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Abstract
We consider the analysis of a class of experiments in which the number of photons in consecutive
time intervals is recorded. Sequence of photon counts or, alternatively, of FRET efficiencies can
be studied using likelihood-based methods. For a kinetic model of the conformational dynamics
and state-dependent Poisson photon statistics, the formalism to calculate the exact likelihood that
this model describes such sequences of photons or FRET efficiencies is developed. Explicit
analytic expressions for the likelihood function for a two-state kinetic model are provided. The
important special case when conformational dynamics are so slow that at most a single transition
occurs in a time bin is considered. By making a series of approximations, we eventually recover
the likelihood function used in hidden Markov models. In this way, not only is insight gained into
the range of validity of this procedure, but also an improved likelihood function can be obtained.
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1. Introduction
Conformational dynamics of a single molecule can be studied by analyzing fluorescence
emission from dyes attached to the molecule [1–4]. Photophysical properties of the dyes
depend on the distance to a quencher or, in the case of Förster resonance energy transfer
(FRET), on the distance between donor and acceptor dyes. Conformational changes lead to
changes in these distances, which are reflected in the fluctuations of fluorescence emission.
The problem is how to extract the information about the conformational dynamics.

Figure 1 schematically illustrates a simple example of the problem considered here. Suppose
that a protein can exist in only folded and unfolded state (see Fig. 1(a)). Figure 1(b) shows a
conformational trajectory as the system jumps between the two states. However, this
trajectory is not observed directly. What can be observed are photons emitted by the donor
and acceptor fluorescent dyes attached to the molecule (see Fig. 1(c)). Since the average
distance between the dyes is different in the two states, the corresponding donor and
acceptor fluorescence intensity will also differ. Time resolution is not always sufficient to
measure photon arrival times, in which case only numbers of photons during observation
(bin) time are monitored. Figure 1(d) shows a time-binned photon trajectory where the
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numbers of acceptor (NA) and donor (ND) photons in time bins of the same duration T are
determined. In this paper, we consider only this type of measurements. The sequence of
photon counts can be converted into a sequence of FRET efficiencies defined in each bin as
the fraction of acceptor photons, i.e., E = NA/(NA + ND).

A widely used method of analyzing photon counts is to construct histograms of photon
counts or, more commonly, the histograms of FRET efficiencies. In such a procedure, the
correlation between successive bins resulting from conformational dynamics is apparently
lost. A different approach involves the analysis of the whole sequence of photon counts
using a likelihood function. The starting point is the probability distribution of observing the
sequence of photon counts given a model of conformational dynamics. This distribution is
considered as the likelihood that the model of conformational dynamics describes the
observed ordered sequence of photons. The likelihood function is then analyzed to solve
various inference problems. These include finding optimal model parameters (by using
gradient methods, or expectation-maximization, or Monte-Carlo methods), establishing the
most likely conformational state trajectory (e.g., using the Viterbi algorithm), identification
of the number of conformations, and model comparison among others. During the last
decade, likelihood-based methods have been used to analyze many different biophysical
experiments, including those dealing with ion channels [5, 6], molecular motors [7], protein
dynamics [8], and unzipping of DNA by nanopores [9]. Even in the specialized area of
single-molecule photon counting, there is now a rather extensive literature [10–21].

Finding the likelihood function that corresponds to a specific physical problem is the first
and most crucial step in all likelihood-based methods. We recently presented such a study
for the sequences of photons with observed arrival times and photon colors [15]. In this
paper, we will consider the likelihood function to handle single-molecule experiments where
only the numbers of photons in time bins are recorded.

Sequences of photon counts and FRET efficiencies have been previously analyzed in the
framework of hidden Markov models (HMM) [14, 16, 19]. In this technique, a molecule can
change its state only at regularly spaced discrete times [22]. Being in a particular state, the
molecule “emits a signal” (e.g., a number of photons or FRET efficiency) with an
“emission” probability distribution associated with that state. Lee [16] pointed out to the
fundamental limitation in the application of HMM to single-molecule data since transitions
between conformational states in HMM are synchronized with the beginning of the time bin.
Liu et al. [19] found that the parameters of the model of conformational dynamics
determined using HMM are sensitive to the choice of the “emission” distribution.

In this paper, we focus on the study of the likelihood function for the sequence of photons
detected in consecutive time bins. Other inference problems such as methods of optimization
are outside the scope of the present paper. Our approach is based on the exact likelihood
function corresponding to the model of photon statistics and conformational dynamics
described below in Section 2. Although we are primarily interested in FRET, in the next
section we will assume that all detected photons have the same color. The reason is that the
mathematical formalism is more transparent in this case and can readily be generalized to
FRET with two- and even three-color photons [2], as will be shown below in Section 4. The
exact likelihood function is rather complicated. Therefore, we make a series of controlled
approximations to derive likelihood functions that are practically useful, rather then simply
postulating them. The relationship of these likelihood functions with those used in HMM
will be established. In addition to the sequence of photon counts, the sequence of FRET
efficiencies and corresponding likelihood functions are considered in Section 5. The last
section summarizes results and gives concluding remarks.
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2. The model
The model of conformational and photophysical dynamics adopted here is as follows. The
molecule has M discrete conformational states. Being in a particular state, the molecule
emits photons whose statistics are Poissonian (shot noise). This means that when the system
is in state i, the distribution of the number of photons, N, detected in a time bin of duration T
is (niT)N exp(−niT)/N!, where ni is the average number of photons that are detected per unit
time (i.e., the photon count rate of state i). The mean number of photons in a bin is 〈N〉 =
niT. For the photons of two colors, statistics of photons depend on two parameters, i.e.,
acceptor, nAi, and donor, nDi, photon count rates.

The interconversion among conformations is described by a set of rate equations for the
population of state i at time t, pi(t). In matrix notation, these equations are written as dp/dt =
Kp. The ijth off-diagonal element of the rate matrix K, Kij, is the rate constant that describes
the transition from state j to i. The diagonal element, Kii, describes escape from state i and is
equal to the negative of the sum of all rates that deplete state i, Kii = −Σj≠i Kji. The vector of
normalized equilibrium populations, peq, is obtained by solving Kpeq = 0. Detailed balance
imposes the constraints on the matrix elements, Kijpeq(j) = Kjipeq(i).

The above model of photon statistics is based on the separation of all processes that
influence fluorescence emission into fast and slow compared to the average time between
detected photons, which is usually on the microsecond time scale. When all fluctuations are
fast, the photon statistics are Poissonian. A detection device such as CCD camera may
distort this distribution. Here we follow Liu et al. [19] and assume that, after appropriate
scaling, the resulting fluorescence intensity is still Poissonian. The Poisson distribution
depends on the count rate that involves the parameters of fast processes. The count rates are
determined by many factors such as dye excitation, energy transfer, decay of the donor and
acceptor excited states, spectral crosstalk, linker and dye orientation dynamics on
submicrosecond time scale, as well as the detection efficiency and Poissonian background
noise [23]. Fortunately, all these complications should be considered only if one wishes to
interpret the extracted count rates in structural terms (e.g., to get the interdye distance). They
do not affect the parameters of conformational dynamics.

Dynamical processes that are comparable or slower than the mean interphoton time
modulate photon count rates and alter the statistics of photon counts. We define a
“conformation” in a broad sense as any state of the molecule that has different photon count
rates. This may be due to a different interdye distance that changes on a microsecond time
scale and slower. This may be also due to “long-lived” photophysical states of the
fluorophores [20, 24], labeling permutations [3, 25], etc.

The kinetic model of conformational dynamics is not restrictive as may appear at first sight.
If conformational space is continuous (e.g., diffusion on a free energy surface), we can
discretize it and construct the rate matrix from the finite difference approximation of the
appropriate differential evolution operator. To describe conformational states whose lifetime
distribution is multiexponential, we can introduce several, appropriately connected,
Markovian states that have identical photon count rates.

It is interesting to note that the model adopted in this paper is a special case of what is called
a Markov Modulated Poisson Process in the statistics literature [26]. This model has been
applied to treat photon sequences in time-resolved experiments with recorded interphoton
times [13, 15, 17, 20, 21].
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3. Photons of the same color
We start by considering photons of one color. First, we obtain the exact likelihood function
for a sequence of photon counts assuming that conformational dynamics are described by
conventional rate equations and statistics of photons in each conformational state are
Poissonian (see Section 2). Then we discuss various approximations that eventually lead to
the likelihood function used in the standard HMM.

The likelihood function is equal to the probability distribution of observing a sequence of
photon counts in consecutive time bins (i.e., N1, N2, N3, …). This distribution is related to
the probability to detect N photons during the time interval of duration T and to be in
conformational state i at the end of the time interval, given the molecule was in state j at the
beginning. We denote this probability by Pij (N). In general, this is a complex object because
the system can visit many states during the time interval and the number of photon counts is
correlated with the visited states.

Let assume for simplicity that the observed sequence of photons consists of three time bins
with recorded numbers of one-color photons N1, N2, and N3. The probability to observe
such sequence (the likelihood function) is

(1)

where P(N) is the matrix with elements Pij (N) and 1⊤ is the transpose of a column vector
with every element equal to unity. This probability has a transparent interpretation. Reading
from right to left, the first term, peq(i), is the probability that the system is in state i at the
beginning of the first time interval. Since i can be any state, we sum over i. The next term
Pji(N1) is the probability that the system starts in the state i at the beginning of the interval
and is in state j at the end and N1 photons have been detected. The next term, Pkj (N2),
corresponds to the second bin, in which N2 photons have been detected, and so on.

The generalization to a larger number of time bins (J) is:

(2)

The above expression is the likelihood that the parameters of the kinetic model (i.e., the
rates Kij and photon count rates ni) describe the observed sequence of photon counts. The
likelihood function is presented as a product of matrices. Note this formally exact likelihood
function involves the probabilities Pij (N) that depend on the initial (j) and final (i) states in
the bin interval.

In order to be able to estimate the model parameters, we need to specify the matrix P(N).
This matrix can be found analytically only for a two-state system. The two states (e.g.,
unfolded and folded states in Fig. 1(a)) are characterized by the photon count rates n1 and
n2. The transitions between the states are described by the rates k1 (1 → 2) and k2 (2 → 1).
The exact expressions for the matrix elements Pij(N) can be obtained by averaging the
Poissonian distribution of photon counts over the distribution of the time spent in one of the
two interconverting states. This distribution can be found by generalizing the distribution in
Ref. [27]. For n2 > n1, it can be shown that the diagonal (ii = 11, 22) and off-diagonal (ij =
12, 21) matrix elements are
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(3)

where I0(x) and I1(x) are the modified Bessel functions. Equations (2) and (3) provide an
exact analytical expression for the likelihood function in the case of two-state
conformational dynamics. This result can be readily generalized to photons of two and three
photon colors.

Even in the case of the two-state model, the exact likelihood function is rather complicated.
To simplify it and to treat more than two states, we start with the generating function of the
matrix P(N), for which a compact expression was previously obtained [23, 28]

(4)

Here  is a diagonal matrix with the photon count rates of each conformation on the
diagonal ( ij = niδij, where δij is the Kronecker delta defined so that it is unity when i = j
and zero otherwise). This relation means that P(N) is the coefficient of λN in the expansion
of the matrix exponential, exp((K −(1−λ) )T), in powers of λ.

To make progress, we consider the important special case when conformational dynamics is
so slow that at most a single transition can occur during the bin time. In this limit, the
transition rates are small, KijT ≪ 1, and one can expand the generating function in Eq. (4) to
linear order in K [29]

(5)

Expanding the right hand side in a power series in λ and equating the coefficients of λN, we
find

(6)

When i ≠ j,

(7)

Both of these equations have a simple physical interpretation. Pii(N) corresponds to the
molecule that has the same state i in the beginning and in the end of the bin time. In the limit
of slow conformational dynamics, this means that no transition has occurred during the bin
time. Therefore, the probability Pii(N) is the product of the Poisson distribution of photon
counts in state i (with count rate ni) and the probability to have no transitions, which we
denote by Aii. This probability is Aii = 1 − Σj≠i KjiT. The above expansion is valid only if
Σj≠i KjiT < 1; therefore, Aii is positive.
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Now consider Pij (N) with different initial and final states, i ≠ j. In the limit of slow
conformational dynamics, this means that a transition from j to i must have occurred at some
moment t in the time interval 0 ≤ t ≤ T. The probability that this happened is approximately

Aij = KijT. Note that the probabilities Aij are normalized,  (which means that the
molecule either stays in state i or jumps to some other state). If the transition from j to i
occurred at time t, then the mean number of photons is njt + ni(T − t) and the distribution of
photons in such bins is Poissonian with the corresponding mean. Since the transition can
occur anywhere in the interval with equal probability, one must average over t, as done in
Eq. (7).

Equations 6 and 7 can be be combined into a single expression valid for i = j and i ≠ j:

(8)

where Aij = δij + KijT and

(9)

The integral in the above equation can be evaluated analytically and Bij (N) can be
expressed in terms of the incomplete gamma-function, Γ(N, nT):

(10)

Note that Bij(N) is normalized as  . The diagonal term is just a Poisson
distribution, Bii(N) = (niT)N exp(−niT)/N!.

The likelihood function for three bins of photons in Eq. (1) can be written in terms of Aij and
Bij (N) as

(11)

The above equations present the likelihood function that can be applied to study
conformational dynamics at times long compared to the bin time. It is assumed that no more
than one transition can occur during the bin time. The structure of this likelihood function is
similar to that in HMM [22] if Aij are identified with the transition probabilities from j to i
and Bij(N) with the “emission” probabilities. However, Bij (N) depends on both initial and
final conformational states, unlike HMM where it is implied that a transition can occur only
between two bins (which we refer here to as the standard HMM) and, therefore, the
“emission” probability depends only on the initial state. Note that our likelihood function is
to be read from right to left and the matrix of transition probabilities is the transpose of that
used in statistical literature [22].

Now we turn to the consideration of the “emission” distribution Bij (N). The diagonal term,
Bii(N), is just a Poisson distribution. Hence we focus on the distribution with nonequal
initial and final states, i ≠ j. The analytical expression for this distribution, although it is
available for one-color photons, cannot be extended to photons of two and three colors in
general. Therefore, we proceed to various approximations, which will be also employed later

in Section 4. These approximations are based on the mean μij and variance  of the number
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of photons N in the bins that have a transition from j to i during the bin time. They are

defined as μij = 〈N〉ij and  , where 〈…〉ij means averaging with distribution
Bij(N), Eq. (9). Evaluating the averages, we have:

(12)

An approximation of Bij(N) that gives the correct mean and variance can be obtained using a
negative binomial distribution:

(13)

where  . This distribution can be considered as the Poisson distribution with
a random count rate distributed according to a gamma distribution. The negative binomial
distribution reduces to the Poisson distribution when ni = nj.

When N is sufficiently large, we can use a Gaussian distribution with the correct mean and
variance, Eq. (12):

(14)

Another approximation of Bij(N) is to use the midpoint rule to evaluate the integral in Eq.
(9) (i.e., set t = T/2). In this way, we find

(15)

This approximation is the Poisson distribution with a count rate in between ni and nj. This
gives the correct mean number of photons averaged over all bins that have a transition from
j to i. However, the approximation results in the incorrect variance, which is equal to the
mean in this case.

The crudest approximation is to evaluate the integral in Eq. (9) by setting t = 0:

(16)

This is the Poisson distribution with the count rate of the initial state. Substituting Eq. (16)
into Eq. (11), we get the likelihood function for a three-bin sequence of photons that
corresponds to this approximation

(17)

Here we used Σl Alk = 1. This is the likelihood functions that one would use when applying
the standard HMM to binned trajectories with photons of one color.
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In Figure 2, we compare various approximation for Bij(N), Eqs. (13)–(16), with the exact
result in Eq. (10). It can be seen that even the simplest approximation (a Poisson distribution
with the average count rate, Eq. (15), labeled as PA in Fig. 2) improves the “emission”
probability associated with the initial state, Eq. (16). This is the simplest way of improving
the likelihood function in Eq. (17). The Gaussian approximation in Eq. (14) or more
sophisticated negative binomial distribution in Eq. (13) are preferable when the fluorescence
intensity of the initial and final states differ considerably. Note that the figure refers to the
bins that have a transition during the bin time. The number of such bins is small when the
conformational dynamics are slow. The majority of the bins is described by the Poisson
“emission” probability, Bii(N) = (niT)N/N! exp(−niT), which is the same for all
approximations.

4. Two and three color FRET
In this section we extend the previous ideas and approximations to FRET where photons of
two or more colors are observed. We start with the likelihood function for a sequence of
donor and acceptor photon counts (see Fig. 1(d)). The molecule in conformational state i
now emits acceptor and donor photons distributed according to a Poisson distribution with
count rates nAi and nDi. The likelihood function for a sequence containing both donor and
acceptor photons is the generalization of Eq. (2). This can be written in terms of the
probability Pij(NA,ND) to detect NA acceptor and ND donor photons and to be in state i at
the end of the bin time, given that the molecule is in state j at the beginning. All these
probabilities are considered as elements of matrix P(NA,ND). 1 The generating function for
P(N) discussed in the previous section (see Eq. (4)) can be readily generalized to account for
two photon colors[23, 28]:

(18)

where [ A]ij = nAiδij and [ D]ij = nDiδij. The likelihood function for a sequence of J bins
with two-color photons is (c.f. Eq. (2))

(19)

These expressions provide an exact likelihood function for a time-binned sequence of donor
and acceptor photons.

As before, we are interested in the case when conformational dynamics is so slow that at
most one transition occurs during the bin time. In this case the generating function can be
expanded to linear order in K (see Eq. (5)), resulting in the probability that generalizes Eq.
(8):

(20)

Here the transition probability Aij is the same as before, Aij = δij + KijT. The “emission”
probability is

1The joint probability distribution of acceptor and donor photons in all bins of duration T, P(NA,ND), is obtained by averaging over
all initial and final conformational states, P(NA, ND) = 1⊤P(NA, ND)peq. This quantity is central to all approaches [4, 23, 30] that
focus on analyzing FRET efficiency histograms.
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(21)

where ni = nAi+nDi. This is just what one would expect from the extension of the expression
in Eq. (9) for one-color photons to donor and acceptor photons. However, there is no closed
form expression for this integral in general. When i = j, Bij(NA,ND) in Eq. (21) is the
product of two Poisson distributions with the acceptor and donor count rates nAi and nDi. As
in the case of one-color photons, Bij(NA,ND) (i ≠ j) depends on both initial and final states in
the bin, unlike the “emission” probability in the standard HMM.

To simplify the “emission” probability, we can make the same series of approximations for
the off-diagonal Bij(NA,ND), i ≠ j, as before. First, we find the mean (μAij and μDij),

variance  , and the correlation (ρij) of acceptor and donor photon counts in the
bins that have a single j → i transition. They are defined as μFij = 〈NF〉ij,

 , where index F = A,D denotes
acceptor or donor, 〈…〉ij means averaging using the distribution Bij(NA,ND) in Eq. (21).
Evaluating the averages, we find

(22)

Previously we presented two approximations that have the correct mean and variance,
namely, a discrete negative binomial and a continuous Gaussian distributions. While it
appears possible to generalize the former using negative multinomial distributions, for the
sake of simplicity we present only the generalization of Eq. (14), which is a bivariate
Gaussian distribution:

(23)

where the parameters of the Gaussian are given by Eq. (22). As before, this approximation is
applied only when i ≠ j.

The approximation that generalizes Eq. (15) is the product of the Poisson distributions for
acceptor and donor photons with the count rates in between those in state i and j

(24)

where ni = nAi + nDi is the total count rate in state i. This distribution has the correct mean
but incorrect variance and correlation.

Finally, the approximation in the spirit of HMM that involves only the parameters of the
state in the beginning of the bin (j) is

(25)
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This is a generalization of Eq. (16) for one-color photons.

The distribution in the above equation is one of the “emission” probabilities used in the
framework of HMM [19] in the analysis of binned sequences of acceptor and donor photon
counts. It follows from our derivation that the likelihood function presented as the product of
the transition and “emission” probabilities (as implied in the standard HMM) can be used
only when conformational dynamics are slow on the time scale of the bin time. Even in this
case, the “emission” probability can be improved by using the approximations in Eq. (23) or
Eq. (24) instead of the simple Poisson distribution as in Eq. (25).

Three-color FRET
The likelihood function and its approximations for one- and two-color photons can be
readily extended to three-color FRET. Consider a molecule with three labels attaches,
namely, one donor, D, and two acceptors, A and B. The molecule in conformational state i
can emit three kinds of photons with count rates nAi, nBi, and nDi. As in the case of two-
color FRET, it is not necessary to have a microscopic theory for these quantities in order to
be able to extract the rates of conformational changes from photon trajectories. Instead of
presenting the straightforward generalization of the previous theory, we right away consider
the case of slow conformational dynamics so that only none or one transition occurs during a
bin. In this case the likelihood function for three bins can be written as

(26)

where

(27)

with the transition probability Aij = δij + KijT and the “emission” probability

(28)

where ni = nAi + nBi + nDi. As before, this can be evaluated numerically or various
approximations can be made.

The approximations for the “emission” probability for two-color FRET considered before
can be readily extended to three colors. The approximation in the spirit of HMM [19], which
generalizes Eq. (25), is the product of three Poisson distributions that involve only the
parameters of the state at the beginning of the bin (j). The approximation that generalizes
Eq. (24) is the product of three Poisson distributions with the count rates in between those in
states i and j:

(29)

where μFij = (nFi + nFj)T/2 and index F now stands for A, B, and D.

The generalization of the Gaussian approximation in Eq. (23) involves three variables:

(30)
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where Σ is the covariance matrix with elements [Σ]FF′ = μFijδFF′ + (nFi − nFj)(nF′i −
nF′j)T2/12 (cf. Eq. (22)). In the above equation, the summation is over all F and F′, which
take values A, B, and D.

5. FRET efficiencies
Instead of studying sequences of donor and acceptor photon counts, one can construct and
then analyze sequences of FRET efficiencies. They are particularly advantageous for the
single-molecule measurements of the molecules diffusing through a laser spot because
FRET efficiencies are less influenced by the fluctuations of the laser intensity inside the spot
[31]. FRET efficiencies are calculated from photon counts in a bin as Ei = NAi/(NAi + NDi).
For example, the sequence of photons shown in Fig. 1(d) can be converted to the sequence
of FRET efficiencies, E1 = NA1/(NA1 + ND1), E2 = NA2/(NA2 + ND2), E3 = NA3/(NA3 +
ND3). The likelihood that parameters of the model are consistent with such a trajectory now
depends on one variable (FRET efficiency), not two as in Eq. (19). The likelihood function
for the sequence of J bins can be expressed in terms of matrix P(E), similar to Eq. 2:

(31)

The matrix element Pij(E) is the probability that FRET efficiency falls into an interval E ± h
of size h for the bins in which the molecule is in state i at the end of the bin interval and in
state j at the beginning. 2 This probability is related to Pij (NA,ND) and can be obtained from
the latter by summing over NA and ND such that NA/(NA + ND) = E ± h.

Now we proceed directly to the limit of slow conformational transitions, in which case Pij
(E) can be presented as the product of the transition probabilities, Aij = δij + KijT, and the
“emission” probabilities, Bij(E), similarly to Eqs. 8 and 20:

(32)

The “emission” probability Bij(E) is the probability of E when at most a single transition
occurs in a bin. This can be obtained only numerically from Bij(NA,ND), Eq. (21), by
summing over NA and ND. So the strategy we adopt here to simplify Bij(E) is to find the
mean and variance of Bij(E) and then to use them to construct either a Beta or a Gaussian
distribution.

The mean FRET efficiency of all bins in which the molecule is in state j and i at the
beginning and end of the bin time is complicated unless the count rates are independent of
conformation. Since the idea of using FRET efficiency rather than the number of acceptor
and donor photons is only a good one when the total count rate does not depend on
conformation, we shall now assume that this is the case here, i.e., nAi + nDi = n is
independent of i. Then, evaluating the average 〈E〉ij ≡ 〈NA/(NA + ND)〉ij using the
distribution Bij(NA,ND) in Eq. (21), we have

(33)

where ℰi = nAi/(nAi + nDi) = nAi/n is the average apparent FRET efficiency of conformation
i.

2The FRET efficiency histogram, FEH(E), which is obtained from the set of efficiencies irrespective of order, is related to P(E) as
FEH(E) = 1⊤ P(E)peq.
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Similarly, one can show that the variance  is

(34)

where 〈N−1〉 is the mean of the reciprocal of the sum of acceptor and donor counts in a bin.
Since the total count rate does not depend on the conformational state, 〈N−1〉 is also state-
independent.

Using the mean and variance in the above equations, Bij(E) can be approximated as a
continuous Gaussian distribution:

(35)

Alternatively, one can use a Beta distribution

(36)

with the parameters chosen such that the mean and the variance are exact:

(37)

Note that the “emission” probabilities in Eqs. (35) and (36) are applied for both i = j and i ≠
j.

Both Beta and Gaussian distributions were used to describe sequences of FRET efficiencies
in the framework of HMM [14, 19]. However, the distributions used in these works differ
from our approximations in two ways. First, our distributions depend on the initial and final
states, which accounts for the fact that transitions between the conformational states can
occur at any time during the bin, not just at the beginning. Second, the parameters of our
Beta and Gaussian distributions are not free but related to the model parameters (i.e., FRET
efficiencies of the states) via Eq. (34). The additional parameter 〈N−1〉 can be obtained from
the experimentally measured distribution of the total number of photons.

In addition to the the Beta distribution with parameters in Eq. (37), we consider a simpler set

of parameters. Replacing  in Eq. (37) and using ℰij in Eq. (33),
we get at (nAj + nDj)T ≫ 1:

(38)

These parameters involve the average count rates, by analogy with Eq. (15) and (24).

Finally, we consider a third set of parameters for the Beta distribution, which depend only
on the state of the molecule at the beginning of the bin:

(39)
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These are equal the mean numbers of acceptor and donor photons detected during bin time T
when the molecule is in state j.

Figure 3 shows various approximations of the “emission” probability Bij(E) are tested
against exact histograms of the FRET efficiency for the bins in which the molecule has a j
→ i transition during the bin. The exact histograms are calculated by summing Bij(NA,ND),
Eq. (21), over NA and ND under the constraint that NA/(NA + ND) is within E ± h, where h
is the histogram step. The Gaussian distribution, Eqs. (33)–(35), and the Beta distribution,
Eq. (36), with parameters in Eq. (37) (labeled as B1) are almost identical and are the best in
describing the exact histogram. These distributions depend on both initial and final
conformational states and results in the correct mean and variance. The Beta distribution
with the parameters in Eq. (39) that depend only on the initial conformational state (labeled
as B3) deviates significantly from the exact distribution. Using this “emission” probability in
the likelihood function might lead to the loss of accuracy in determining the model
parameters. Finally, the Beta distribution with average count rates in Eq. (38) (B2) has the
correct mean but wrong variance of the distribution. This might be considered as the
simplest (but not the best) way of correcting the parameters of the Beta distribution.

6. Concluding remarks
In this paper we considered how to construct the likelihood functions required to analyze a
time-binned photon trajectory. The likelihood function can be presented in terms of the
distribution of photon counts during the bin time. This distribution depends on whether a
transition between conformational states has occurred during the bin time. For a two-state
model, we have obtained the exact analytical expression for this distribution and, therefore,
for the likelihood function. This result is valid for both long and short bin times that might
be comparable to the time between state transitions. In general case, the likelihood function
is more complex, and we have presented approximations starting from rigorous description
of photon statistics.

In the case of slow conformational dynamics, the distribution of photons during the bin time
can be presented as a product of the transition and “emission” probabilities. However, the
“emission” probability depends on the molecule’s initial and final states, since a transition
between conformational states can occur at any time during the bin time. When there are no
transitions between the states, the “emission” distribution is Poissonian. When the
conformational state changes during the bin time, the distribution is more complex. When no
more than one transition during the bin time can occur, several approximations for the
“emission” distribution have been suggested. The simplest and most evident (however, not
necessarily most accurate) approximation is the Poisson distribution with a count rate in
between of the initial and final count rates. More accurate approximations of the “emission”
probability have been constructed using the exact mean and variance of the “emission”
distribution. The approximate likelihood functions are valid for slow conformational
dynamics compared to the bin time, as in the case of the standard HMM, but the restriction
is less stringent. The approximations modify the “emission” probability for the bins with
transitions between the states. Despite the fact that the number of such bins is small in the
case of slow dynamics, we hope that these corrections to the “emission” probability will
help to reduce bias in estimating model parameters.

Similar ideas have been employed to treat two-photon trajectories converted into sequences
of FRET efficiencies. The “emission” distributions for the bins with and without transitions
during the bin have been determined. It should be noted that apparent FRET efficiencies
depend only on the conformational state, whereas photon count rates depend on both
conformational state and location in the laser spot. This opens the possibility of using the
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likelihood function for the binned trajectories of FRET efficiencies presented above to
analyze molecules diffusing through a laser spot. When a molecule diffuses through the
laser spot, the only parameter that depends on the location in the spot is the reciprocal of the
sum of acceptor and donor photons in the variance, Eq. 34.

The likelihood function can be either directly optimized with respect to the model
parameters or used as the starting point of more sophisticated Bayesian procedures. Since
likelihood-based methods depend on using the correct likelihood function, we hope that our
work provides a sound foundation to build upon. One way to check the consistency of the
observed photon trajectories with the model is to generate photon sequences according to the
model, construct a FRET efficiency histogram (or the distribution of photon counts in the
case of photons of one color) and compare this with the observed one [15]. The FRET
efficiency distribution obtained from the simulated data constructed using HMM contains
only peaks corresponding to the conformational states. However, real data may contain
additional peaks due to exchange between the states [20, 32–34], which can be
misinterpreted as an additional conformational state. The improved likelihood function
presented in this paper should help to avoid such problems when analyzing photon
trajectories, i.e., detection of false states that arise due to incorrect treatment of bins with
transitions between states.

Research Highlights

A sequence of photon counts can be analyzed using a likelihood function. An exact
likelihood function for a two-state kinetic model is provided. Several approximations are
considered for an arbitrary kinetic model. Improved likelihood functions are obtained to
treat sequences of FRET efficiencies.
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Figure 1.
FRET and two-state protein folding. (a) Kinetic scheme that describes the folding and
unfolding of a protein with attached donor and acceptor dyes. (b) The conformational
trajectory which is of interest but invisible. (c) The observed photon trajectory when the
arrival time of each detected photon is recorded. (d) A photon trajectory when only the
numbers of acceptor and donor photons in a time bin of duration T is recorded.
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Figure 2.
Comparison of various approximations for the probability Bij(N) of detecting N photons in
the bins that undergo a single j → i transition. The exact (EX) distribution (dots, Eq. (10)) is
compared with the negative binomial (NB) distribution (open circles, Eqs. (13) and (12)),
the Gaussian (G) distribution (solid line, Eqs. (12) and (14)), the Poisson (PA) distribution
with the average count rate (crosses, Eq. (15)), and the Poisson distribution (P) with the
photon count rate of the initial state (triangles, Eq. (16)), which is implicit in the standard
Hidden Markov Models. Mean numbers of photons in a bin in states i and j are (a) niT = 10,
njT = 20; (b) niT = 10, njT = 50.
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Figure 3.
Comparison of various approximations for the probability of FRET efficiency, Bij(E), in the
bins that undergo a single j → i transition. The exact (EX) histograms (bars) are calculated
using Eq. (21). They are compared with the Gaussian (G) distribution (solid line, Eqs. (33)–
(35)) and with Beta distributions, Eq. (36), with three different sets of parameters:
parameters B1 result in the correct mean and variance (dashed line, Eq. (37)), B2 are
determined by the average count rates (dotted, Eq. (38)), and B3 by the count rates of the
initial state (dashed-dotted, Eq. (39)). Mean number of donor and acceptor photons in a bin
is nT = 100, FRET efficiencies of the states are (a) ℰi = 0.5, ℰj = 0.7; (b) ℰi = 0.3, ℰj = 0.7
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