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Abstract
The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate
and useful computational methods for structure-based calculation of pKa values and electrostatic
energy in proteins. The Cooperative brings together laboratories with expertise and interest in
theoretical, computational and experimental studies of protein electrostatics. To improve structure-
based energy calculations it is necessary to better understand the physical character and molecular
determinants of electrostatic effects. The Cooperative thus intends to foment experimental
research into fundamental aspects of proteins that depend on electrostatic interactions. It will
maintain a depository for experimental data useful for critical assessment of methods for structure-
based electrostatics calculations. To help guide the development of computational methods the
Cooperative will organize blind prediction exercises. As a first step, computational laboratories
were invited to reproduce an unpublished set of experimental pKa values of acidic and basic
residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The
pKa values of these groups are unique and challenging to simulate owing to the large magnitude of
their shifts relative to normal pKa values in water. Many computational methods were tested in
this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in
the Telluride Science Research Center to assess objectively the performance of many
computational methods tested on this one extensive dataset. This volume of PROTEINS:
Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports
submitted by participants in the blind prediction challenge, and highlights some of the problems in
structure-based calculations identified during this exercise.
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This volume of Proteins: Structure, Function, and Bioinformatics is dedicated to protein
electrostatics and specifically, to a series of papers focused on the critical evaluation of
computational methods for structure-based calculations of pKa values of ionizable groups in
proteins. These include papers that specifically analyze the pKas of a series of introduced
buried changed residues in staphylococcal nuclease,1–12 those that carry out simulation on
other systems13–18, those that provide new experiments to challenge simulation,19–22 and a
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technical overview.23 The papers describe results from the 1st Blind Prediction Challenge
for pKa calculations organized by the pKa Cooperative (http://www.pkacoop.org). The
central goals of this Cooperative are to organize critical assessment exercises that
benchmark the performance of current computational methods for structure-based
calculation of pKa values and related properties in proteins; to support the design of novel or
improved computational methods for structure-based energy calculation; and to encourage
experimental research to generate new and innovative data that challenge simulation
methods and enhance fundamental insight into electrostatic effects in proteins. This paper
describes the aims and organization of the pKa Cooperative, the data used for its 1st Blind
Prediction Challenge, and discusses some of the conclusions from this first critical
assessment exercise.

pKa Values Matter
The structure and function of proteins and nucleic acids cannot be understood fully without
detailed understanding of contributions from electrostatic forces.24,25 Approximately 300
pKa values had been measured in proteins and used as benchmarks values before 2009.26,27

Ionizable residues (Lys, Arg, His, Asp, Glu,) account for approximately 25% of all residues
in the average globular protein.28,29 They determine or modulate many essential properties
of proteins, including structure, function, stability, solubility, dynamics and inter-molecular
interactions. The accurate prediction of pKa values and electrostatic energies in proteins is
therefore an important aspect of any structure-based energy calculation procedure.

The binding of protons (H+) constitutes the smallest and least disruptive reaction that a
protein can experience. If structure-based calculations cannot reproduce this, the simplest
possible perturbation of a protein, attempts at calculating other, more complex processes,
should be approached with great care. Because H+ binding entails the creation or elimination
of a formal charge, it is possible to examine the energetics of this process rigorously, starting
from the physical principles of classical electrostatics and statistical thermodynamics.30–38

The electrostatic interactions between charged groups are among the strongest and most
long-range interactions in biology. This is precisely the reason that ionizable groups can
have significant influence on the structure, function, stability, and dynamics of proteins.

The properties of ionizable groups are influenced significantly by their surroundings. The
pKa values of acids and bases can be quite different when the ionizable moiety is surrounded
by water or by protein, membrane or by other nonaqueous environments. For this reason, the
pKa values are very sensitive to changes in protein structure, to association with other
proteins or with other macromolecules, including membrane bilayers, and even with small
molecules. This sensitivity to the microenvironment is central to the essential role of H+

transfer processes in biological energy transduction and that is what structure-based
calculations attempt to reproduce quantitatively. This sensitivity is also why the calculation
of pKa values of ionizable groups in proteins is one of the best ways to test our
understanding of the structural basis of the energetics and function of proteins.

Structure-based Simulations are Necessary
The experimental measurement of pKa values can help in the interpretation of the structural
basis of many properties of proteins. There are, however, limitations to the extent to which
experimentation alone can be used to determine how the structure of a protein determines
the observed pKa values. Structure-based calculations that predict pKa values through the
application of physical models of electrostatic forces to high-resolution structures of proteins
provide an essential quantitative link between structure and energetics, and therefore
between structure and function. Validated or calibrated pKa calculations also promise to be
useful to predict pKa values in the many situations where experimental measurements are
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not possible. As with all simulations, the models underlying the methods for calculation of
pKa values determine the amount of physical insight that can be obtained from a calculation.
The initial efforts of the pKa Cooperative have been focused on attempts to reproduce the
shifts in pKa values of ionizable groups in proteins relative to their pKa values in water.
Electrostatic forces are assumed to be the major determinant of the pKa value shifts in
proteins, thus these simulations test the accuracy of calculation of electrostatic forces. The
effects of pH on the stability of proteins, on their energetics, dynamics and interactions with
other macromolecules and with small molecules, and the sensitivity of proteins to salts and
to solutes that affect water properties, are all problems subsumed under the central problem
of protonation thermodynamics. These are all areas considered by the pKa Cooperative.

The Need for a Cooperative Effort
Attempts to use X-ray structures to calculate electrostatic effects in proteins have been on-
going for 40 years.31,39,40 During the last two decades it has become evident that the
prediction of pKa values in biological macromolecules is anything but
straightforward.24,25,32–38 Approximately 300 pKa values had been measured in proteins
and used as benchmarks values before 2009.26,27,41–45 Most of these are pKa values of
surface ionizable groups, whose properties are governed primarily by the dielectric response
of water. The average measured perturbation in pKa values for surface residues is 0.8 pKa
units.43 Thus, early simulations methods struggled to match the data better than a simple
assumption that pKa values are equal to those of isolated residues in water (the NULL
model).46 Currently, pKa calculations with many different computational models achieve
RMSD values for surface residues of around 1 pKa unit (at 25 °C this is equivalent to an
error of 1.36 kcal/mol).26 Thus, the errors are of similar magnitude to the protein-induced
shifts in pKa values – an unacceptable situation. Surprisingly, the accuracy of pKa prediction
algorithms has barely changed during the last decade, pointing towards stagnation in the
field despite new methods and algorithms being published. Part of the problem has been the
lack of useful data that could be used as a benchmark to challenge the calculations and to
help identify problems in calculations that need to be corrected.

Despite progress, our ability to use structure to reproduce the effects of electrostatic
interactions on proteins is very limited and insufficiently tested. Judging by the claims of the
success and utility of structure-based energy calculation algorithms and methods, these
problems are also not fully appreciated or acknowledged by some of the research groups
active in the area of structure-based energy calculations. The same situation exists in the
fields of computational protein/ligand docking and protein design. The pKa Cooperative was
organized primarily to help efforts by the computational community to develop improved
methods for structure-based energy calculations, to generate more rigorous analyses of
reported data, and to increase the awareness of the following issues:

1. Conclusions based solely on calculated/simulated data are likely to be misleading
unless a rigorous error analysis is performed. As this is rarely done it is rarely
possible to determine if a given structure-based calculation is sufficiently accurate
to be useful for quantitatively analysis of structure-function relationships in
proteins.

2. Good agreement between experiment and calculation when using a small number
of experimental data points may be coincidental. This is especially true if
agreement is measured by a correlation coefficient, or if a data set is used that is not
appropriate for gauging the performance of a computational method. Most data sets
being used for evaluation of structure-based calculations are for water-exposed
ionizable groups with very small pKa shifts. These data are not useful to identify
weaknesses and failures in calculations. One goal is to define a standard data set
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that has been endorsed by the community, against which all computational methods
should be tested to raise the bar for what constitutes a good agreement between
experiment and simulation.

3. pKa calculations are highly underdetermined since many parameters are needed to
generate a pKa value. Often only a few experimental pKa values are available for
any given protein. The validity of a calculation would be enhanced if many, related
properties such as the pH dependence of protein stability, ionic strength effects and
effects of mutations on electrostatic properties of proteins, were examined
concurrently. Thus, the dimension of the comparison between calculated and
measured data needs to be expanded. In addition, the sensitivity of the results to the
parameters needs to be characterized better. Our lack of understanding of the
parameters used also makes it difficult to compare the results and conclusions of
different simulation techniques.

4. Conclusions from calculations need to be supported by rigorous calculation of
thermodynamic quantities (pKa values or ΔpKa and the underlying Gibbs free
energies) as well as their errors and sensitivity to parameters. Although empirical
methods for structure-based pKa calculations have made great strides, the use of
these methods for electrostatics calculations without rigorous attempts to calculate
thermodynamic parameters is of concern.

It is clear that understanding the structural and physical origins of electrostatic effects in
proteins in detail remains extremely challenging and that it should be considered as a work
in progress. Exaggerated claims of successful accounting of the structural origins of
electrostatic effects should be viewed with skepticism until algorithms are subjected to more
stringent testing than has been possible in the past. Given the importance of protein
electrostatics to a large variety of problems in biology, further efforts in this area are
warranted. The pKa Cooperative was organized to foment and to steer further research and
developments in protein electrostatics, and to raise the stringency with which structure-
based calculations are evaluated and applied.

The pKa Cooperative
The pKa Cooperative (http://www.pkacoop.org) was established in response to the urgent
need for reliable and useful methods for structure-based calculation of pKa values and
electrostatic energies of proteins, especially for methods that incorporate the underlying
physics of electrostatics and the statistical thermodynamics of pH-dependent phenomena
realistically. The ultimate goal of research in this area is to improve our understanding of the
structural and physical origins of electrostatic effects and to be able to predict pKa values
and electrostatic energy from structure. It is important that structure-based calculations and
predictions be accurate for the right physical reason so they allow us to elucidate the physics
underlying all electrostatic effects in proteins.

In addition to encouraging more rigorous simulations, the pKa Cooperative will try to act as
a clearinghouse to organize, curate and distribute experimental data useful for testing
structure-based electrostatics calculations. It will organize critical assessment exercises for
blind and objective benchmarking of methods for structure-based calculations of pKa values
and other protein properties that are sensitive to electrostatic forces. In this role it will gather
experimental data before publication and notify research groups interested in carrying out
blind tests of their computational methods. It will also encourage new experimental
investigation of electrostatic phenomena that can contribute the physical insight needed to
guide the development of new computational methods. The Cooperative encourages close
interactions between the participants; this should lead to collaboration between different
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simulation techniques and to experimental studies being designed for the explicit purpose of
testing improved algorithms.

The pKa Cooperative was organized primarily by laboratories with expertise in structure-
based calculations when a large set of experimental pKa values for internal ionizable groups
in proteins became available from the García-Moreno lab at Johns Hopkins University.47–50

This dataset, if used properly, had the promise to enable unprecedented, rigorous
benchmarking of computational methods. It consists of pKa values of Lys, Asp, Glu and Arg
at 25 internal positions in staphylococcal nuclease and crystallographic structures of many
of these proteins.47–50 In 2007, when the experimental analysis of the 100 proteins was
nearing completion, it became clear it would be useful if the community was organized to
predict the results as a challenge to individual methods. To enable critical assessment of
computational methods in a blind manner, the data were withheld from publication,
deposited with the pKa Cooperative, and unavailable to the participants contributing to the
1st Blind Prediction Challenge. The group of laboratories, many of them represented in this
volume of Proteins, agreed to submit pKa predictions prior to a meeting in Telluride Science
Research Center in the summer of 2009. Results of their calculations were submitted to the
Cooperative prior to the workshop. The workshop was sobering and invigorating as the
exercise succeeded in identifying strengths but also weaknesses in the computational
algorithms. Only 30% of the experimental data were released at the workshop to allow
groups to refine their algorithms subsequent to the workshop, and to resubmit predictions for
blind assessment. The goal of this critical benchmarking exercise was to identify areas
where improvements are needed to enhance the performance of these algorithms, to look for
trends in the performance of algorithms based on different approaches, and to identify the
key problems where experimental input was needed. Although the blind prediction
challenge was useful for individual groups to discover shortcomings about their own
methods, this exercise has been less successful in bridging different simulation methods.

Data Used in the 1st Blind Prediction Challenge
The set of pKa values that were used for this first large scale exercise organized by the
Cooperative was unique as they represent 100 acidic and basic residues that were introduced
into the interior of one protein using site-directed mutagenesis. The pKa values were
determined by the García-Moreno group for variants of staphylococcal nuclease (SNase)
with Lys, Asp, Arg or Glu at 25 internal locations.47–50 The variant proteins were designed
to position a single ionized group in the interior of SNase to measure the effect of
desolvating the ionizable group and to evaluate plausible compensation from newly formed
favorable interactions or from structural reorganization. This yielded experimental data
about highly perturbed pKa values for a large number of residues at different positions in the
protein, and provided a unique dataset for blind predictions. The pKa measurements were
done either by linkage analysis of the pH dependence of stability measured with equilibrium
denaturation measurements at different pH values and/or with NMR spectroscopy or direct
potentiometric methods. The pKa values of some internal groups in the set are shifted by
almost 6 pKa units relative to pKa values of ionizable groups in water. At the time of the
blind prediction exercise the majority of the pKa values had not been released. Crystal
structures of many of these variants were released and made available through the Protein
Data bank in advance of publication.

The pKa values of internal ionizable groups are very different from those on the surface of
proteins. The latter are governed primarily by the dielectric properties of water and by the
high flexibility of the protein-water interface. For this reason they tend to be very similar to
the normal pKa values of ionizable groups in water and can be reproduced with moderate
success with a variety of different methods, including ones that may have empirical or
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unphysical assumptions and parameters. Prior to the emergence of the SNase data set the
community had been working with very few data points, which coupled to the use of many
parameters in the calculations, made it particularly difficult to assess the validity of the
representation of protein relaxation coupled to protonation changes. For example, the
question of the meaning of the dielectric constant of a protein, and of the relevance of this
question proper, had been impossible to examine in detail prior to the development of the
data set of 100 SNase variants.

The pKa values of internal residues engineered through site directed mutagenesis by the
Hopkins group are highly anomalous and very different from the normal values of ionizable
groups in water.47–50 Larger perturbations in pKa values give a greater range for the targets
and are much more challenging to simulate. Also, if methods cannot reproduce pKa values
for ionizable groups in proteins with accuracy higher than 1 pKa unit, it is important that the
experimental pKa shifts used to evaluate computational methods be much larger than 1 pKa
unit. From the magnitude of the shifts in the pKa values it was clear from the outset that this
unique set of experimental data would allow unprecedented and stringent benchmarking of
computational methods for structure-based calculations, and that it would help identify
weaknesses and strengths in existing methods. The pKa values of internal groups are
exquisitely sensitive to local and global structural details; therefore they are also useful to
test the ability of algorithms to reproduce contributions from a variety of structural factors
that can affect the pKa of these groups.

The shifts in pKa values of the internal ionizable groups in SNase are always in the direction
that promotes the neutral form of the ionizable groups. This suggests that they are primarily
determined by the dehydration (desolvation) experienced by the ionizable groups when they
are buried in the interior of the protein. The desolvation appears to be poorly
counterbalanced by significant compensating factors to stabilize ionization. These internal
ionizable groups test the ability of an algorithm to simulate structural relaxation of proteins
coupled to the ionization of the internal groups. As these structural changes can involve a
range of time and length-scales, their effect on the pKa values of the internal ionizable
groups proved to be challenging to calculate. The degree to which the pKa values of the
artificial internal ionizable groups engineered in SNase are comparable to naturally
occurring internal ionizable groups has emerged as an important question that remains to be
established experimentally. It is clear that many naturally occurring ionizable groups exist in
microenvironments that have evolved to ensure that these internal groups are charged,
whereas others can have highly shifted pKa values comparable to those found in SNase.51,52

Overview of Computational Methods Tested in the 1st Blind Prediction
Challenge

One problem at the heart of pKa calculations is that the ionization of acidic and basic
residues in a protein can be coupled so the change in all protonation state must be calculated
simultaneously. Many simulation techniques use Monte Carlo (MC) methods to generate the
Boltzmann distribution of microstates as a function of pKa.53 The energies underlying the
simulations can come from empirical force fields, from molecular mechanics (MM) force
fields or from Density Functional Theory in quantum mechanics (QM) or QM/MM
simulations. As there was scant QM analysis of the SNase variants this latter approach will
not be considered here although this is an area that should receive considerable attention in
the future. The key long-range electrostatic energies are determined from semi-empirical
methods,2,5,6,13 from Poisson-Boltzmann (PB)3,4,7,9,11,12 or Generalized Born (GB)
continuum methods,8,10 semi-microscopic Protein Dipole-Langevin Dipole (PLDL)
methods18 or simulations with explicit waters.1,16 The calculations must take into account
the motions of the protein that accompany the protonation/deprotonation events. These are
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incorporated by empirical screening functions,2,5,6,13 by adding a discontinuous dielectric
constant for water and protein,3,4,7,9,11,12 or by explicit motions ranging from sampling of
polar proton positions,7,9,11,12 of side chain rotamers3 to full degrees of freedom in a
molecular dynamics (MD) simulation.1,16 Accounting for the heterogeneous response of
proteins is generally considered the chief difficulty in modeling pKa values in proteins.
Alexov, Mehler et al provided an overview of the various methods used here.23

Among the methods tested in the 1st Blind Prediction Challenge in 2009 were: (1)
calculations based on empirical methods (Mehler,6 Jensen,13 and Olsson5 labs); (2)
calculations based on continuum electrostatics methods (Knapp,4 Gunner,3 Alexov,11 Song,7

Word/Nicholls12 and Warwicker9 labs); (3) calculations based on constant pH/MD (Shen,8

Williams/McCammon,10, Brooks1 and Baptista16 labs), (4) calculations based on other
microscopic or semi-microscopic methods (Cui (QM/MM)54 and Warshel (PLDL)55 had
published on the SNase system prior to the 1st Blind Prediction Challenge). Most of the
groups that worked on the SNase data had already simulated much of the same available
dataset of largely surface residues. All found that the buried residues presented here were
considerably more challenging to model and that they offer the opportunity for meaningful
benchmarking.

Summary of Results of the 1st Blind Prediction Challenge
In comparing the individual methods, it was rare for a method to predict the direction of the
shift in pKa relative to the solution value incorrectly. However, the methods that used Monte
Carlo sampling with restricted conformational searching tended to exaggerate the
stabilization of the neutral forms of the internal ionizable groups. In contrast, the methods
that used MD based sampling tended to exaggerate the stabilization of the ionized
introduced residues.

The most successful methods belong to no particular class of algorithms, and among the best
methods we thus find PB-based methods using Monte Carlo sampling, MD-based methods
and a rule-based method, with very little separating the performance of these algorithms. In
terms of physical understanding it is disappointing that a simple rule-based method performs
as well as the more physics-based methods (MD and MC-PB); Carstensen et al.13 put
forward a possible explanation for why the empirical methods work well elsewhere in this
volume. In summary, the pKa calculation methods still tend to have a significant ad hoc
component, which is disappointing given the large amount of effort put into developing and
testing protein electrostatics algorithms and energy functions over the last 2–3 decades. The
blind challenge did help identify several areas where progress is needed:

1. For algorithms for calculation of pKa values (and any structure-based energy
calculation algorithm) the dependence of results on the parameters, input structure
and general setup must be examined and reported. A common failure is to omit the
effect of using different input structures.56 The analysis of convergence through
sufficient sampling becomes particularly important in methods that rely on MD
simulations.1,16 Clear guidelines for sensitivity analysis to describe the dependence
of results on input parameters has been lacking.5,12

2. Metrics for rigorous comparison of calculated and experimental data, with control
over sample size, number of parameters in the models, size of experimental pKa
shifts, etc, are needed. The use of F-tests and RMSD values is a good starting point
but more needs to be done in this area.57

3. Finally, the field should move beyond qualitative descriptions used to characterize
the performance of pKa calculation algorithms. Adjectives such as ‘good’, ’above
average’, ‘highly significant’ etc. need to be replaced with hard numbers that
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describe accurately the performance of each model. To this end it is essential to
continue to organize blind prediction exercises, to ensure that algorithms are tested
rigorously.

Brief Overview of Some Simulation Methods Tested
Continuum Electrostatics

Approximately half the submissions use Monte Carlo sampling of ionization states in a
protein with the electrostatic energies obtained via the Poisson-Boltzmann equation. These
include the work of Alexov,11 Gunner,3 Knapp,4 Song,7 Warwicker.9 and Word12 These
methods are fast compared to those that depend on MD techniques, and they use more easily
separable parameters thus enabling test of the sensitivity to specific input variables. By
design, these methods account for many of the motions coupled to ionization events by
mean field methods encapsulated in the dielectric constant. As the range of explicitly
determined interactions is much smaller than in MD-based approaches it is also easier to
distinguish specific interactions that affect a pKa value. As all of these methods tend to over
stabilize the neutral form of the internal ionizable group, often leading to shifts of several
pH units in the calculated pKa values. Flexibility was increased implicitly by increasing the
dielectric constant,3 by improving the search for cavities that would allow for greater and
implicit water penetration,4 and by smoothing the dielectric surface.12 Conformational
degrees of freedom were explored more explicitly by devices ranging from side chain
rotamer sampling3 to the use of MD11 and Rosetta7 to generate multiple protein structures.
One other general conclusion about these methods is that the input parameters may still not
be fully optimized. Thus, changing charge sets and different Lennard Jones parameters were
found to improve the agreement between calculated and measured pka values.3,12 These
types of calculations tend to depend significantly on the input structures. Calculations with
x-ray structures of proteins were usually better than those performed with in silico models of
the variants of SNase with internal ionizable groups.

Constant pH MD Simulations
Calculations based on constant pH/MD were submitted by Shen,8 Williams/McCammon,10

Brooks1 and Baptista.16 These simulations generally achieved a closer match between
measured and calculated pKa values than did continuum electrostatic methods with Monte-
Carlo sampling, especially when a low dielectric constant was used in the continuum
calculations. In contrast to what was observed in continuum electrostatics calculations, the
MD-based approaches tended to over-stabilize the ionized form of the internal ionizable
group, showing that flexibility might be exaggerated in these calculations. As the
conformation of the whole protein must come to equilibrium with each charge state of all
residues these methods all find that the changes in protonation can lead to structural changes
that converge slowly. In addition, the strength of interactions quite distant from the ionizing
group can affect the pKa and these appear to be exaggerated in some of these calculations.
Thus, the possibility that the parameters overestimate the strength of somewhat distant
pairwise interactions between ionizable groups was mentioned as possible cause of poor
performance on several residues in several of the CPHMD papers.

Empirical Methods
Calculations based on empirical methods were contributed by (Mehler,6 Jensen,13 and
Olsson.5 These methods rely on parameterized analytical energy functions, with the
distribution of protonation states generated by Monte Carlo sampling. These methods are
very fast, often taking mere seconds to perform a full protein titration. These programs need
training sets to generate parameters; the SNase variants represented a set of residues that
were novel and thus not well modeled. However, with modest tuning of the parameters these
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programs continue to provide fairly good match to data. This is the group of simulations
where the changes made to better simulate the SNase data are least likely to be transferable
to other situations.

Areas where improvement might be possible
A variety of methods found that explicit handling of structural relaxation coupled to the
ionization of internal groups greatly improved the results. This could be achieved by
increasing the protein dielectric constant, allowing for water penetration, increasing the
sampling of structures optimized around ionized or neutral residue of interest, or running
full MD simulations. Although all these changes were used to improve the agreement
between experimental and calculated pKa values, it is not known if the structures resulting
from MD, Rosetta or other simulation methods reproduce real conformational changes. The
question remains whether the improvement of calculations by manipulating the protein
dielectric consent in continuum electrostatic methods means we better understand the
dielectric response of the protein to ionization events, or that a high dielectric constant
minimizes incorrect interaction energies. Likewise the changes in molecular structure found
by MD-based methods may indicate how the structure of the protein changes in response to
the ionization of an internal group, or it may simply reflect the properties of local minima
achieved with the parameters used. This lack of knowledge arises because all pKa
calculations are highly underdetermined, with many parameters and atomic positions
collectively leading to the treatment of a few protonation equilibria in a given protein. For
example, Nielsen et al13 considered the possibility that completely random structural
perturbations that produced somewhat less densely packed protein structures could lead to
improved agreement between calculated and measured pKa values of internal groups.

Data Analysis
One of the simple elements of analysis that is dealt with in the papers of Word/Nicholls12

and Olsson5in particular is the treatment of pKa values that are beyond the limits of
calculation or of measurement. These are dealt with rather inconsistently through the
volume. Most analysis simply treated the error as zero if the simulation is lower/higher than
the published pKa limit for an acid/base. Calculated pKa values are moved to be at the limit
of simulation, often pH 0–14, rather than pushing the simulation to higher or lower values.
The paper of Word and Nicholls12 provides some better guidance for future benchmark
tests. In addition, Olsson5 commented on the degrees of difficulty of different test cases,
judging the larger the pKa shift from solution the harder the pKa should be to calculate. This
is an important when comparing submissions that analyzed different sub-sets of the full
dataset. Improving our understanding of the underlying statistics of 20 laboratories
analyzing some or all of a 100 residues dataset will allow us to better realize when one
method represent a breakthrough.

In Praise of Blind Predictions
The utility of blind predictions lies in the objectivity gained in testing a given method
without the possibility of subconscious or instinctual tweaking of parameters to improve
agreement between calculation and experiment. Blind predictions provide a true measure of
the state of development of a particular approach and helps identify areas where
improvements are necessary. At a certain point a community focused on the development of
computational methods for prediction and simulation becomes confident of its success. That
is precisely when computational methods should be subjected to blind prediction challenges.
When post-dictions are attempted instead of predictions, the temptation to carry out
calculations to the point where the simulated answer is close to the experimental one is very
strong. In blind prediction exercises each participating lab must make decisions about their
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best simulation practices and live with the outcome, afterwards using failures to improve
their practices. In some areas, coarse-grained approximations contribute considerable insight
into difficult problems, and in these cases a blind prediction challenge would be superfluous.
In the case of protein electrostatics the field has matured to the point where methods for
structure-based calculations have to be challenged and benchmarked to demonstrate that
they can reproduce details of pKa values and of the factors that determine them. That is the
level of detail at which they have to operate.

Blind predictions are loaded with practical complications, and it speaks highly of this
community that the 1st Blind Prediction Challenge leading to the Telluride Workshop took
place in a spirit of deep curiosity and friendly cooperation. In the 1st Blind Prediction
Challenge we carefully avoided creating a climate in which some labs were recognized as
winners and others as losers. To the extent that the field of protein moves forward as a result
of this exercise, all are winners. The time frame of the type of challenge that was organized
can also be very problematic for laboratories that do not have sufficient staff to attempt to
solve problems or complete calculations in a rigid timescale. There is always the danger that
blind prediction challenges and critical assessments can cripple a field, if they drive
methodological changes away from physically based methods towards empirical tweaks that
lead to improved agreement between calculated and measured parameters, with an attendant
loss of physical understanding. The pKa Cooperative attempts to balance the positive aspects
of forcing laboratories to evaluate their simulations and calculations critically and
stringently, while biasing towards improved physical understanding of the underlying
physics of the problem of interest. These results of this 1st Blind Prediction Challenge were
very sobering but also highly stimulating.

Limitations of the Experimental Data Used in the 1st Blind Prediction
Challenge

The internal ionizable groups in SNase were buried in mostly hydrophobic
microenvironments in the interior of the protein. Even in the case of some of the introduced
Lys residues (e.g. Lys-62, Lys-36, Lys-66) that are close to the backbone polar atoms of
residues 19–22, which might be expected to stabilize the charged form of the Lys residues,
these potential interactions were not identified by the simulations as being important.
According to the calculations the set of SNase variants used in the challenge appear to
provide more insight into desolvation energies than about the influence of hydrogen bonds
and Coulomb interactions as determinants of pKa values of internal groups –although this
implied computational finding remains to be demonstrated experimentally. Although
pairwise Coulomb interactions must be present, the loss of solvation energy was generally
viewed as the primary perturbation of the pKa of these internal residues in SNase. This
segregation of solvation and pairwise Coulomb interactions in this collection of data can be
seen as a strength of this set of pKa values as it provides more direct insight into desolvation
energies. On the other hand, it does not allow detailed exploration of the balance between
desolvation and Coulomb forces. In proteins evolved to contain internal ionizable groups the
calculations suggest that desolvation energies often appear to be compensated by Coulomb
interactions.28,29 This balance is generally proposed anytime a buried acid or base has a pKa
that is not much shifted from the value in solution. However, this assertion cannot be cleanly
established experimentally. The balancing of desolvation energies that destabilize and the
Coulomb interactions that stabilize the charged state reduce shifts in pKa values and can lead
to a mitigation of errors. More experimental data are needed in which Coulomb effects
experienced by internal ionizable groups can be examined rigorously. The ongoing
engineering of variants of SNase with internal ionizable pairs or with ionizable groups in
more polar cages will be useful to test the ability to simulate pair-wise charge-charge and
charge-dipole interactions accurately.
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New Challenges Ahead
In the 1st Blind Prediction Challenge the emphasis was strictly on the ability of
computational methods to reproduce the pKa values of internal ionizable groups in SNase.
Future challenges for simulation of pKa values of internal groups in proteins can become
more stringent if attention is given to the following areas:

1. Coupling between ionizable groups. Faced with the demanding challenge
represented by the large shifts in pKa values measured for 100 internal groups by
the García-Moreno Lab, the participants in the critical assessment exercise focused
primarily on reproducing the pKa values of the internal introduced groups, without
paying attention to the pKa of the surface residues, especially the His, Asp and Glu
residues in SNase whose pKa values have been reported previously.58–60 Owing to
the long-range character of electrostatic forces, the ionization of different groups on
the protein mutually influence each other. Coupling is most likely when internal
ionizable groups are involved because their interactions with surface ionizable
groups occur primarily through the protein, where depending on dielectric
relaxation properties, electrostatic effects could be strong even between distant
groups.61 The coupling between the pKa values of internal groups and surface
residues represents additional information to be simulated and analyzed. As
experimental measurements of coupling between internal and surface residues
become available, these will represent important constraints that pKa calculations
will have to satisfy. Thus, in the future it will be useful for the ionization state of
both surface and internal ionizable groups of the protein to be reported for all
calculations.

2. Conformational Reorganization Coupled to the Ionization of Internal Groups. The
range of structural and dynamic responses to the ionization of internal groups in
SNase or in other proteins is not known. Preliminary data suggest that the
ionization of internal groups can trigger local conformational reorganization.62–67

This is consistent with the high dielectric constants required in continuum
electrostatic methods to come close to reproducing the pKa values of the internal
groups. There is a critical need for improved experimental measurements of the
range of conformational reorganization that can be promoted by the ionization of
internal groups. Again, when this level of experimental detail of the effects of
ionization on protein structure and dynamics becomes known it will constitute
important constraints for calculations.

The calculations have to take into account the motions that accompany the
protonation/deprotonation reactions. If conformational reorganization is found to be
more prevalent than currently recognized, it may be that simulation techniques will
have to depend more on use of Monte Carlo methods to generate the Boltzmann
distribution of microstates as a function of pH to achieve convergence. Or it may be
that advanced MD methods will be required to sample sufficient conformational
space. These are areas where progress will be difficult and where experimental data
are needed to guide further developments.

3. Accuracy of structures. A limited number of structures of SNase variants with
internal ionizable groups were available when the first blind predictions were
submitted to the pKa Cooperative. Several dozen structures have now been released
by the García-Moreno lab through the Protein Data Bank. The participants in the
blind prediction challenge who simulated structures can now go back and examine
the accuracy of their simulated structures to determine how the pKa values
calculated in real structures and in simulated structure compare. This represents an
important first step to gauge the ability of various approaches to simulate the
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relaxation that can occur as internal groups change their ionization state. Similarly,
the simulations that depend on MD trajectories to sample different states of the
protein can compare ensembles computed with MD simulations with ensembles
obtained with NMR spectroscopy. The expected consequences of ionization of
internal groups on structure and dynamics can thus be predicted and tested. In the
future some structures can be released prior to publication to focus simulations on
the analysis of pKas while other can be held back to challenge the community to
better understand the coupling between the mutations and the structural changes.

4. Water penetration: Water penetration into the hydrophobic interior of the protein
was observed in some of the earliest structures with internal Asp and Glu at
position 66 in SNase.65 Internal water molecules have been found in many of the
variants of SNase.65 The role of explicit water penetration was ignored in most of
the calculations that were performed for the blind critical assessment. MD has been
shown to be useful to reproduce the patterns of hydration that are observed in
crystal structures obtained under cryogenic conditions.68–70 The ability of
macroscopic methods to reproduce the presence of internal water molecules
implicitly through the dielectric constant and the radii used to describe the water
inaccessible surface, explored here by Knapp,4 will have to be tested extensively.
The presence of internal water molecules is not an artifact of the SNase variants;
many of the internal ionizable groups found naturally in proteins, for example in
proteins involved in H+ transport, are found in association with internal water
molecules.71

Future Role for the pKa Cooperative
The 1st Blind Challenge showed that the calculation of pKa values of internal groups in
proteins is extremely challenging. It remains to be established if the calculations that
succeeded in reproducing the pKa values of some of the internal groups do so for the right
physical reasons. The Challenge showed that by increasing protein flexibility and tuning
available parameters it was possible to improve the agreement between simulated and
measured pKa values of internal acidic and basic residues in SNase. This leaves us with a
number of questions for future study: Will these empirical modifications be validated in
future simulations? For methods with implicit solvent, are optimized parameters that
improved agreement between calculated and measured pKa values in SNase transferable to
other proteins? Can the changes in structures coupled to the ionization of internal groups as
predicted with MD simulations be validated with NMR spectroscopy experiments? Can
comparison of measured and calculated data with small molecules be used to validate
changes in parameters for charges and radii used in various methods? Can improvements in
calculations achieved by comparison of the data with SNase achieve equal success with
other proteins? Are calculations with small proteins transferable to calculations with large
proteins, and are calculations with globular proteins transferable to calculations with
membrane proteins?

The pKa Cooperative hopes to play a role channeling and organizing efforts in the
development of structure-based computational methods for calculation of electrostatic
effects. If it is successful, the Cooperative will help the community avoid unnecessary
repetition of effort, it will foment the development of truly novel approaches, it will help
expose deficiencies in algorithms for structure-based calculations, and stimulate novel
experiments to gain the physical insight needed to guide the development of new
computational approaches. The Cooperative will enhance synergy and interactions between
groups with expertise in experimental, computational or theoretical approaches, and it will
facilitate the organization and maintenance of sets of data that should become the standard
used to benchmark or to train a wide variety of computational methods in this field.
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