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Background: ATP-binding cassette transporters exist in all life forms and usually require only one substrate-binding
domain.
Results: The TRIGALACTOSYLDIACYLGLYCEROL (TGD) complex contains 8–12 substrate-binding proteins.
Conclusion: Multiple substrate-binding proteins may be needed by the TGD complex to enhance its putative lipid transport
activity.
Significance: Knowing the subunit stoichiometry of the TGD complex furthers understanding of lipid transfer between chlo-
roplast membranes.

Members of the ATP-binding cassette (ABC) transporter
family are essential proteins in species as diverse as archaea and
humans. Their domain architecture has remained relatively
fixed across these species, with rare exceptions. Here, we show
one exception to be the TRIGALACTOSYLDIACYLGLYC-
EROL 1, 2, and 3 (TGD1, -2, and -3) putative lipid transporter
located at the chloroplast inner envelopemembrane. TGD2was
previously shown to be in a complex of >500 kDa. We demon-
strate that this complex also contains TGD1 and -3 and is very
stable because it cannot be broken down by gentle denaturants
to form a “core” complex similar in size to standard ABC trans-
porters. The complex was purified from Pisum sativum (pea)
chloroplast envelopes by native gel electrophoresis and exam-
ined by mass spectrometry. Identified proteins besides TGD1,
-2, or -3 included a potassium efflux antiporter and a TIM17/
22/23 family protein, but these were shown to be in separate
high molecular mass complexes. Quantification of the complex
components explained the size of the complex because 8–12
copies of the substrate-binding protein (TGD2) were found
per functional transporter.

ATP-binding cassette (ABC)3 transporters are an ancient
protein family. Its members exist in species from all kingdoms

of life, where they play important, frequently essential roles (1,
2). They have evolved to transport a variety of substrates,
including inorganic and organic cations and anions, amino
acids, peptides, proteins, vitamins, drugs, fatty acids, and lipids
(3). Despite their diversity, ABC transporters have a conserved
domain structure consisting of two membrane-spanning “per-
mease” domains and two ATPase or nucleotide-binding
domains (NBDs). In most prokaryotic ABC importers, these
exist as separate polypeptide chains, which assemble as tetra-
mers to form a functional transporter complex. In prokaryotic
ABC exporters and most eukaryotic ABC transporters, a single
polypeptide strand contains domains for both permease and
nucleotide binding and assembles into functional homodimers.
In either scenario, when a functional transporter is assembled,
physical movements associated with ATP binding and hydrol-
ysis are transmitted through contacts between NBDs and per-
mease domains to catalyze substrate transport (4).
A third domain associated with a subset of ABC transporters

is called the substrate-binding domain (SBD). In Gram-nega-
tive bacterial importers, SBDs are usually part of soluble
periplasmic proteins that bind substrates and deliver them to
their transporters (5). In Gram-positive bacteria and archaea,
which lack an outer membrane, SBD-containing proteins are
anchored by lipid moieties or transmembrane �-helices while
performing similar functions (6). In almost every case, one SBD
is associated with a functional ABC transporter. The known
exceptions to this rule are the OpuA family from Lactococcus
lactis, which has two SBDs per transport complex, and the PAO
subfamily of transporters in L. lactis and various Streptococcus
spp., which has four SBDs per transport complex (5, 7).
TGD1, -2, and -3 (systematically namedAtABCI4, -5, and -3)

form a putative ABC transporter found in the chloroplast inner
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envelopemembrane of plants and algae, in which TGD1 is sim-
ilar to an ABC transporter permease, TGD3 to an NBD, and
TGD2 to an SBD (8, 9). The TGD genes are most similar to
genes encoding an ABC importer of Gram-negative bacteria,
probably because chloroplasts were once cyanobacteria
acquired by an endosymbiotic event and have many ancestral
genes. However, unlike most bacteria in which lipids are trans-
ported across a single membrane, chloroplasts transport the
bulk of their lipids across twomembranes. Themajor lipid sink
in plant cells is the photosynthetic thylakoidmembrane, and an
essential supply of lipid precursors is provided by the endoplas-
mic reticulum (ER), where fatty acids are assembled into mem-
brane lipids (10). These lipids must then be transported across
the chloroplast outer envelopemembrane to the inner envelope
membrane, where they are further metabolized into chloro-
plast-specific lipids, such as monogalactosyldiacylglycerol (11),
for eventual transport to the thylakoids. Alternatively, chloro-
plasts can also synthesize their own lipids, although this path-
way is not essential to plant viability (12). Contributions from
the ER or chloroplast pathways to total chloroplast lipids can be
distinguished by the number of carbons of the fatty acid in the
sn-2 position; Chloroplast-derived lipids have 16 carbons,
whereas ER-derived lipids have 18 carbons (13). Evidence that
TGD1, -2, and -3 function together in lipid transport is derived
from the tgd pointmutants inArabidopsis thaliana, which each
show a reduction in 18 carbon fatty acids and an increase in 16
carbon fatty acids, implying impaired ER to chloroplast lipid
transport (14–16). Furthermore, TGD2, the putative substrate-
binding protein, has been shown to bind lipids in vitro, specif-
ically phosphatidic acid (17).
Recently, TGD2 was shown to be part of a complex much

larger than the typical ABC transporter (18). Because no direct
evidence supported TGD1, -2, and -3 acting in association, the
finding shed doubt on whether or not TGD2was part of a com-
plex with TGD1 and -3. Here we immunoprecipitated tagged
versions of TGD1 and -3 and confirmed their association with
TGD2 in vivo. The stability of the TGD complex was tested by
treatment with a variety of gentle and harsh denaturants and
was shown not to break down into a smaller complex. The
entire complex was then purified from pea chloroplast enve-
lopes, and components were identified by mass spectrometry.
All possible partners were investigated, but those besides
TGD1, -2, and -3 were found to be in independent, similarly
sized complexes. Finally, the size of the TGD complex was
accounted for by label-free quantification, which clearly
showed that TGD1, -2, and -3 form a variation of anABC trans-
porter in which TGD2 is present in 8–12 copies. The biological
rationale is discussed.

EXPERIMENTAL PROCEDURES

Plant Growth andChloroplast Isolations—Arabidopsis of the
Columbia ecotype were planted and grown as described (19).
Chloroplasts were isolated from 3–4-week-old, plate-grown
plants as described (18). Trypsin and thermolysin treatments of
intact chloroplasts were as described (20). Pisum sativum (pea)
var. LittleMarvel (Gurney’s Seed andNursery Co.) were grown,
and chloroplasts were isolated from 2–3-week-old plants as
described (21). Envelopes of pea chloroplasts were isolated by

combining existing methods (22, 23) to give the cleanest enve-
lopes with lowest Rubisco contamination as follows. Pelleted
chloroplasts were broken by resuspension in 10 mM Hepes-
KOH, 10 mM MgCl2, pH 7.5, at a concentration of 1 mg of
chlorophyll/ml. After 10min incubation on ice, bulk thylakoids
were removed by three 1500 � g 5-min centrifugations at 4 °C,
and after each centrifugation, the supernatant was moved to a
new tube. Crude envelopes were pelleted by a 100,000 � g
30-min centrifugation at 4 °C; resuspended in 10 mM Tricine-
HCl, 2 mM EDTA, pH 7.5; and separated on a 0.6–1 M sucrose
gradient. Bands containing outer and inner envelope mem-
branes were pooled and washed once with 0.1 M NaHCO3 to
help remove peripheral proteins. During no step of the proce-
dure was the complex size altered.
Generation of kea1kea2 Lines—T-DNA insertion lines

homozygous for kea1 (CS861469) or kea2 (SALK_045324C)
were obtained from the Arabidopsis Information Resource (24,
25). Genotyping of various alleles used the following primers:
KEA1 forward (5�-GATCCGTGTATCTCATTCCACATC-
3�), wild-type reverse (5�-GCAGACGGGAAGTACTGGC-3�)
and T-DNA reverse (5�-GCTTCCTATTATATCTTCCCAA-
ATTACCAATACA-3�); KEA2 forward (5�-GTGATGTAAT-
GGCAGATGGCG-3�), wild-type reverse (5�-CTTACAAGA-
GCATTTAAGCAGGC-3�), and T-DNA reverse (5�-ATTTT-
GCCGATTTCGGAAC-3�). kea1 and kea2plantswere crossed,
and double homozygous lines were selected by genotyping of
the F2 population.
Generation of TGD1 and TGD3 HA Lines—HA tags were

added to TGD1 or TGD3 sequences by PCR amplification with
the following primers: TGD1, 5�-GCGCAGATCTATGATGC-
AGACTTGTTGTTCC-3� and 5�-GCGCGTCGACTCATGC-
ATAATCGGGAACATCATAGGGATAAACACAGTTCTT-
CAAAGAATCTCC-3�; TGD3, 5�-TGGCGTCGACATGCTT-
TCGTTATCATGCTCTTC-3� and 5�-GCCAGGTACCTCA-
TGCATAATCGGGAACATCATAGGGATAGTATCTGAT-
TGGTCCATCGAG-3�. Products were cloned using the Zero�
blunt PCR cloning kit (Invitrogen), sequenced, and then
digested with BglII and SalI (TGD1) or SalI and KpnI (TGD3)
and cloned into pCAMBIAmcs1300. Agrobacteria tumefaciens
strain GV3101 bearing the plasmids was used to transform
tgd1-1 or tgd3-1 Arabidopsis as described (26). Parental geno-
type mapping was precisely as described previously (15, 16).
Immunoprecipitation—Isolated chloroplasts were dissolved

in 50 mM BisTris-HCl, pH 7.0, 500 mM 6-aminocapronic acid,
150mMNaCl, 1% dodecylmaltosidewith one protease inhibitor
chip minus EDTA (Roche Applied Science) per 500 �l. After
incubating on ice for 30min, insoluble materials were removed
by centrifugation at 100,000 � g for 10 min at 4 °C. Superna-
tants were immunoprecipitated using the Pierce HA Tag
IP/Co-IP kit (Thermo Fisher Scientific) essentially as per
instructions. Resin was washed with buffer similar to dissolving
buffer with only 0.1% dodecylmaltoside. Proteins were eluted
with non-reducing SDS-PAGE loading buffer.
Lipid Analyses—Lipids were extracted from plant leaves as

described (27) and used directly for TLC analysis as described
(15) or extracted from the TLC plates, broken down into fatty
acid methyl esters, and quantified as described (28).
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Native Gel Analyses—Protein complexes from isolated chlo-
roplasts, chloroplast envelopes, or whole leaves were solubi-
lized in 50 mM BisTris-HCl, pH 7.0, 500 mM 6-aminocapronic
acid, 10% glycerol, supplemented with reagents described here
(detergents obtained fromAffymetrix or Sigma). Solubilization
of leaf proteins was increased by micropestle homogenization
in buffer.When chloroplasts had already been digested by ther-
molysin or trypsin, solubilization buffer also contained 20 mM

EDTA or 0.1 mg/ml trypsin inhibitor, respectively. Insoluble
materials were removed by centrifugation at 100,000 � g for 10
min at 4 °C. Supernatants were run on blue native or histidine
deoxycholate native gels, denatured, and run in a second
dimension ondenaturing SDS-PAGEas described (29, 30). Gels
were immunoblotted or stained with the Pierce Silver Stain kit
for mass spectrometry (Thermo Fisher Scientific) according to
instructions.
Antisera—Creation of TGD2 antiserumwas described previ-

ously (14). TOC159 antiserum was a gift from Masato Nakai
(29). TIC110 antiserumwas a gift from John Froehlich (31). HA
antiserum was obtained from Covance or Santa Cruz Biotech-
nology, Inc. (Santa Cruz, CA). At3g49560 antiserumwas raised
against its N-terminal 50 amino acids as follows. cDNA was
cloned into pDEST15 using Gateway� technology (Invitrogen)
with a PreScission protease site at the C terminus. GST-tagged
recombinant proteins were expressed in BL21 cells, bound to
GST-Sepharose (Scientifix), and eluted via on-column diges-
tion using PreScission Protease (GE Healthcare). The iden-
tity of the recombinant protein was confirmed by mass spec-
trometry prior to inoculation into rabbits as per the standard
protocol (32). For testing the antibody, recombinant
proteins of Tim17-1 (At1g20350), Tim17-2 (At2g37410),
Tim17-3 (At5g11690), Tim23-1 (At1g17530), Tim23-2
(At1g72750), Tim23-3 (At3g04800), Tim22-1 (At1g18320/
At3g10110), At3g25120, At3g49560, and At5g24650 were
produced by Gateway� cloning into pDEST17 in BL21 cells.
Equal abundance of recombinant proteins was estimated by
detection with 6� His antiserum (Qiagen).
Mass Spectrometry Analyses—Gel bands were subjected to

in-gel tryptic digestion (33) with modifications. Briefly, gel
bands were dehydrated using 100% acetonitrile (ACN) and
incubated with 10 mM dithiothreitol (DTT) in 100 mM

NH4HCO3, pH �8, at 56 °C for 45 min, dehydrated again, and
incubated in the dark with 50 mM iodoacetamide in 100 mM

NH4HCO3 for 20 min. Gel bands were then washed with 100
mM NH4HCO3 and dehydrated again. Sequencing grade mod-
ified trypsin (Promega) was prepared to 0.01 �g/�l in 50 mM

NH4HCO3, and �50 �l of this was added to each gel band so
that the gel was completely submerged. Bands were then incu-
bated at 37 °C overnight. Peptides were extracted by water bath
sonication in a solution of 60% ACN, 1% trichloroacetic acid
and vacuum dried to �2 �l. Peptides were then resuspended in
2% ACN, 0.1% trifluoroacetic acid to 20 �l, and from this, 10 �l
were injected by a Waters nanoAcquity Sample Manager and
loaded for 5 min onto a Waters Symmetry C18 peptide trap (5
�m, 180 �m � 20 mm) at 4 �l/min in 5% ACN, 0.1% formic
acid. Bound peptideswere eluted onto aMichromBioresources
0.1 � 150-mm column packed with 3u 200A Magic C18AQ
material over 35min with a gradient of 5% B to 30% B in 21min

using aWaters nanoAcquity UPLC system (Buffer A contained
99.9% water, 0.1% formic acid; Buffer B contained 99.9% ACN,
0.1% formic acid) with an initial flow rate of 1 �l/min. Eluted
peptides were sprayed into a Thermo Fisher Scientific LTQ
linear ion trap mass spectrometer outfitted with a Michrom
Bioresources ADVANCE nanospray source. The top five ions
in each survey scan were then subjected to data-dependent
zoom scans followed by low energy collision-induced dissocia-
tion, and the resulting MS/MS spectra were converted to peak
lists using the BioWorks Browser version 3.3.1 (Thermo Fisher
Scientific) using the default LTQ instrument parameters. Peak
lists were searched against a P. sativum cDNA library, previ-
ously generated in house (34) using the Mascot searching algo-
rithm, version 2.3 (see the Matrix Science Web site). Mascot
parameters were as follows: two missed tryptic sites allowed,
fixedmodification of carbamidomethyl cysteine, variable mod-
ification of oxidation of methionine, peptide tolerance of �200
ppm, MS/MS tolerance of 0.6 Da, peptide charge state limited
to �2/�3. The Mascot output was then analyzed using Scaf-
fold, version 3.3.3, to probabilistically validate protein identifi-
cations using the ProteinProphet computer algorithm (35).
Assignments validated above the scaffold 95% protein and 99%
peptide confidence filters were reported.

RESULTS

Preparation of Tagged TGD1 and TGD3 Arabidopsis Lines—
TGD1, -2, and -3 have been proposed to constitute an ABC
transporter.However, previous investigations of TGD2 showed
its presence in a complexmuch larger than predicted of a classic
ABC, shedding doubt on its association with TGD1 and -3 (18).
To investigate the composition of the TGD2-containing com-
plex, tagged lines of TGD1 and -3 were constructed (8) because
antisera against these proteins are lacking. Constructs express-
ing TGD1 or TGD3 with a C-terminal HA tag under control of
the constitutive 35S promoter were introduced into tgd1-1 or
tgd3-1 Arabidopsis (Fig. 1A). The resulting plants were
screened by antibiotic resistance and then confirmed to have
the transgene by PCR of genomic DNA (Fig. 1B). TGD1HA
lines fully complemented the growth phenotype of tgd1-1
mutant line and reduced levels of diagnostic lipid trigalactosyl-
diacylglycerol (TGDG) to wild-type levels (Fig. 1C). Similarly,
TGD3HA lines complemented growth phenotypes of the
tgd3-1 tDNA insertion allele (Fig. 1A), and most lines reversed
TGDG accumulation, although TGDG could still be seen in
some lines (Fig. 1C). Together, these data indicate that a por-
tion of produced TGD1HA and TGD3HA proteins are acting
similarly to their native counterparts and that it is unlikely that
the HA tag interferes with their native function.
TGD1, -2, and -3 Are Parts of the Same Complex—To deter-

mine if TGD1 and -3 are in a similarly sized complex as TGD2,
chloroplast complexes were separated in the first dimension by
blue native PAGE (BN-PAGE), and in the second dimension by
SDS-PAGE (Fig. 1D). HA signals matching the size of TGD1 or
TGD3were found in highmolecular mass complexes of similar
size and pattern to TGD2 in the same plants. Some of the
TGD1HA and TGD3HA proteins were also present at lower
molecular masses, although this may be due to increased trans-
gene expression compared with that of the native genes. To
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confirm that TGD1, -2, and -3 interact directly, HA-containing
proteins were immunoprecipitated from solubilized chloro-
plasts isolated from wild-type, TGD1HA-producing, or
TGD3HA-producing lines. TGD1HA or TGD3HA proteins
efficiently co-precipitated TGD2 (Fig. 1E). Validating the spec-
ificity of the co-immunoprecipitation, HA-tagged proteins
were not precipitated from wild-type chloroplasts, and neither
TGD1HA nor TGD3HA proteins co-precipitated an unassoci-
ated chloroplast membrane protein, the translocon at the outer
envelope membrane of chloroplasts, 159 kDa (TOC159). That
TGD1HA and TGD3HA proteins can each independently pull
down TGD2 confirms the hypothesis that TGD1, -2, and -3 are
physically associated.
Characterizing TGD Complex—The expected size of a

canonical ABC transporterwith aTGD1/TGD3/TGD2 subunit
ratio of 2:2:1 would be �160 kDa; however, the identified TGD
complex is larger than 500 kDa (Fig. 1A).We hypothesized that
the size difference could be due to additional components sur-
rounding a “core” complex similar to the canonical transporter.
To gently break down the large complex and reveal the “core”
complex, isolated chloroplasts were treated using mildly dis-
rupting conditions, and the complexes were resolved both by
BN-PAGE and by a recently described variation of native gel for
chloroplast envelope proteins, histidine deoxychlolate native
PAGE (HDN-PAGE) (30). Several gentle detergents known to
solubilize membrane protein complexes, including digitonin,
decylmaltoside, dodecylmaltoside (DDM), and Triton X-100,
were employed to treat isolated chloroplasts. In every case, the
resultingTGD2-containing complexwas similar in size and sta-
bility (Fig. 2A) (36). A harsher detergent that is used in crystal-
lization studies, foscholine-12, was similarly tested andwas also
found not to disrupt the complex (Fig. 2A) (37). The complex
was then challenged with well known denaturants trifluoro-
ethanol or 6 M urea in the presence of 1% DDM, but again, the
complexwas not reduced in size or stability (Fig. 2A) (38, 39). At
higher concentrations of either trifluoroethanol or urea, the
complex precipitated in the native gel loading well. To exclude
the possibility that disulfide bonds were holding the complex
together, reducing agent DTT was included during solubiliza-
tion with 6 M urea and 1%DDM, but again the complex was not
disrupted (Fig. 2A). Throughout each of these trials, the HDN-
PAGE showed superior complex resolution and accordingly
was used for all further native gel analysis.
Having failed to disrupt the complex with gentle denaturants

and reducing agents, and knowing that it was disrupted in SDS-
PAGEs, solubilization with 1% SDS in otherwise native condi-
tions was tried. A smaller complex was resolved under these
conditions, in which the TGD2 signal overlapped with the HA
signal in theTGD1HA-producing plant but not to a large extent
with the HA signal from the TGD3HA-producing plant (Fig.
2B). This smaller complex was not well defined, and although it
included TGD1HA, most of the TGD3HA was not in the com-
plex, indicating that if a core complex does exist, it is not similar
to a canonical ABC transporter.
Localization of TGD Complex—Previous studies localized

TGD1-GFP and TGD2-GFP fusion constructs to the chloro-
plast inner envelope membrane (14, 19) and a TGD3 construct
to the chloroplast stroma (16). If additional proteins were pres-

FIGURE 1. TGD1, -2, and -3 associate in a large complex. A, 28-day-old
Arabidopsis are shown, with genotypes as labeled above (WT indicates wild-
type Arabidopsis). TGD1HA or TGD3HA labels indicate plants homozygous for
the tgd1-1 or tgd3-1 alleles, which also express TGD1HA or TGD3HA under the
control of the 35S promoter, respectively. B, genotyping of plants as labeled
showing the presence of the mutant tgd1-1 or tgd3-1 alleles and lack of the
endogenous TGD1 or TGD3 alleles. C,�-naphthol-stained, thin layer chromato-
gram of lipids isolated from Arabidopsis of genotypes given at the top.
Digalactosyldiacylglycerol (DGDG) and trigalactosyldiacylglycerol (TGDG) are
indicated. D, immunoblots detecting proteins indicated at the right of 20 �g
of 1% dodecylmaltoside-solubilized, chlorophyll-equivalent chloroplasts iso-
lated from Arabidopsis of genotypes indicated at the left. Protein complexes
were separated in the first dimension on a 4 –14% BN-PAGE (marker at top)
and then denatured and run on a 12% SDS-PAGE in the second dimension.
E, immunoblots detecting proteins listed at the right (TOC159* indicates the
86-kDa fragment of TOC159) of an immunoprecipitation using HA antiserum
of solubilized Arabidopsis chloroplasts, genotypes given at the top. C, chloro-
plast starting material; U, unbound fraction; W, final wash; E, eluate.
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ent in the complex, they could span the gap between the chlo-
roplast outer and inner envelope membranes, forming a lipid
conduit similar to the well studied protein transport conduit
formed by translocons at the outer or inner envelope mem-
brane of chloroplasts (TOC or TIC) (40). To determine the
location of the complex, thermolysin and trypsin protease
treatments were used. Thermolysin cannot penetrate the chlo-
roplast outer envelope membrane, and it digests proteins
exposed at the surface of chloroplasts (41), whereas trypsin can
pass through the outer envelope membrane and therefore
digests all susceptible proteins not protected by the inner enve-
lope membrane (20). Intact chloroplasts were digested with
thermolysin or trypsin, the digestion was quenched, and then
chloroplasts were solubilized and complexes were analyzed.
Both thermolysin and trypsin digested the control outer enve-

lope protein TOC159, but only trypsin was able to affect the
TGD complex (Fig. 2C). Neither protease penetrated the chlo-
roplast inner envelope membrane, as evinced by the lack of
digestion of stromal protein, large subunit of ribulose bisphos-
phate carboxylase/oxygenase (Rubisco) (LSU R, Fig. 2C). These
data corroborate the hypothesis that the entire TGDcomplex is
located in the chloroplast inner envelope membrane. Notably,
no monomers of TGD2 were detectable after thermolysin
digestion. TGD2 andTGD3 are known to be resistant to trypsin
treatment (14, 16), and TGD2 can homo-oligomerize in vitro
(18). Monomers of TGD2 may not exist if trypsin treatment
only digests TGD1, presumably resulting in poorly resolved
multimeric fragments below the detection limit.
Determining TGD Complex Components—A first attempt at

determining members of the TGD complex was a scaled up
version of the HA tag immunoprecipitation experiment done
with Arabidopsis chloroplasts, as shown in Fig. 1C. However,
the only spectra reliably found for thismaterial were assigned to
TGD2 (data not shown), and these were few. In order to further
scale up the experiment, pea plants, specifically P. sativum var.
Little Marvel, were used. This pea model system yields abun-
dant chloroplasts and was appropriate for mass spectrometry
analysis because it has an extensive, annotated expressed
sequence tag database available (34, 42). Although the Arabi-
dopsis TGD2 antiserum does not recognize its pea homolog,
rendering affinity purification of the complex impossible, a
standard biochemical chloroplast envelope isolation procedure
has the advantage of not creating artificial abundance of any
single complex component. To this end, highly purified pea
chloroplast envelope membranes were solubilized and sepa-
rated by HDN-PAGE in the first dimension and SDS-PAGE in
the second dimension (Fig. 3A). Few proteinaceous complexes
were visible between 880 and 440 kDa, and preliminary mass
spectrometry of bands near the size of TGD2 (�36 kDa based
on the Arabidopsis protein) identified the pea homolog (Fig.
3A). To detect other bands in the same vertical line (same com-
plex size) with similar distribution patterns, multiple SDS-
PAGEs with varying acrylamide concentration were used to
resolve the complex components in the second dimension, 10
and 15% shown in Fig. 3, B and C. Only those bands reproduc-
ibly showing distributions similar if not identical to those of the
TGD2-containing band were considered, with three bands
meeting this criterion: band 1 at 140 kDa, band 2 (TGD2-con-
taining) at 36 kDa, and band 3 at 28 kDa (Fig. 3B). To collect
enough protein for sufficiently high spectral counts, four to five
replicates of each band were pooled and analyzed by LC
MS-MS. Proteins identified by at least one spectral count are
displayed in Table 1, with spectral counts, numbers of unique
peptides, and percentage of coverage data.
Band 1 had the highest spectral counts of a predicted potas-

sium efflux antiporter (KEA), for which there are two, 76%
identical Arabidopsis homologs: KEA1 (At1g01790) and KEA2
(At4g00630). Only TOC159 was also found in each biological
replicate, and it is unlikely to be relevant for two reasons. First,
it is known to be in its own large complex, which has been
described previously and does not include KEA2 or TGDs (30).
Second, TOC159 was not co-precipitated by TGD1HA or

FIGURE 2. The stable TGD1, -2, and -3 complex is present in the chloro-
plast inner envelope. A, anti-TGD2 immunoblots of two-dimensional gels in
which the first dimension is a 4 –10% BN-PAGE (left) or HDN-PAGE (right) and
the second dimension is a 12% SDS-PAGE. Isolated wild-type Arabidopsis
chloroplasts (equivalent to 20 �g of chlorophyll) were solubilized with
reagents listed at the right (DM, decylmaltoside; TX100, Triton X-100; TFE,
trifluoroethanol). In the case of trifluoroethanol and urea samples, 1% DDM
was also present. B, immunoblots detecting proteins indicated at the right,
similar to the HDN-PAGEs in A, except the gradient was 4 –14%, and chloro-
plasts isolated from Arabidopsis of genotypes indicated at the left were solu-
bilized in 1% SDS. C, anti-TGD2 immunoblots similar to the HDN-PAGE solu-
bilized with DDM in A, except prior to solubilization the chloroplasts were
mock-treated (M), thermolysin-treated (Th), or trypsin-treated (Tr). Immuno-
blots of single-dimension SDS-PAGEs show digestion of the 86-kDa fragment
of TOC159 (TOC159*), and Coomassie Brilliant Blue stain shows protection of
the large subunit of Rubisco (LSU R). Tx, trypsin treatment with Triton X-100
present.
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TGD3HA proteins (Fig. 1E). Therefore, only KEA1 and -2 were
considered fromband 1 as possible TGD complex components.
Band 2 consistently contained spectral counts of TGD2 and

TGD3 as well as a pea homolog of malate dehydrogenase.
Malate dehydrogenase has been characterized as part of a
96-kDa stromal complex (43) and is believed to be active as a
homodimer (44). For these reasons, it is probably only a con-
taminant rather than a possible complex component.
Band 3 had consistent spectral counts for TGD1 and a small

translocase of the innermitochondrialmembrane (TIM) family
protein. The TIM family protein has two 83% identical
homologs in Arabidopsis: At5g24650 and At3g49560. Each of
these was shown to be targeted to the chloroplast, but they have
no known roles there (45). Because nothing was known about
their complex formation or function, we considered the possi-
bility that the TIMs were associated with the TGD complex.
Investigation of KEAs and TIMs—The possible presence of

KEA1 or -2 in the TGD complex was investigated through the
use of homozygous T-DNA lines carrying insertions into the
coding regions of KEA1 or KEA2, respectively. These were
crossed, and double homozygous lines were selected among
the offspring (Fig. 4A). Genotypes of the lines were confirmed

by PCR of genomic DNA (Fig. 4B) and then tested for lipid
defects similar to tgdmutant lines. In tgdmutant total fatty acid
profiles, there is a strong reduction of 18:3 fatty acids and an
increase in 18:1 and 16:0 fatty acids compared with wild type,
indicative of a reduction in ER to chloroplast lipid transport.
However, this was not seen for the kea1kea2 double mutant
lipid extracts (Fig. 4C). If KEA1 and -2 were members of the
complex, the complex size should be smaller in the double
mutant. However, the TGD-containing complex remained the
same size (Fig. 4D). These data support the probability that
KEA1 and -2 form a separate complex from that of the TGDs
and are not involved in lipid trafficking from the ER to the
chloroplast. The function of KEA1 and -2must be important to
plant growth and perhaps chloroplast function because the
double mutant plants were reduced in growth and slightly yel-
low. However, the precise molecular function of these proteins
remains to be determined.
To investigate whether TIM family proteins, At3g49560 and

At5g24650, were associated with the TGD complex, antiserum
was raised against At3g49560. The antiserum specifically rec-
ognized two bands of a similar size (�25 kDa) in isolated chlo-
roplasts when compared with preimmune serum (Fig. 5A).
Moreover, it recognized heterologously produced proteins for
both TIMs of interest but not other, less related TIM proteins
(Fig. 5B). Two-dimensional analysis with HDN- and SDS-
PAGEs showed that At3g49560 antiserum does recognize a
�25-kDa protein in a high molecular mass complex that over-
laps with the TGD2 complex (Fig. 5C); however, this protein
was not co-immunoprecipitated by HA in TGD1HA- and
TGD3HA-producing plants (Fig. 5D). Thus, it is likely that the
identified TIM proteins, like the KEAs, are forming their own
large complexes rather than forming parts of theTGDcomplex.
There Are Multiple TGD2s per Functional TGD Complex—

Because other complex components were not identified,
TGD1, -2, and -3must themselvesmake up the bulk of the large
TGD complex. To quantify levels of each, spectral counts
(Table 1) were normalized based on molecular mass. This
method of quantification, known as spectral counting, has been
shown to be a reliable method when compared with other
methods of labeled and label-free quantification (46, 47). Nor-
malized spectral abundance factors (NSAF) for TGD1, -2, and
-3 show that 4–6 copies of TGD2 are present for every copy of
TGD1 and -3 (Fig. 6A). Assuming that TGD1 and -3 remain
similar to other ABC transporters and form a tetramer (dimer
of homodimers), there would be an overall subunit stoichio-
metry of 2 TGD1, 2 TGD3, 8–12 TGD2, yielding an overall
complex with a size of 416–560 kDa.

DISCUSSION

We have demonstrated that TGD1 and -3 associate with
TGD2 in vivo to form a complex of greater than 500 kDa. This
complex was shown to be stable and to be protected from pro-
tease digestion by the outer but not the inner chloroplast enve-
lope membrane. Although other chloroplast envelope proteins
in similarly sized complexes were discovered in this study, no
additional components of the TGD complex were identified.
Instead, we conclude that TGD1, -2, and -3 form anABC trans-
porter in which the substrate-binding domain (TGD2) is asso-

FIGURE 3. The TGD complex of pea co-migrates with another high molec-
ular mass protein. A, isolated pea chloroplast envelopes solubilized in 3%
digitonin and separated by 4 –14% HDN-PAGE in the first dimension and 10%
SDS-PAGE in the second and then visualized by silver staining. Dashed lines
mark the selection of gels displayed in B and C. An asterisk marks location of
TGD2. B, as in A, with arrows showing bands submitted for mass spectrometry
analysis. The large and small subunits of Rubisco are also labeled (LSU R and
SSU R, respectively). C, as in B, except 15% SDS-PAGE in the second dimension.
These data were not used in final analysis because band 1 could not be sep-
arated under these conditions.
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ciated at 4–6 times the levels of the permease domain (TGD1)
and the nucleotide-binding domain (TGD3).
Normalized spectral abundance factors of TGD1, -2, and -3

were used to quantify their relative levels (Fig. 6A), although the
precise number of TGD2s associating per complex remains
unclear. Part of the uncertainty is because levels of TGD1 and
TGD3 were not the same. Although it is possible that there is
more TGD3 than TGD1 in the complex, a large amount of data
concerning structures, mechanism, and function of other ABC
transporters indicates that two permease and two ATPase
domains are required for transport (2). To our knowledge, no
ABC transporter varies from this pattern; therefore, we con-
sider it unlikely. Further, if the levels of TGD2 were calculated
directly from the levels of TGD1, there would be 16 copies per
complex, for a total size of 700 kDa, which is higher than that
observed by native gel (Fig. 3A). More probable is that TGD1 is
underrepresented because it is a smaller protein and also more
hydrophobic than TGD3. Thus, we have calculated the levels of
TGD2 based on the levels of TGD3 alone, assuming that the
true levels of TGD1 match those of TGD3. The second source
of uncertainty is variation between biological replicates. By iso-
lating the complex without affinity purification, we ensured
that individual components would not be overrepresented;

however, this also increased the number of steps and therefore
sample-to-sample variation. The first sample suggests a 5:1
ratio, the second a 6:1 ratio, and the third a 4:1 ratio of TGD2 to
TGD3 (Table 1). It is likely that the average 5:1 ratio is correct;
however, we can neither confirm nor rule out this possibility. A
future structural study of the complex by electron microscope
tomography or x-ray crystallography will resolve the precise
number of TGD2 (i.e. SBD-containing) proteins in the
complex.
Why does the TGD ABC transporter have so many SBD-

containing proteins? We assume that they are biologically rel-
evant, for two reasons. First, the size of the complex has been
conserved across species (compare Figs. 2A and 3A). Second,
when the size of the complex is reduced, as in the TGD2 point
mutant tgd2-1 (G234R), the plant shows a lipid transport defect
(18). In the case of the ABC transporter OpuA from L. lactis, it
was shown that binding of the substrate was cooperative when
two SBD-containing proteins were present (48). Binding of
TGD2 to its proposed lipid substrate, phosphatidic acid, has
similarly been shown to be cooperative (17). As a possible
rationale, cooperative binding can increase sensitivity to
small amounts of substrate, and levels of phosphatidic acid
are low in the chloroplast envelope membranes (49). There-

TABLE 1
Proteins identified by mass spectrometry
Gel bands from which proteins were identified are indicated at the left. The major P. sativum (pea) contig identified is given, as is the annotated Arabidopsis homolog’s
accession number. Total spectral counts (SpC), unique peptides, molecular masses (kDa), and percentage coverage are given for each of three biological replicates
(numbered 1–3), based on 99% protein identification and 95% peptide identifications. Molecular masses and lengths used to calculate percentage coverage are based on
predictedmatureArabidopsis homologs to reduce variations due to pea contig lengths and overlap. Pea contigs withoutArabidopsis homologs were assigned themolecular
mass of the band and the percentage coverage of the contig. APE2, acclimation of photosynthesis to environment 2; CLP, caseinolytic protease; LSU R, large subunit of
Rubisco; PORA, protochlorophyllide oxidoreductase; TIC, translocon at the inner envelope membrane of chloroplasts; TIM, translocase at the inner mitochondrial
membrane; TOC, translocon at the outer envelope membrane of chloroplasts; WPP, Trp-Pro-Pro motif.

Band
no.

A. thaliana
accession no. Pea contig Name

SpC
Mass

Unique peptides Percentage coverage
1 2 3 1 2 3 1 2 3

kDa % % %
1 At4g00630 Ps066597f K� efflux antiporter (KEA2) 45 33 21 126.2 19 12 8 18.7 10.7 8.4

At5g23890 Ps000222b Putative transporter 21 103.9 7 10.1
At4g34830 Ps027447f Maturation of LSU R 1 11 119.8 5 6.6
At4g02510 Ps007362a TOC159 1 10 1 160.8 1 6 1 0.8 8.2 1.6
At1g06950 Ps023494a TIC110 37 112.1 18 25.7
At3g46740 Ps022977c TOC75 1 75 1 2.9
At2g28000 Ps010082c Chaperone, CPN60a 2 62.07 2 5.6
At3g13470 Ps009941b Chaperone, CPN60b-2 2 63.34 2 4.7
N/A Ps070470a No annotation 6 2 140 4 2 78.8 59.6
N/A Ps039763e No annotation 2 3 140 2 2 21.0 21.0
N/A Ps054876c No annotation 3 140 2 51.4
N/A Ps033657a No annotation 3 140 2 15.7

2 At3g20320 Ps000114b TGD2 133 92 100 36 43 34 32 77.4 68.5 73.0
At1g65410 Ps016716e TGD3 25 16 27 36 14 7 12 55.1 27.6 45.2
At5g05000 Ps013223b TOC34 48 9 34.71 18 5 42.5 14.7
At3g47520 Ps007032f Malate dehydrogenase 3 10 16 42.41 3 5 8 9.9 10.5 30.9
At5g42130 Ps002665b Putative transporter 3 44.36 2 9.2
At5g54190 Ps005013a PORA 3 4 43.86 2 3 8.5 14.4
At5g01500 Ps017159a Thylakoid ATP carrier 1 45.09 1 5.1
At4g04640 Ps017279a ATP synthase g chain 1 3 40.91 3 11.7
At3g63490 Ps013200a Ribosomal L1 family protein 2 7 37.63 2 3 9.4

3 At1g19800 Ps023468d TGD1 14 8 10 28 6 4 6 24.0 17.7 24.0
At5g46110 Ps006793e APE2 11 44.63 5 9.6
At2g37220 Ps002377c Ribonucleoprotein,putative 4 5 30.72 3 2 14.8 14.4
At5g24650 Ps010239c TIM17/22/23 family protein 4 9 11 27.77 2 3 4 10.0 16.6 20.1
At3g25920 Ps010043a Ribosomal protein L15 5 4 29.71 4 2 21.1 10.8
At2g43030 Ps002441d Ribosomal L3 family protein 3 14 29.36 2 7 12.6 43.9
At5g43070 Ps015737a WPP domain protein 1 2 16.63 1 16.5
Atcg00490 Ps021077b Small subunit of RUBISCO 2 26.91 2 4.2
Atcg00160 Ps069182c Ribosomal protein S2 2 52.96 2 12.3
At3g27160 Ps001242c Ribosomal protein S21 5 20.91 2 15.4
At1g49970 Ps029444f CLP protease subunit 1 4 42.63 2 6.6
At3g20320 Ps000114b TGD2 3 2 35 1 1 3.6 3.6
At3g13470 Ps009941b Chaperone, CPN60b-2 1 63.34 1 2.4
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fore, it seems likely that TGD2, like the SBD-containing pro-
tein of OpuA, is abundant to increase cooperativity, allowing
substrate sensitivity.
Although there are additional TGD2s in the functional TGD

complex, this does not necessarily mean there is any change in
the generally accepted ABC transporter mechanism. On the
contrary, because TGD2 subunits are anchored firmly to the
complex, it is tempting to hypothesize that conformational
changes originating fromATPbinding and hydrolysis byTGD3
are transmitted through the entire complex and confer further
changes in the substrate binding capability of TGD2 (Fig. 6B).
Increased amounts and firm association of TGD2 with the
complex could be consistent with overcoming the large energy
needed to remove phosphatidic acid from a bilayer. If true, this
would imply that other lipid ABC transporters may also have
abundant SBD-containing proteins. Analogous bacterial lipid
transport systems (MlaD-F and LptB, -C, -F, and -G) are each
implicated in removing lipids from amembrane andwould also

need to overcome a large energy barrier (50, 51). Similar to the
TGD system and disparate from other Gram-negative SBD-
containing proteins, the SBD-containing proteins of the Mla

FIGURE 4. Potassium efflux antiporters are not part of the TGD complex.
A, 35-day-old Arabidopsis are shown with genotypes labeled above.
B, genomic DNA extracted from genotypes listed above (N, no-DNA control)
was genotyped using PCR with primers recognizing alleles indicated at the
right (KEA1 is the wild-type KEA1 allele, and kea1 is the T-DNA insertion into
KEA1; KEA2 and kea2 for the KEA2 allele are designated accordingly). C, total
fatty acids of lipids converted to fatty acid methylesters and quantified by gas
chromatography for genotypes listed above. The S.D. value of three biologi-
cal replicates is shown (error bars). D, dodecylmaltoside-solubilized leaf pro-
teins from Arabidopsis genotypes listed at the left were separated in the first
dimension by 4 –14% HDN-PAGE and in the second dimension by 12% SDS-
PAGE and then immunoblotted and detected with TGD2 antiserum.

FIGURE 5. TIM family proteins are not part of the TGD complex. A, immuno-
blots of isolated chloroplast protein equivalent to 5 or 10 �g of chlorophyll were
probed with At3g49560 antiserum (I) or its preimmune serum (P), as indicated at
the top. B, antiserum raised against proteins encoded by At3g49560 was tested
for specificity against the preprotein and amino acid transporter family. Full-
length recombinant proteins for Tim17-1 (At1g20350), Tim17-2 (At2g37410),
Tim17-3 (At5g11690), Tim23-1 (At1g17530), Tim23-2 (At1g72750), Tim23-3
(At3g04800), Tim22-1 (At1g18320/At3g10110), At3g25120, At3g49560, and
At5g24650 (indicated at the top) were detected with antiserum recognizing pro-
teins indicated at the right. C, chloroplasts isolated from wild-type Arabidopsis
were separated by 4–14% HDN-PAGE in the first dimension and 12% SDS-PAGE
in the second and then immunoblotted and detected with antisera recognizing
proteins indicated at the right. D, immunoprecipitations of HA-tagged proteins,
similar to those in Fig. 1E, were immunoblotted and probed with antisera recog-
nizing proteins indicated at the right. C, chloroplast starting material; U, unbound
fraction; W, final wash; E, eluate.

FIGURE 6. There are 8 –10 copies of TGD2 per functional transporter.
A, calculated normalized spectral abundance factors (NSAF) are displayed
with S.D. (error bars) for TGD1, -2, and -3. B, model of the TGD1, -2, and -3
complex suggests that changes in TGD1 geometry due to ATPase activity by
TGD3 could be shared by multiple TGD2 polypeptides.
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and Lpt systems aremembrane-anchored by an�-helical trans-
membrane domain. To our knowledge, the abundance of sys-
tem components has not yet been verified for either complex.
Finally, it is noteworthy that chloroplastic TIM family pro-

teins and KEAs each form large complexes in the chloroplast
envelopes. Little is known of the proteins’ function in the chlo-
roplast, and the complexes described here may be useful tools
for understanding their function in the future.
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