such as along depth or
salinity gradients. Further, interpretations of phylogenetic
patterns often lack alternatives to the hypotheses of “habitat
filtering” and “competitive exclusion”. For example, local
adaptive radiation, in relation to invasion rate, may also
explain non-random patterns in phylogenetic structure [5].
Although the use of phylogenetic analyses is particularly
rewarding when studying communities where the available
phylogenetic information is large, only a few studies have
addressed the above questions on microbial communities.
For example, bacterial communities sampled in soil, fresh-
water and saltwater are typically clustered, indicating habitat
filtering to be the dominating process [14, 24]. In this study,
we do an extensive reanalysis of a large data set on 16S
ribosomal RNA gene data from nine globally distributed
marine bacterial communities [26]. In contrast to Pommier
et al. [26], we focus on phylogenetic analyses to elucidate
between-community similarity and structure and within
community structure, taking the full evolutionary commu-
nity history into account. We interpret the phylogenetic
patterns according to the traditional dichotomy of “cluster-
ing” versus “overdispersion” as signals of “habitat filtering”

and “competitive exclusion”, respectively. We discuss eco-
evolutionary processes that also may dictate the community
assemblages.

Methods
Data

We used an already available data set on marine bacterio-
plankton sampled by Pommier et al. [26]. The data consist
of 16S ribosomal RNA genes from nine different localities
around the world. Sampling was conducted: offshore Disko
Island, in Baffin Bay; in the Arctic ocean; in the South
Atlantic offshore Cape Town, South Africa; in the Sargasso
Sea, offshore Bermuda; in the Pacific ocean offshore
San Diego, California; offshore Hawaii islands; offshore
Sydney, Australia; offshore the Fiji Islands and offshore
Concepcion, Chile. All samples were taken at 5 m depth
10 km of the coast and measures were taken to minimize the
risk of sampling at extreme sites [26]. The 16S ribosomal
RNA genes was analysed by PCR amplification, cloning
and Sanger sequencing as described by Pommier et al. [26].
Clone coverage was calculated for each of the nine localities
using the Good [9] and the Lee and Chao [18] coverage
estimates, showing on average 87% and 74% coverage,
respectively [26]. Also, to investigate whether the diversity
within localities was captured by sampling, Pommier et al.
[26] calculated Scpao1 estimates showing satisfactory results
for all but the Hawaii sample. The sequences of the cloned
partial 16S rRNA genes can be found in GenBank under the
accession numbers DQ668407-DQ672245.

Sequence Analysis

Fourteen thousand three hundred ninety complementary
DNA sequences from 7,195 16S rRNA gene clones were
included in the data set. This data set was quality-checked
and treated by Pommier et al. [26] which resulted in a set of
4,250 sequences that were used for further analysis. To
reduce potential remaining errors from the previous analy-
ses, we did an extensive reanalysed sequence data by using
state-of-the-art methods for quality check, alignment, data
base matching and phylogenetic analysis.

We matched each individual sequence to the Greengenes
database which consist of curated, chimera-checked, 16S
rRNA gene sequences and aligned them with the NAST
algorithm at http://greengenes.lbl.gov [4]. After reviewing
the alignments manually, the data were shown to contain
some short-length sequences, and to avoid errors, such as
short branch attractions in later phylogenetic analysis, we
removed all sequences <100 bp. The threshold length of
100 bp was chosen in concordance with the data handling of
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Pommier et al. [26], and hence, the results are comparative
between the studies. In contrast to Pommier et al. [26], who
taxonomically assigned operational taxonomic units (OTUs)
after clustering, here each sequence in the alignments was
taxonomically assigned to the level of phylum with the
classification tool of Greengenes. This classification method
is based on finding near-neighbours in the Greengenes data
base using the Simrank algorithm. Greengenes currently
supports three different taxonomies: RDP, NCBI and
Hugenholz. If two of these assigned the same taxonomic
lineage at the phylum level, the sequence was kept for
further analysis. After data base matching, alignment, clas-
sification and removal of short sequences, 3,617 sequences
were considered high enough quality for further analysis.
Note that this is a reduction of about 500 sequences com-
pared to the ones used in Pommier et al. [26] (see Table S1
for details).

Phylogenetic Analysis

For community composition and phylogenetic structure, one
phylogenetic tree per phylum from all localities was con-
structed. Further, trees were also constructed for each of the
localities, including all phyla. For analysis of phylogenetic
distance between communities one tree was constructed
containing the whole data set. For those purposes, the max-
imum likelihood method in the RAXML 7.0.4 software
using default settings and GTRMIX-model [30] was used.
This model constructs a tree by approximation with optimi-
zation of individual per site substitution rates and classifi-
cations of those individual rates into 25 (default) rate
categories. The topology found is then evaluated such that
it yields stable likelihood values [30]. The phylogenetic
trees were used as input to the analyses done on sequence
level, e.g. calculations of phylogenetic difference between
samples. Other analyses, e.g. Morisita’s index of similarity,
require species and species abundance as input. We defined
“species” or more appropriate, OTUs, by clustering the
sequence-level phylogenetic trees with the RAMI software
[27]. This clustering method uses nodes and branch lengths
in the phylogenetic tree to construct cluster of sequences,
defined by a RAMI threshold of patristic (branch length)
distance. As we know little about the correct threshold
defining an OTU and the potential effects of the threshold
on phylogenetically based results, we did the clustering
procedure with threshold values ranging from 0.01 to 0.08.
The results were robust over the full range of threshold
values; hence, we only report the 0.01 level analysis here.
Note also that this approach is different from Pommier et al.
[26] who clustered sequences based on nucleotide similarity,
not on patristic distances. For each of the clusters, a con-
sensus sequence was created with the RAMI tool rami_con-
sesus. The consensus sequences, belonging to a specific data
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subset, were aligned and new phylogenetic trees were cre-
ated with the RAXML software as above. Each consensus
sequence in the consensus tree defines an OTU, and the
number of sequences within each cluster was treated as
abundance in the OTU-level analyses.

Comparisons Between Localities

As in Pommier et al. [26], we compared localities by calcu-
lating the Morisita’s index of similarity of community com-
position. In contrast to Pommier et al. [26], where
SEQMANII (LASERGENE v.5) was used on sequence
similarity, we used our RAMI clusters as in-data for the
analysis. Further, we extended the analysis to involve ex-
tensive phylogenetic analysis of community similarity and
structure. The Unifrac distance matrix tool [20] was used to
calculate the pairwise phylogenetic difference between all
localities, using one large tree containing all sequences from
all localities. Consequently, this analysis is based on sequence
level data, not on RAMI cluster as for the Morisita’s index
analysis above. This tool calculates a distance metric by
comparing common nodes and branch lengths of the sample
phylogenies [20]. Two identical communities will have all
nodes and branch lengths in common, and the Unifrac dis-
tance metric will be zero (0%). In contrast, if two samples
differ already in the first node of the phylogenetic tree (e.g.
one sample is clustered in one part and the other sample in
another part of the total tree), no common nodes or branches
exist and the Unifrac metric will be 1 (100% difference). In
contrast to the Morisita’s analysis, which compare common
species and their abundances, the Unifrac approach takes the
full phylogeny, hence the evolutionary history, into account
when calculating the distance metrics. As a consequence, the
Morisita’s and the Unifrac analyses do not necessarily have to
give the same result. For consistency in results, we converted
the Unifrac metrics to show similarity instead of distance by
subtracting each Unifrac metric value from one (1—(Unifrac
value)). We calculated the significance of the phylogenetic
distance between localities using the pairwise Unifrac signif-
icance test and P test significance tool. Both tests compare the
sample phylogenetic tree to randomly constructed null model
trees (1,000 random permutation of environment labels across
the sequences). The reported significance value of phyloge-
netic distances is the fraction of null model trees that have a
Unifrac metric value greater or equal to the sampled tree. The
P test compares the number of parsimony changes required to
explain the distribution of sequences between samples. The
reported P value is the fraction of null model trees that require
fewer parsimony changes to explain distributions than does
the sample tree. Notably, the Unifrac significance test and
Unifrac P test are tools primarily suited for analysis of two
or a few environments [20]. Consequently, few of the P values
reported in the outputs from these tests were significant after
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doing the Bonferroni correction of multiple comparisons.
When showing the relative difference between localities
in the full data (one phylogenetic tree containing all
sequences from all libraries), we used the Unifrac jack-
knife environment clustering tool [20]. This tool performs
hierarchical clustering analysis of the localities based on
the pairwise Unifrac distance metric (pairwise compari-
sons of libraries) and outputs a dendrogram with coloured
nodes denoting the fraction of the random samples that
they were recovered in.

Abiotic Factors Affecting Community Dynamics

The surface water temperature and latitude data given by
Pommier et al. [26] were used to serve as a proxy for the
environmental conditions in the sampled localities. We mea-
sured the difference in surface water temperature and latitude
between all pairwise sample combinations and related these to
pairwise Morisita’s and Unifrac similarity calculation.

Phylogenetic Clustering or Overdispersion

We used Phylocom [35] to analyse clustering or overdisper-
sion patterns in all localities. The net relatedness index
(NRI) quantifies the structure of a sample phylogeny de-
rived from the mean phylogenetic distance, consequently
capturing the degree of clustering of the phylogeny from
root to terminal leaves. The nearest taxa index (NTI) quan-
tifies the terminal structure of the sample phylogeny, hence
only captures the clustering of the terminal nodes in the tree.
NRI and NTI are defined as:

MPDsample - MPDmdsample
sd (MPDrndsample)

NRI = —1 x (1)

MNTDsample - MNTDmdsample
sd (MN TDrndsamplc)

NTI = —1 x (2)

where MPD = mean phylogenetic distance, MNTD = mean
nearest phylogenetic taxon distance and sd = standard devi-
ation. The subscript “sample” denotes values derived from
the phylogenetic tree analysed and “rndsample” denotes
values derived from 999 random phylogenies constructed
according to a null model. The null model used here (# 2)
constructs a random phylogenetic tree by assigning sequen-
ces/OTUs to the localities (localities found in the focal
phylogeny) by random draws from the phylogeny pool (all
OTUs available in the input data). This maintains the se-
quence richness of each sample, but the identities of the
species occurring in each sample are randomised. Positive
NRI/NTI values indicate a clustered phylogeny where coex-
isting taxa are more related to each other than expected by

chance. A negative NRI/NTI value indicates an overdis-
persed phylogeny where coexisting taxa are less related to
each other than would be expected by chance. We calculated
the NRI and NTI, using the comstruct Phylocom tool at both
community level (including all phyla) and the phylum level
(the structure of phylum X in each locality, respectively). As
we have little knowledge of the ecological significant scale
for bacterial community, the Phylocom analysis was done
on both single sequences and sequence clusters (OTUs) as
terminal leaves in the phylogenetic trees. Finally, we used a
two-tailed significance test for the NRI/NTI results, using
the rank high and rank low values in the Phylocom output
[35]. The rank values are the number of runs showing the
null model to have lower or higher NRI/NTI values than the
focal phylogeny. Consequently, positive NRI/NTI values
associated with rank low >975 and rank high <25 and
negative NRI/NTI associated with rank low <25 and rank
high >975 are significant at P<0.05. The analyses on phy-
lum level aim to investigate both specific phylum/locality
combinations and marine bacterial communities in general.
Consequently, we Bonferroni-corrected the output from
Phylocom by multiplying the P values with 1/n, where n is
the number of unique phylum/locality combinations (n=77).

Results
Community Similarity

The Morisita’s index, based on OTU pairwise similarities
and abundances between samples, showed both high and
low values (Fig. 1). The highest similarity index was found
between Cape Town and Sydney with a joint Morisita’s
index of 0.81. This value tells us, given some internal
diversity in the compared communities, the probability that
two sequences randomly drawn from the two communities,
respectively, belong to the same OTU. Consequently, the
Cape Town and Sidney samples are 81% similar in terms of
OTU composition and abundance. Baffin Bay is relatively
dissimilar to all other localities (in some cases 0% similar-
ity), except the Arctic Ocean. Consequently, this sample is
to a large extent unique in terms of OTU composition. Note
that a majority (26 out of 36) of the pairwise similarity
values were found in the two bottom quartiles of the distri-
bution of similarity values. The Unifrac analysis of phylo-
genetic distance gave somewhat different results; the
pairwise Unifrac metric values were on average lower and
had less variation (ranging from 0.1 to 0.37). The distribu-
tion of Unifrac values was also more evenly distributed; ten
out of the 36 pairwise Unifrac values were found in the
lower two quartiles. The qualitative pattern among samples
was, however, similar between the Unifrac and Morisita’s
results. Baffin Bay again stands out, sharing less than 20%
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of the nodes and branch lengths of any of the other
communities (Fig. 1). The significance test and Unifrac
P test that were used for analysing the significance of
the pairwise distance between communities all showed
high P values. A possible explanation for this is the
effect of the Bonferroni correction for multiple compar-
isons; these tests are primarily suited for analysis of two
or a few samples [20].

Although the pairwise significance tests, above, give
high values, the Unifrac jackknife analysis show patterns
of differentiation between localities. Two nodes in the Uni-
frac dendrogram was recovered in >99.9% of the rando-
mised jackknife resampling analysis implying the different
localities to be clustered into three distinct clusters (Fig. 2).
In addition, four nodes in the dendrogram were recovered in
>50% of the resampling procedure, implying further struc-
turing below the three main clusters. Temperature differ-
ences were negatively correlated with differences in
community composition (Morisita’s index) and phylogeny

Morisita’s index of similarity

(Unifrac metric) (Fig. 3a, b). Although weak, the same
relationship was also found between latitude and community
composition (data not shown).

Phylogenetic Clustering and Overdispersion

There were significantly positive NRI and NTI values (clus-
tering) in 5 and 7, respectively, of the nine localities when
analysing the phylogenetic structure at the sequence scale
(single sequences in the terminal leaves of the analysed
phylogenetic tree) (Table 1). The same analysis at the
OTU level (clusters of sequences as terminal leaves of the
phylogenetic tree) showed similar results with positive NRI
and NTI values in 4 and 9, respectively, of the nine localities
(Table 1). Consequently, a majority of the communities tend
to be phylogenetically clustered. Two and one of the local-
ities had significant negative NRI values in the sequence-
level and cluster-level analysis, respectively. Consequently,
the members of these communities are less related to each

Baffin Bay

Sargasso Sea

. >99.9%

Fiji

o .
Hawall

. 50-70%

Arctic Ocean

Concepcion,Chile .
’ <50%

San Diego

Sidney

Figure 2 Dendrogram illustrating similarity between localities and
clustered localities are similar in composition. Hierarchical clustering
(UPGMA) of samples has been made with the Unifrac distance matrix
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as basis. Each node in the dendrogram has been jackknife analysed
(jackknife analysis clusters=75% of smallest sample, 100 permuta-
tions). Colour of nodes illustrates the jackknife support value
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Figure 3 a Morisita’s index
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other than expected by chance (i.e. phylogenetically over-
dispersed). Also, it should be noted that, although in general
lower NRI values for the OTU-level analysis, the results
were robust for the two analysis approaches (sequence scale
and cluster scale) giving similar qualitative NRI and NTI
results.

When testing the structure of individual phyla within the
different localities, once again a large proportion of the data
subsets were clustered (Fig. 4). If single sequence-level data
were used, significant phylogenetic structure was found in
34 out of the 77 phylum-by-locality data sets having suffi-
cient data for Phylocom calculations (Fig. 4a). Only seven
of the NRI or NTI values were found to be significantly

negative. In the OTU-level analyses, significant phylogenet-
ic structure was found in 29 out of the 77 phylum-by-
locality combinations containing sufficient data for Phylo-
com calculations (Fig. 4b). Only two of the NRI or NTI
values were found to be significantly negative. After Bonfer-
roni correction, no significant negative results remained; how-
ever, 16 and 9 significant positive NRI or NTI values remained
in the sequence-level and cluster-level analysis, respectively.
Notably, 28 out of the 41 significant NRI and NTI values at the
OTU level were recovered in the single sequence-level analy-
sis. Although the two approaches give qualitatively similar
results, the discrepancy between the two possibly is a result of
reduction in noise, especially in the terminal parts of the
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Table 1 NRI and NTI for globally distributed bacterial communities

Sequence analysis

Cluster analysis

N NRI RGR NTI RGR N NRI RGR NTI RGR
Arctic Ocean 286 0.92 813 3.41%* 999 143 0.35 620 4.54%* 999
Baftin Bay 253 29.03** 999 7.33%* 999 62 6.52** 999 5.34%* 999
Cape Town 211 1.09 863 2.73%* 996 135 —0.11 457 3.64%* 999
Conception, Chile 677 —2.34%* 8 6.02%%* 999 248 2.18%* 987 5.19%* 999
Fiji 542 6.52%%* 999 1.32 913 272 2.00% 965 2.01%* 974
Hawaii 402 4.48%* 999 1.67* 954 232 1.13 873 4.12%* 999
San Diego 438 —4.70%* 0 5.42%% 999 142 —4.01%* 0 3.43%%* 998
Sargasso Sea 507 13.31%* 999 3.87%* 998 257 5.89%* 999 5.50%* 999
Sidney 301 2.62%* 991 0.86 803 197 0.17 575 3.49%* 999

NRI net relatedness index, N7 nearest taxa index, N number of taxa in community, RGR number of runs where the observed NRI/NTI values are
greater than in the randomly drawn null community, /ef results from sequence-level analysis, right results from cluster-level analysis

Stars indicate statistically significant (* - P<0.01; ** - P<0.05) community structuring

phylogenetic trees, as individual sequences are clustered
together.

Discussion

In this study, we have used a combination of phylogenetic
structure analysis and data on abundance, geographical dis-
tribution and habitat characteristics of marine bacterial com-
munities to elucidate potential ecological and evolutionary
processes dictating the assemblages. In addition to an ex-
tensive reanalysis of the raw data, sampled by Pommier et
al. [26], we include phylogenetic analyses to investigate
community similarity and structure. Consequently, in con-
trast to Pommier et al. [26], we do analyses on both com-
munity composition and the community phylogeny, hence
taking the full evolutionary history into account. Results
from our Morisita’s index analysis show the marine bacter-
ioplankton communities to be different from each other in
terms of OTU composition and relative abundance. These
results are different from the results presented by Pommier
et al. [26] who stated that most communities were similar.
Our phylogenetic analysis shows that the communities are
different also in an evolutionary perspective. We found a
relationship between-community structure and temperature
at sample site (Fig. 3). Finally, we show that the marine
bacterial communities across the globe studied here typical-
ly are phylogenetically clustered. From the available pool of
bacterial types, a distinct subset is non-randomly recruited
into the local marine bacterioplankton communities. As
suggested by Webb et al. [36], this can be interpreted such
that the members of those subsets share traits that make
them suitable for the particular environmental conditions at
the specific localities. That is, habitat characteristics dictate
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whether a species, with specific phenotypic and genotypic
characteristics, can colonize a novel habitat or invade a
community. We have limited information about the specific
environmental characteristics at spatial and temporal scales
relevant to bacterial communities. We did find a relationship
between water temperature at the site (and sampling occa-
sion) and community composition. Whether that relation-
ship says something about the environmental characteristics
responsible for “habitat filtering” or not is, however, an
open question. A correlation between the phylogenetic
signal and whatever environmental variables is only truly
meaningful if the abiotic requirements of bacterial taxa is
fully known.

Although our results suggest that marine bacterial com-
munities are structured by “habitat filtering” processes, we
recognize other possible explanations for the patterns of
phylogenetic clustering. In addition to habitat characteris-
tics, the recruitment of species between habitats is affected
by, e.g. the organism propensity to disperse, whether the
organism are resilient to novel conditions and the distance
between habitats. Further, the rate of local adaptive radiation
affects the community structure [5, 14]. Local adaptive
radiation, in turn, is affected by various factors such as
temporal and spatial habitat heterogeneity and niche breadth
of the organisms. The pattern of phylogenetic clustering,
often observed in macroorganisms, seems to be largely
shared by marine bacteria. However, effects from ecological
interactions should not be ruled out. The results have been
shown to be scale dependent, and a community filtered by
its habitat can either be neutral [15, 39, 40] or retain strong
niche partitioning [23, 31, 32]. It has been suggested that
spatial and temporal heterogeneity in most environments
where bacteria are abundant could potentially allow for a huge
neutral diversity as we typically measure it at intermediate and
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Figure 4 Net relatedness index (NVR/) and nearest taxa index (N71) for
all phyla represented in each of the localities. One square per phylum
and locality combination, upper left part represents NRI and the lower
right part represents NTI. Colour code green denotes positive values
(clustered community). Red denotes negative values (overdispersed
community). ¥*P<0.05 and 1P<0.10 denote significant results. Blue
denotes positive results, P< (.05 with Bonferroni correction. Note that
after Bonferroni correction, no significant negative results remain. a
Analysis made on sequence level, terminal leaves in the phylogenetic
tree consists of one single sequence. b Analysis made on OTU level,
terminal leaves in phylogenetic tree consist of sequences clustered
together based on phylogenetic similarity

large scales [10, 19, 33]. In contrast, these organisms may be
similar in its resource requirements potentially causing selec-
tion for niche partitioning between competing strains [12, 21].
Consequently, to understand the full range of processes and
the relative strength between them, signals hidden below
dominating patterns of phylogenetic structure and various
scales need to be investigated.

We have considered the phylogenetic structure at various
scales by doing the analysis on sequence level (used here as
a proxy for individuals) and OTU level (proxy for species).
We did the data analysis on different sets (each community
including all phyla) and subsets (each phylum within each
community). In addition, we made efforts to find signals

below the results of phylogenetic clustering. It has, e.g. been
suggested that analysis of the distribution of relative abun-
dances (fractional abundances) between closely and distant-
ly related pairs of species can reveal the presence of overall
niche structure [16, 17]. Discrepancy between the fractional
abundance distribution of related pairs and the distribution
of random pairs might indicate niche separation between
closely related taxa. In contrast, if the patterns in abundance
are indistinguishable from random, the community members
are assumed to be neutral and interchangeable entities. The
mechanisms behind these patterns are, as for the phyloge-
netic structure analysis, based on the assumption of close
mapping between phylogeny and traits. Given this mapping,
related species share traits to a larger extent than nonrelated
species. According to this hypothesis [16, 17], similar traits
result in similar niches which may give rise to high compe-
tition between closely related species. Ultimately these
interactions may be manifested in the relative species abun-
dances. We conducted fractional abundance analysis on our
data by comparing abundances of closely related and ran-
domly selected OTUs in the phylogenetic tree, respectively.
Unfortunately, this data set does not allow for any conclu-
sive answers because of the small sample size. We do,
however, hope that our efforts may inspire future studies
to use fractional abundance analysis on data sets containing
enough sequences to get resolution on the level of OTU
abundance.

The Morisita’s index results, shown here, suggest that our
methodological approach is more sensitive in detecting
community differences than, e.g. the approach used in
Pommier et al. [26]. This may be due to the RAMI clusters
which most likely have a larger biological significance than
clusters that are defined from sequence similarity only. It
should, however, also be noted that the results may be
affected by threshold values in the clustering algorithm.
However, we found the results to be robust over the full
range of RAMI thresholds (0.01-0.08) and taxonomic scale.
In addition, the Unifrac results support the Morisita’s index
patterns. Interestingly, there are, however, some differences
between the two analyses (Fig. 1). This is possible because
two communities that differ extensively in species compo-
sition and abundance may not be totally evolutionary dif-
ferent, especially if they share ancestry but have experienced
resent isolation and disruptive selection. On the other hand,
communities with similar species abundance distributions
may still have different evolutionary history. From this, we
conclude that both community composition and phylogeny
structure patterns need to be considered; the patterns may be
different and answer, somewhat, different questions.

As stated above, the relationship between water temper-
ature at sample site and community structure suggest that
habitat characteristics may affect the assembly. However,
further experiments are needed to more specifically identify
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the habitat characteristics that drive the structuring process;
temperature may be a direct physiological effect on the
bacteria or indirect effects via secondary environmental
effects. Also, temperature is only one of many habitat char-
acteristics. It would be interesting to investigate the relation-
ship between other factors such as salinity and resource
availability and community structure (see, e.g. [6]).

Studies on natural bacterial communities have shown
both spatial and temporal variation in community composi-
tion [1, 7, 8, 13, 22, 41]. This data set is sampled at different
geographical sites and at different temporal occasions. Con-
sequently, the sampling scheme may affect the results. How-
ever, the consistency in our results lead us to speculate that,
despite plausible temporal variation in community compo-
sition, the dominating assembly processes may be more or
less similar. Nevertheless, analyses on scales different from
the ones investigated in this study are desirable to fully
understand temporal dynamics and geographical scale
dependencies.

Finally, the link between phylogenetic patterns and eco-
logical processes hinges on a relationship between pheno-
typic characteristics and “species” relatedness. Several
studies [2, 14, 24] suggest that such a relationship exists at
least for some taxa. In addition, we argue that the non-
random phylogenetic patterns found in this study imply a
link between ecological assembly processes and patterns.
This link likely is due to niche conservatism, i.e. a mapping
between bacterial phenotype and relatedness. However, as
the ecology of a great majority of the bacteria in natural
communities is largely unknown, this assumption may not
be valid for all taxa and traits. Consequently, we invite
further investigations of the distribution of traits over the
phylogeny of bacteria to strengthen the implications of
phylogenetic signal analysis.
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