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Abstract
African trypanosomes have plastic genomes with a great degree of variability at the chromosome
ends. These telomeres are where the genes encoding the expressed major surface protein of the
infective bloodstream form stages of Trypanosoma brucei are located. These telomeric expression
site transcription units are turning out to be surprisingly polymorphic in structure and sequence.
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Introduction
The African trypanosome Trypanosoma brucei relies on population diversity in order to
maintain the chronic infections characteristic of African Sleeping Sickness. The extracellular
bloodstream form trypanosome, covered by a single Variant Surface Glycoprotein (VSG), is
an easy target for the immune system. Once antibodies against a given VSG are raised, all
trypanosomes wearing this VSG coat are effectively eradicated. However, trypanosomes
continuously arise wearing new (temporarily) unrecognisable VSG coats, which allow a
chronic infection to be maintained. Each VSG coat is encoded by a single gene, transcribed
in a telomeric VSG expression site. Changing the active VSG gene can involve DNA
rearrangements slotting a new VSG gene into an active expression site. Alternatively, as
there are twenty bloodstream form VSG expression sites, VSGs can be changed by
switching between expression sites. Antigenic variation in the bloodstream form
trypanosome is reviewed in: [1-4]. The infective metacyclic trypanosome injected by the
tsetse fly into the mammalian host also wears a VSG coat, but the genes encoding
metacyclic VSGs are expressed in telomeric metacyclic VSG expression sites. These are
structurally quite distinct from bloodstream form expression sites, and contain only a VSG
gene (reviewed in [5-6]).

Research in recent years into T. brucei genome structure has shown that the genome is
extraordinarily plastic, particularly at the chromosome ends. Both within a trypanosome and
between trypanosome strains, chromosomal alleles can differ from each other drastically in
size. This is caused to a great extent by a large degree of variability at the chromosome ends.
In addition, within a given trypanosome there is a surprising degree of variability within the
telomeric VSG expression sites. Both the bloodstream and metacyclic form VSG expression
sites are extremely polymorphic in structure. The challenge comes in trying to understand
why this is the case.
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The plastic T. brucei genome
The karyotype of T. brucei varies enormously between strains, and identical karyotypes are
seldom found in the field. The T. brucei genome is divided over a large number of
chromosomes: eleven pairs of megabase chromosomes (1-6 Mb), a number of intermediate
chromosomes (200-900 kb) and approximately one hundred minichromosomes (50-150 kb)
[7]. The minichromosomes appear to consist primarily of repeats and a telomeric VSG gene
[8], and the intermediate chromosomes have expression sites, but do not appear to have
unique genes [7]. The megabase chromosomes contain the housekeeping genes. Although
the gene synteny within the core of these larger chromosomes is generally conserved
between stocks, the size of sister alleles can vary enormously both within parasites and
between strains [7].

This variability in size appears to arise to a large extent from expansions and contractions
within the repetitive regions of the subtelomeric and telomeric regions of chromosomes [9].
First of all, although the megabase chromosomes are present as diploid pairs, the telomeres
of sister alleles are not necessarily similar with regards to the presence of VSG expression
sites. As expression sites appear to be glued on to chromosomal cores in a variable fashion,
the chromosome ends are therefore segmentally aneuploid [7]. It has been shown that
expression sites can be easily lost during switching [10], presumably after breakages in the
subtelomeric region. Upstream of the telomeric expression sites, the subtelomeric regions
can contain large stretches of repetitive sequence that extend for hundreds of kilobases [9]. It
is possible that this provides a barren region protecting the housekeeping genes in the
chromosomal core from the damaging effects of DNA rearrangements and deletions
occuring at the telomeric VSG expression sites during switching.

Polymorphic bloodstream form expression sites
The telomeric bloodstream form expression sites are typically large (40-60 kb) transcription
units, containing various Expression Site Associated Genes (ESAG)s in addition to the
telomeric VSG gene (Figure 1). The function of most of these ESAGs is unknown. ESAG 6
and 7 encode the subunits of a transferrin receptor [11], and ESAG 4 an adenylate cyclase
[12]. Although ESAG 6 and 7 appear to be present in all expression sites and don’t appear to
have copies elsewhere, some ESAGs (like ESAG 1) have a large number of related copies
elsewhere in the genome and can be disrupted in the VSG expression site without generating
a phenotype [13]. Currently, eleven ESAGs have been described, but there are undoubtedly
more.

The architecture of bloodstream form VSG expression sites is turning out to be surprisingly
variable. The full complement of eight ESAGs as found in the AnTat 1.3A expression site
[14] does not appear to be essential for life in the bloodstream form. Bloodstream form
trypanosomes transcribing a truncated VSG expression site containing only ESAGs 7, 6 and
5 and an ESAG conferring resistance to human serum (SRA), have recently been described
[15]. This indicates that life in the bloodstream is possible without the transcription of
ESAGs 1, 2, 3, 4 and 8 from the active VSG expression site. Other expression sites, rather
than being truncated, have more ESAG genes than usual. The 221 VSG expression site has
undergone massive gene amplifications, resulting in duplications of ESAG 4 and
triplications of ESAGs 2 and 8 [16, and unpublished results].

Why is there this degree of variability in VSG expression site architecture? Possibly the
variation found between different expression sites allows the trypanosome to switch between
the expression of different sets of genes allowing adaptation to life in different hosts [17]. T.
brucei infects a large range of mammals in Africa. Alternating between different expression
sites, allows the trypanosome to vary between the expression of different polymorphic
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transferrin receptor subunits encoded in the different expression sites. This could allow the
trypanosome to optimise uptake of the variable transferrin molecules present in the serum of
different hosts [17]. It is possible that bloodstream form expression sites contain different
permutations and combinations of a variable number of ESAG genes in order to vary the
dosage of a range of ESAG products necessary for life in different hosts. Presumably
specialised ESAGs (like the SRA gene), are only present in a subset of expression sites. It is
clear that we need the sequence of a broader range of T. brucei expression sites in order to
determine which ESAGs are ubiquitous, and the extent of ESAG sequence variability. This
will probably necessitate a concerted effort to clone telomeric T. brucei sequences, as these
tend to be underrepresented in standard genomic libraries.

The telomeric location of bloodstream form VSG expression sites provides a
recombinogenic location allowing the telomeric VSG genes to be easily exchanged. In
addition, frequent DNA rearrangements at the telomeres presumably allow genetic diversity
to be easily generated in both the VSG genes necessary for antigenic variation, and the
ESAG genes which appear to play a role in the phenotypic variation necessary for host range
adaptation [18].

In addition, it is highly likely that the telomeric location of bloodsteam form VSG
expression sites plays a critical role in their control. It has been shown that bloodstream
form expression sites are turned on and off in a promoter sequence nonspecific manner [19,
20]. Bloodstream form VSG expression sites are silenced as domains, as the endogenous
promoter far upstream from the chromosome end, can not be uncoupled from promoters
inserted at the telomere [20]. However, the extent to which expression site downregulation
operates at the level of transcription initiation is still unclear. There is a low amount of
transcription around the promoter and the ESAG 6 and 7 genes of “silent” bloodstream form
VSG expression sites [21 and 22]. However, the transcripts generated from these “inactive”
VSG expression sites appear to be primarily nonpolyadenylated [22]. This could indicate
that VSG expression site activation involves not only enhanced transcription, but also more
efficient RNA processing of the transcripts generated from the activated site. How this could
be mediated is unclear.

Polymorphic metacyclic expression sites
In contrast to the bloodstream form, the metacyclic trypanosome is the infective stage that
establishes a foothold in a mammal after transmission by the bite of a tsetse fly. Of critical
importance for this life-cycle stage, is the innoculation of the host with a heterogeneous
population of trypanosomes. Metacyclic VSG coats are encoded by genes in metacyclic
VSG expression sites, transcribed as monocistronic transcription units containing just the
VSG gene (Figure 1) [23]. Both bloodstream and metacyclic VSG expression sites are
always telomeric, and are transcribed in a mutually exclusive fashion ensuring that only one
VSG expression site is maximally active in a single cell [24, 25].

It is striking that upstream of metacyclic VSG expression sites, one finds ESAG genes and
pseudogenes characteristic of bloodstream form expression sites (ESAGs 1, 2, 4 and 9) [5, 6,
26]. These ESAGs are not part of the metacyclic transcription unit, and could indicate that
metacyclic expression sites have evolved from bloodstream form ones [5]. Alternatively,
recombination between telomere ends could have resulted in metacyclic VSG expression
sites being glued onto the ends of bloodstream form VSG expression sites, which later
became disfunctional.

Metacyclic expression sites have turned out to be surprisingly polymorphic with regards to
the sequence of their promoter regions [26, 27]. It is unclear why this is the case. As
metacyclic expression site promoters are so close (within ten kilobases) of the chromosome
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end, the critical factor controlling their expression could be a position effect operating at the
telomeres. Control at the level of position effect could allow more leeway in the sequences
that operate as functional metacyclic promoters.

Similar to the bloodstream form expression sites, the telomeric location of metacyclic VSG
expression sites presumably plays a critical role in expression site control, though this has
not been formally shown. In addition, the telomeric location of metacyclic VSG genes is
presumably critical for maintenance of diversity in the metacyclic VSG gene repertoire. The
metacyclic VSG gene repertoire of T. brucei strains has been shown to change through time
[28], and this instability is presumably due to occasional VSG gene replacements by gene
conversion.

Counting at telomeres
How does the trypanosome manage to activate only one of the estimated forty to fifty
telomeres containing either bloodstream or metacyclic VSG expression sites? There appears
to be a severe restriction on double expression of bloodstream form VSG expression sites.
Using trypanosomes with drug resistance genes inserted into two different bloodstream form
expression sites, it was shown that even under double drug selection, stable maximal
transcription of two expression sites can not be achieved [25]. Instead, the double-resistant
trypanosomes generated behaved as if they were rapidly switching between the two tagged
sites. This would imply that double expressors are not stable intermediates in expression site
switching, and that expression sites are not independently switched on and off. Additional
evidence for this coupled mechanism of VSG expression site (in)activation comes from
experiments where trypanosomes with expression sites genetically modified to be driven by
(an inadequate) T7 promoter rapidly switched to transcription of another expression site
[29]. Similarly, disruption of the active VSG expression site telomere resulted in an increase
in the switching frequency [30]. Inactivation of an expression site could be the first
obligatory step in switching [10, 31], allowing a “pre-active” expression site to take over
[25]. The rapidity of the switch would indicate that silent bloodstream VSG expression sites
are potentially active rather tightly repressed. This “pre-active” state is compatible with the
low level of transcription from “silent” expression site promoters [21, 22].

It remains to be determined whether the subnuclear location of the active VSG expression
site plays a critical role in its activation. It has been shown that T. brucei telomeres are
present as clusters in the cell [32]. However, no evidence has yet been found for a distinct
“activating region” in the cell nucleus. Fluorescent in situ hybridisation (FISH) experiments
have shown that the active bloodstream form expression site is not colocalised with the
nucleolus [33]. FISH experiments detecting the two marked VSG expression sites of
trypanosomes selected for double expression showed two dots [25]. These dots, although
located closer together than the sister alleles of housekeeping genes, were not obviously
colocalised. However, as these trypanosomes might have been switching back and forth
between two expression sites, these experiments don’t exclude the presence of a discrete
subnuclear “activating region”.

Parasite telomeres
Transcription units with genes involved in antigenic (and phenotypic) variation are
frequently at telomeres. This includes the vmp genes of Borrelia sp. [34], most of the VAR
gene family of Plasmodium [reviewed in 35] and the Major Surface Glycoprotein (MSG)
genes of Pneumocystis carinii [36]. DNA recombination at these telomeres can be involved
in the switch of the active antigen gene [37, 38], and the generation of antigen gene
repertoire diversity [39, 40]. In trypanosomes, DNA rearrangements at the telomeres are also
involved in switching, and in the generation of antigen gene diversity [41]. The challenge
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will be in determining whether this telomeric location plays a role in expression site
activation.
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Figure 1.
The two T. brucei bloodstream form VSG expression sites are drawn according to Xong et
al., 1998, and the schematic of the two metacyclic VSG expression sites is redrawn
approximately according to Barry et al, 1998. The expression site promoters are indicated
with white flags, and transcription with a dotted line. Expression site associated genes
(ESAGs) are indicated with boxes: ESAGs 6 and 7 (encoding the transferrin receptor
subunits) are grey, The SRA (human serum resistance) gene is indicated with dark stipples,
and the other ESAGs are white. The ψ symbol indicates a pseudogene, and the black
arrowhead under the ESAG 1 pseudogene indicates that it is present in an inverted
orientation. The telomeric VSG gene is indicated with a black box. Characteristic 70 bp
repeat arrays are shown as vertically striped boxes. In the metacyclic VSG expression sites
the 70 bp repeats are present as either one or two copies (1X or 2X). The telomere repeats
are indicated with white triangles.
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