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Plasma membrane-resident receptor kinases (RKs) initiate signaling pathways important for plant immunity and development. In
Arabidopsis (Arabidopsis thaliana), the receptor for the elicitor-active peptide epitope of bacterial flagellin, flg22, is encoded by
FLAGELLIN SENSING?2 (FLS2), which promotes plant immunity. Despite its relevance, the molecular components regulating FL.S2-
mediated signaling remain largely unknown. We show that plasma membrane ARABIDOPSIS-AUTOINHIBITED Ca®*-ATPase
(ACAS) forms a complex with FLS2 in planta. ACA8 and its closest homolog ACA10 are requlred for 11m1t1ng the growth
of virulent bacteria. One of the earliest flg22 responses is the transient increase of cytosolic Ca” ions, which is crucial for many
of the well-described downstream responses (e.g. generation of reactive oxygen spec1es and the transcriptional activation of
defense-associated genes). Mutant aca8 acal0 plants show decreased flg22-induced Ca®" and reactive oxygen species bursts
and exhibit altered transcriptional reprogramming. In particular, mitogen-activated protein kinase- dependent ﬂg22 -induced
gene expression is elevated, whereas calc1um—dependent protein kinase-dependent flg22-induced gene expression is reduced.
These results demonstrate that the fine regulation of Ca?* fluxes across the plasma membrane is critical for the coordination of
the downstream microbe-associated molecular pattern responses and suggest a mechanistic link between the FLS2 receptor
complex and signaling kinases via the secondary messenger Ca®*. ACAS also interacts with other RKs such as BRI1 and CLV1
known to regulate plant development, and both aca8 and acal0 mutants show morphological phenotypes, suggesting
additional roles for ACA8 and ACA10 in developmental processes. Thus, Ca** ATPases appear to represent general
regulatory components of RK-mediated signaling pathways.

Receptor kinases (RKs) constitute a large gene family have been studied in detail and matched with their cog-

in plants, with more than 600 members in Arabidopsis
(Arabidopsis thaliana), and are key to ligand-mediated
signaling pathways in plant immunity and develop-
ment (Shiu and Bleecker, 2001). Only a handful of RKs
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nate ligand, of which FLAGELLIN SENSING2 (FLS2),
EF-TU RECEPTOR (EFR) from Arabidopsis, and rice
XA21 encode Leu-rich repeat-RKs, conferring the percep-
tion of microbe-associated molecular patterns (MAMPs)
from bacteria in these plants (Zipfel, 2009). Perception
of the fungal MAMP chitin involves the LysM-RK
CHITIN ELICITOR RECEPTOR KINASE1L. FLS2 de-
tects a conserved peptide at the N terminus of bacterial
flagellin (flg22) and forms an inducible complex with
BRI1-ASSOCIATED KINASE1/SOMATIC EMBRYO
RECEPTOR KINASE3 (BAK1/SERK3), a Leu-rich repeat-
RK initially identified as a coreceptor of BRASSINOSTE-
ROID INSENSITIVE1L (BRI1) regulating brassinosteroid
signaling and now reported to also act in various immune
pathways and cell death control (Chinchilla et al., 2009;
Postel et al., 2010; Schulze et al., 2010; Fradin et al., 2011;
Schwessinger et al., 2011). The manifold phenotypes of
bak1/serk3 mutant plants suggest that BAK1/SERK3
can potentially interact with multiple RKs to regulate a
number of different signaling pathways. This offers the
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possibility for molecular cross talk between different RK-
mediated signaling pathways, as recently demonstrated
for brassinosteroid signaling negatively impacting flg22
responses (Albrecht et al., 2012; Belkhadir et al., 2012). At
the molecular level, BAK1/SERK3 was shown to trans-
phosphorylate BRI1 and EFR (Wang et al., 2008; Chen
et al., 2010; Schwessinger et al., 2011). Moreover, BRI1,
FLS2, and EFR can associate with other members of the
SERK family, revealing some levels of functional redun-
dancy (Albrecht et al., 2008; Roux et al., 2011).

Interaction between the ligand-binding RKs BRI,
FLS2, EFR, and BAK1/SERK3 is required for proper
downstream responses (Chinchilla et al., 2007). Among
the earliest responses stimulated by MAMPs are changes
in ion fluxes across the plasma membrane, which result
in an increased level of calcium ions (Ca”") in the cytosol
(Blume et al., 2000; Wendehenne et al., 2002; Jeworutzki
et al., 2010). Ca®" acts as an important second messenger
for a multitude of biotic and abiotic stimuli, whereas
different signals trigger unique Ca®* signatures (Dodd
et al., 2010; Kudla et al., 2010). MAMPs typically in-
duce a transient Ca®* burst, resulting in a rapid (within
seconds) increase of free cytosolic Ca**, which subse-
quently (within minutes) declines to steady-state Ca**
levels (Blume et al., 2000; Ranf et al., 2008). The Ca%
burst occurs upstream of many MAMP-elicited re-
sponses, including the rapid production of reactive
oxygen species (ROS), the activation of signaling ki-
nases, as well as changes in gene expression (Blume
et al., 2000; Boller and Felix, 2009; Ranf et al., 2011;
Segonzac et al., 2011). However, genetic studies and
the identification of the underlying molecular com-
ponents of the MAMP-induced Ca** burst are largely
missing (Ranf et al., 2008; Boller and Felix, 2009). In
general, cytosolic Ca** levels are regulated by plasma
membrane- and endomembrane-bound Ca** channels
that mediate the influx of Ca®* and efflux transporters
that reestablish Ca®* homeostasis. A number of ion
channels have been identified, some of which have roles
in plant immunity, such as DEFENSE NO DEATH1
(DND1; Clough et al., 2000; Lamotte et al., 2004; Kudla
et al., 2010). Recently, ionotropic Glu receptor-like pro-
teins were shown to regulate Ca** influx at the plasma
membrane and were also implicated in MAMP-induced
responses (Cho et al, 2009; Kwaaitaal et al., 2011;
Michard et al., 2011; Vatsa et al., 2011), and an endo-
plasmic reticulum-localized P2A-type Ca®* ATPase
was described to contribute to pathogen-induced cell
death and to alter the MAMP-triggered Ca®* burst (Zhu
et al., 2010). The relevance of the Ca”" influx in MAMP-
elicited responses is underlined by polysaccharides se-
creted from bacterial pathogens to chelate Ca** in the
apoplastic space (Aslam et al., 2008).

Here, we report that the plasma membrane-resident
P2B-type Ca** ATPase ACAS interacts with FLS2 in
planta. Loss-of-function aca8 plants, the mutant of its
closest homolog acal0, and the aca8 acal0 double mu-
tant were more susceptible to bacterial infection. An-
alyzing individual MAMP responses, aca8 acal) mutant
plants displayed decreased flg22-triggered Ca*" influx
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and ROS accumulation. Importantly, flg22-triggered
gene expression downstream of mitogen-activated
protein kinase (MAPK) signaling was increased, but
gene expression downstream of calcium-dependent
protein kinase (CDPK) signaling was reduced. This
suggests that the MAMP-induced Ca** burst is required
for proper transcriptional reprogramming upon elicita-
tion. According to their function as Ca** pumps, ACAS
and ACA10 are hypothesized to regulate Ca** efflux
during the flg22-elicited Ca** burst, which suggests a
molecular link between the FLS2 receptor, Ca?t signaling,
and flg22-triggered downstream responses. In addi-
tion, acal0 and aca8 acal0 mutant plants showed de-
velopmental phenotypes affecting inflorescence height
as well as root length. Together with the finding that
ACAS also interacts with other RKs such as BRI1 and
CLV1, these results suggest that plasma membrane
Ca** ATPases function in multiple RK-mediated sig-
naling pathways.

RESULTS
ACAS Interacts with FLS2 and Other RKs

In a proteomics approach, we previously isolated
proteins colocalizing to FLS2 in plasma membrane
microdomains (Keinath et al., 2010). To address whether
some of these proteins can associate with FLS2, we fo-
cused on Ca?* ATPases, which have also been identified
as differentially phosphorylated and transcriptionally
induced in response to flg22 (Zipfel et al., 2004;
Benschop et al., 2007). ACA8 and ACA10 belong to the
family of type 2B autoinhibited Ca®* ATPases consisting
of 10 members in Arabidopsis (Supplemental Fig. S1A;
Boursiac and Harper, 2007). These Ca** ATPases com-
prise 10 transmembrane-spanning domains, harbor a
calmodulin-binding domain for autoinhibition of the
ATPase active site, and can localize to different mem-
brane compartments (Boursiac and Harper, 2007).
ACAS8, ACA9, and ACA10 group into a distinct sub-
family and accumulate at the plasma membrane (Bonza
et al., 2000; Hwang et al., 2000; Lee et al, 2007).
Whereas ACA9 expression is restricted to pollen and
thereby is critical for pollen tube development, ACAS8
and ACA10 are expressed throughout the plant and
have not yet been assigned any specific function besides
inflorescence growth (Schiett et al., 2004).

We transiently expressed FLS2 and ACAS fused to
the N- and C-terminal halves of yellow fluorescent pro-
tein (YFP), respectively, in Nicotiana benthamiana and
examined possible protein-protein interactions by con-
focal microscopy in a so-called bimolecular fluorescence
complementation (BiFC) assay (Bracha-Drori et al,
2004). In this assay, we observed reconstitution of the
YFP molecule by the detection of fluorescence when
expressing FLS2 fused to both of the YFP halves, in-
dicative of FLS2 homodimerization (Fig. 1A). We also
observed BiFC when FLS2 was coexpressed with ACAS.
As BiFC assays are based on transient expression in a
heterologous system, the tagged proteins can accumulate
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Figure 1. FLS2 interacts with ACA8 in planta. A, BiFC. Representative
micrographs show YFP signals of epidermal cells from N. benthamiana
leaves transformed with plasmids coding for the indicated constructs.
YFPc, C-terminal YFP fragment; YFPn, N-terminal YFP fragment.
Bars = 100 um. B, FRET-FLIM measurements. Micrographs show rep-
resentative false-color-coded fluorescence lifetime images of Arabi-
dopsis protoplasts transfected with plasmids coding for the indicated
constructs. Lower fluorescence lifetimes indicate the proximity of the
two fluorescence proteins. Similar results were obtained in at least
three independent experiments. Bars = 2 um.

to high levels, facilitating the reconstitution of a BiFC
signal; thus, ACA12, BRI1, and CLV1 were included
as controls. No YFP reconstitution could be detected
upon coexpressing of FLS2 and ACA12, another
plasma membrane-resident Ca** ATPase. Notably,
ACAS8 showed a broader interaction pattern, because
BiFC was also observed with other RKs, such as BRI1
and CLV1, of which the latter is functioning in stem cell
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identity maintenance and is normally not expressed in
leaf tissue (Waites and Simon, 2000). Similar to FLS2,
both BRI1 and CLV1 formed homodimers in this as-
say, but unlike FLS2, they also interacted with ACA12
(Fig. 1A). In all cases of BiFC, the YFP signal was
recorded at the cell periphery, suggesting complex
formation at the plasma membrane.

To further overcome the limitations of BiFC assays,
we performed Forster resonance energy transfer (FRET)
measurements on the basis of fluorescence lifetime im-
aging microscopy (FLIM) using FLS2 and ACAS fusions
to cyan fluorescent protein (CFP) and YFP, respectively.
FRET can be detected using FLIM, where reduction of
the fluorescence lifetime of a donor-containing molecule
occurs due to the proximity of an acceptor-containing
molecule, which is an indication of physical interaction.
We examined FLS2-ACAS8 association in protoplasts
from soil-grown Arabidopsis plants. Under this condi-
tion, we observed a significant reduction in fluorescence
lifetime when FLS2-CFP and ACAS8-YFP were coex-
pressed as compared with the fluorescence lifetime of
ACAS8-CFP alone (Fig. 1B; Supplemental Table S1).
Similar results were obtained when we used FLS2-CFP
and ACAS8-YFP. This suggests that both proteins are in
close proximity to each other, indicative of a protein-
protein interaction. Interaction of fluorophore-tagged
FLS2 and ACAS8 was detected at the plasma membrane,
which is in line with the subcellular localization of the
two proteins and substantiates our findings of BiFC in
N. benthamiana. However, the interaction of fluo-
rophore-tagged FLS2 and ACAS8 was not distributed
uniformly across the plasma membrane but seen as
patchy areas with strongly reduced fluorescence life-
times (Fig. 1B), which indicates that the presence of FLS2-
ACAS8 complexes was restricted to subdomains within
the plasma membrane. This observation is in agreement
with the notion that FLS2 and ACAS8 can localize
to flg22-induced plasma membrane microdomains
(Keinath et al., 2010). Despite numerous attempts, we
failed to clone a full-length ACA10 cDNA, which pre-
cluded the analysis of ACA10 by fluorophore-based
interaction assays. Despite poor results by coimmuno-
precipitation analysis, pull-down experiments of FLS2-
GFP followed by mass spectrometric analysis repeatedly
revealed the presence of ACA8 and ACAI10 peptides,
further corroborating the existence of FLS2-ACAS8 and
FLS2-ACA10 complexes in planta (Supplemental Fig. S52).
Taken together, these results indicate that FLS2 forms a
complex with ACAS8 at the plasma membrane and that
ACAS8 can interact with multiple RKs, pointing at an
important role in the regulation of RK-mediated signal-
ing pathways.

ACAS8 and ACA10 Exhibit Partial Overlapping Functions

To address ACAS8 function, we isolated a T-DNA in-
sertion line and a tilling mutant (both in the ecotype
Columbia [Col-0] genetic background) in the ACAS gene
(Supplemental Fig. S1B). Genetic redundancy within
members of the ACA family has been documented and
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could be expected for members of the ACAS, ACA9, and
ACA10 subgroup (Boursiac and Harper, 2007). Because
ACA9 expression was specific to pollen tubes, we fo-
cused on ACA10, isolated a T-DNA insertion line in the
ACAI0 gene, and generated aca8 acal0 double knockout
lines (Supplemental Fig. S1C). In addition, we crossed a
355::ACA8-GFP-expressing transgenic line into the aca8
acal0 double mutant. Single aca8 mutants displayed no
obvious developmental phenotypes (Fig. 2). By contrast,
acal0 mutant plants were reduced in inflorescence
height and displayed increased axillary stem formation,
which was further enhanced in aca8 acal0 plants (Fig.
2A). This phenotype was also present in acal0 plants
crossed with the aca8?"** tilling mutant (Supplemental
Fig. S3) and could be rescued by ectopic ACAS-GFP
expression, demonstrating functional complementation
by the GFP fusion protein (Fig. 2A). Redundant functions
of ACA8 and ACAI10 in the regulation of inflorescence
height were previously reported in the Arabidopsis
Wassilewskija background (George et al., 2008). Dif-
ferences between the single mutants may result from
an incomplete overlap of the ACA8 and ACAI0 ex-
pression patterns. We did not observe any obvious
mutant phenotype in rosette leaf development among
the genotypes (Fig. 2B), whereas aca8 acal0 mutants
showed significantly reduced root growth when cul-
tivated in vitro (Fig. 2C). Reduction in root growth was
affecting primary root length and could be correlated
with an early differentiation of stem cells compared
with wild-type plants (Supplemental Fig. S3).

acailo - aca8
acaio

aca8 acailo
ACA8-GFP
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flg22-Triggered Early Responses Depend on ACAS8 and
ACA10 Function

Ca”" ATPases are responsible for extruding Ca** ions
from the cytosol into endomembrane compartments or
extracellularly into the apoplast (Bonza et al., 2004;
Conn et al,, 2011). ACAS8 has been shown to mediate
Ca” transport in yeast and is activated by the binding
of calmodulin (CaM) to its N terminus (Bonza et al,,
2000, 2004; Mersmann et al., 2010). Based on the inter-
action of ACA8 with FLS2, we addressed whether
ACAS and ACA10 function in the flg22-triggered Ca*
burst. All genotypes, therefore, were crossed to a trans-
genic line expressing the aequorin (Aeq) Ca** biosensor
(Knight et al., 1991). We performed luminescence-based
measurements of free cytosolic Ca** and revealed
slightly elevated constitutive Ca** levels in aca8 acal0
Aeq plants (Supplemental Fig. S4). We then monitored
the MAMP-induced Ca®* burst over time. Mutant aca8
Aeq and acal0 Aeq plants responded like wild-type
plants upon flg22 treatment. By contrast, the flg22-
triggered Ca”" burst was strongly reduced in the aca8
acal0 Aeq lines and completely abolished in fIs2 Aeq
plants (Fig. 3A; Supplemental Fig. S5). The overall
pattern of the transient increase of Ca** remained sim-
ilar between the wild type and the aca8 Aeq and acal0
Aeq genotypes, but the maximal influx (peak) of the
Ca?* signature was affected in aca8 acal( Aeq plants
(Supplemental Fig. S5). The Ca** burst in response to
chitin was slightly reduced in aca8 acal0 Aeq lines and

aca8 acaill
ACA8-GFP °

Col-0 aca8 acal0 aca8 aca8acall
acal0 ACA8-GFP

Figure 2. ACA8 and ACAT10 have a role in plant development. Photographs show growth-related phenotypes of the indicated
genotypes in the Col-0 background (Supplemental Fig. S1). A, Inflorescence growth of 8-week-old plants. B, Rosette leaves of
4-week-old plants. C, Root growth of 7-d-old in vitro-grown seedlings.
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for all other genotypes was indistinguishable from the
wild type (Fig. 3A). The lower peak in flg22-induced
cytosolic Ca** influx in the double mutant demon-
strates that ACA8 and ACA10 both contribute to the
flg22-elicited Ca®* burst and indicates a role for these
proteins in the regulation of FLS2-mediated early re-
sponses.

The production of ROS upon MAMP treatments is
mediated by plasma membrane-resident NADPH oxi-
dases, which depend on Ca** signaling for their func-
tion (Kobayashi et al., 2007; Mersmann et al., 2010). We
examined the flg22-triggered oxidative burst and de-
tected no significant differences between wild-type
plants and the aca8 and acal0 single mutants, whereas
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the aca8 acal0 double mutant displayed an overall de-
creased ROS production when treated with flg22 (Fig.
3B). ROS production upon chitin treatment remained
comparable to the wild type in all tested mutants. The
decrease in oxidative burst correlated with the reduced
flg22-triggered Ca®* signature in aca8 acal0 plants,
which is in agreement with Ca** operating upstream of
ROS production. When monitoring these individual
MAMP responses, we observed genetic redundancy be-
tween ACA8 and ACA10, suggesting that both Ca®*
ATPases exert overlapping functions in these early and
transient flg22 responses, which is in contrast to the
unequal role of ACA8 and ACA10 in development.
Western-blot analysis revealed unaltered FLS2 protein
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Figure 3. Farly MAMP responses are altered in aca8 acal0 mutants. A, Ca®* burst in response to flg22 and chitin. The Aeq Ca**
biosensor was introduced into all indicated genotypes. Data were calculated from curves normalized to steady-state cytosolic
[Ca®*]. Shown are average changes (A) in [Ca®*] values in the peak between 4 and 5.5 min after elicitation, which was averaged
over two independent biological replicates. Error bars indicate sp based on 14 to 16 samples, and letters indicate significant
differences at P < 0.05 based on ANOVA with Tukey’s honestly significant difference test. B, ROS burst in response to flg22 and
chitin. ROS generation (indicated as total photon counts measured between 2 and 30 min upon elicitation) was monitored over
time. Error bars indicate sp based on 28 samples, and letters indicate significant differences at P < 0.05 based on a ttest. Similar
results were obtained in at least two independent experiments. C, FLS2 protein levels of the indicated genotypes revealed by
western blot. Coomassie blue staining (CBB) is included as a loading control. Similar results were obtained in at least two
independent experiments. [See online article for color version of this figure.]
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accumulation in the aca mutants compared with wild-
type plants (Fig. 3C). Therefore, the observed reduc-
tion in flg22-triggered Ca** and ROS bursts is likely
caused by the loss of ACA8 and ACA10 function rather
than altered FLS2 levels.

ACAS8 and ACA10 Are Required for Proper flg22-Induced
Transcriptional Changes

For more detailed analysis of ACA8/ACA10 func-
tions, we determined the transcriptional changes caused
by ACA8 and ACAI10 loss of function by microarray
analysis. A total of 69 transcripts were identified as
showing significantly elevated transcript levels, and 10
had significantly lower transcript abundance in the aca8
acal0 double mutant compared with wild-type seed-
lings (Supplemental Table S2 and Supplemental Infor-
mation S1). We validated the differential transcript
accumulation of 19 out of 20 tested genes by quantitative
reverse transcription-PCR analysis, of which 17 showed
wild-type-like expression in the aca8 acal0/355:ACAS-
GEP line, further substantiating the functionality of the
ACAB8-GFP fusion protein (Supplemental Table S2). Most
remarkably, genes belonging to the Gene Ontology cat-
egories “calcium ion binding” and “cation binding” were
overrepresented among the genes that show higher
transcript levels in the aca8 acal0 double mutant (Sup-
plemental Table S2). The first category includes genes
coding for CaM-like proteins such as CML35, CML36,
CML41, CMIL45, CML46, and CML47 (McCormack
et al, 2005). Increased expression of CaM-like genes
could be a compensatory mechanism to counteract the
deficiency in extruding Ca®* ions from the cytosol in
aca8 acal0 plants.

Only a small number of the aca8 acal0 deregulated
genes were associated with plant defense (Supplemental
Table S2). One of them encodes ACD6, a regulator of
salicylic acid (SA)-mediated disease resistance (Lu et al.,
2003). Significantly reduced ACD6 transcript levels in
aca8 acal0 plants may contribute to the enhanced sus-
ceptibility to Pseudomonas syringae pv tomato DC3000
(PtoDC3000). To find out whether any of the other genes
that exhibit differential transcript levels in aca8 acal0 has a
potential role in MAMP-triggered immunity, we searched
publicly available transcriptome databases and identified
27 of the aca8 acal0 up-regulated genes to be induced
in response to MAMP treatments (Supplemental Fig.
S6A). We then focused on genes downstream of flg22
Ca*" signaling (Boudsocq et al., 2010). There was little
overlap between the aca8 acal0 deregulated and CDPK-
dependent genes (Supplemental Fig. S6C), which could
be due to the different plant materials used for tran-
script profiling. Therefore, we studied the flg22-induced
expression of selected marker genes specifically down-
stream of the MAPK and/or CDPK cascade (Boudsocq
et al,, 2010). flg22-induced expression of MAPK-regulated
FLAGELLIN-RESPONSIVE KINASE1 was considerably
higher in aca8 acal0 plants compared with the wild type
(Fig. 4). This could point at elevated MAPK signaling in
aca8 acalO; however, there was no correlation between
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flg22-induced MAPK activation and the increased
expression of MAPK-specific genes (Supplemental Fig.
S7). Induction of the downstream genes cytochrome
P450 monooxygenase CYP81F2, FAD-LINKED OXIR-
EDUCTASE, and NDRI1/HIN-LIKE10, which are con-
trolled by both the MAPK and CDPK pathways, was
either wild type like or somewhat enhanced (Fig. 4). By
contrast, the flg22-induced transcript accumulation of
the CDPK downstream gene PHOSPHATE INDUCED]1
was notably reduced compared with wild-type levels
(Fig. 4). This indicates that gene induction mediated by
CDPK signaling is insufficient, likely due to altered
flg22 activation of the CDPK cascade.

Our data show that knockout of ACA8 and ACA10
function causes pronounced changes in steady-state
transcript levels, probably for phenotypic compensation,
and also impairs proper flg22-induced transcriptional
reprogramming. This was further supported by the dif-
ferential transcript accumulation of additional marker
genes (Supplemental Fig. S8), which either was enhanced
(At5¢25250, At1g66880, and MYB51/At1g18570) or re-
duced (At2g47140 and WRKY30/At5¢24110) upon flg22
elicitation. We also investigated the flg22-dependent ex-
pression of ACA12 and ACA13, which are potential can-
didates for compensating ACA8 and ACA10 loss of function
(Supplemental Fig. S1A). After flg22 treatment, both ACAI2
and ACA13 transcripts accumulated to higher levels in the
aca8 acal0 double mutant background, whereas no signifi-
cant differences and a slight up-regulation in ACA12 and
ACA13 abundance, respectively, were detected without
MAMP stimulus (Fig. 4). Thus, ACA12 and ACA13
may contribute to the control of cytosolic Ca®" levels
during flg22 responses. Intriguingly, ACA12 localizes to
the plasma membrane and can interact with the RKs
BRI1 and CLV1 (Fig. 1A). ACA12, however, failed to
associate with FLS2, which may hamper any possible
compensatory effects in flg22 responses.

ACAS8 and ACA10 Contribute to Plant Immunity

To examine a possible role of ACA8 and ACAI10
in plant antibacterial immunity, all genotypes were
spray inoculated with virulent PtoDC3000, an infection
that is defeated utilizing the FLS2 pathway (Zipfel et al.,
2004). Bacterial growth and disease symptom develop-
ment were monitored 3 and 5 d post inoculation, re-
spectively. PtoDC3000 multiplied to high titers in aca8
and acal0 single mutants as well as in the aca8 acal0
double mutant, which was comparable to the titers de-
tected in immunocompromised fls2 mutants (Fig. 5A).
This enhanced susceptibility was reduced to wild-type
levels in the transgenic ACAS-GFP complementation
line. Moreover, the disease symptom development of
aca8 and acal0 single and double mutants was corre-
lated with the enhanced susceptibility phenotype (Fig.
5B). Despite 355-driven ectopic expression of ACAS-
GFP, no increased resistance against PtoDC3000 could
be detected in the transgenic line. The aca8 and acal0
single mutants were as affected as the aca8 acal0 double

803


http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1
http://www.plantphysiol.org/cgi/content/full/pp.111.192575/DC1

Frei dit Frey et al.

m3'5 NHLT0 = 0 T cyPsiF? ® T Fox
[ = I 51 4 1 2 I I
8 e %2.5 . ol 25 - I
ooz 2- 20
<Aoo I 15 -
SO 2154 15
© 10 -
R 10
205 - 5 51
0 - 0 ,j_‘._-u_-_-_L 0 J ot M. N |
Col-0 aca8 aca8 Col-0 aca8 aca8 Col-0 aca8 aca8
acal0 acall acaill0 acal0 acail0 acal0
ACAS8-GFP ACA8-GFP ACAS8-GFP
jg FRKT  ** ® T PHIT
%] w 5 4
35 *k ° I
v 230 « 241 I
o 2., | @
- 525 o 9, i
= 520 - Q o I
E 15 I O § 2
S04 & A ,
? s 0w A
] LN m
Col-0 aca8 aca8 Col-0 aca8 aca8
acal0 acal0 acal0 acal0
ACA8-GFP ACA8-GFP
3 8
- ACA12 ACAT13 =%
025 | 71 I
i 6 -
Q n 2
@ 2 I 51 M 0hfig22
& 51'5 1 *k 4 I [] 1h flg22
< £ 14 I 3 I B 24hflg22
@ 2 1
05 ;|
7 Col-0 aca8 aca8 0 Col-0 aca8 aca8
acal0 acaill acall acai0
ACA8-GFP ACA8-GFP

Figure 4. flg22-induced gene expression. Quantitative real-time PCR monitoring is shown for transcript levels of flg22-regulated

genes and other Ca’

* ATPases in the indicated genotypes upon flg22 elicitation. Actin was used as a control. Error bars indicate

sb based on three biological experiments with three technical replicates each; asterisks indicate significant differences between
Col-0 and aca8 acal0 at P < 0.05 (*) and P < 0.01 (**) based on Student’s t test. FOX, FAD-LINKED OXIREDUCTASE; FRK1,
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mutant upon PtoDC3000 infection. Thus, ACA8 and
ACAI10, both individually and equally, contribute to

plant immunity in bacterial infections.

DISCUSSION

It is well known that MAMPs induce a rapid and
transient increase of [Ca®'] in the cytosol through the
channels
(Blume et al., 2000; Ranf et al., 2011), but despite its
presumed importance in plant immunity, our current

function of plasma membrane-resident Ca**
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understanding of how the MAMP-induced Ca** burst
is regulated is rather limited (Ranf et al., 2008; Kudla
et al 2010). Although DND1 is important for cytosolic
Ca®* elevation in response to bacterial lipopolysaccha-
rides and endogenous danger peptides (Ma et al., 2009;
Qi et al, 2010) it is not required for flg22 and elf18
activation of Ca** (Jeworutzki et al., 2010). Smularly, the
recently suggested Glu receptor—hke-type Ca”" channels
have been implicated in cryptogein- and flg22-triggered
responses by pharmacological approaches; however,
genetic evidence for their involvement in MAMP
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Figure 5. ACA8 and ACA10 contribute to plant immunity. A, Bacterial
titers (PtoDC3000) in the indicated genotypes (4-week-old plants) at 3
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indicate significant differences at P < 0.05 based on a t test. c.f.u.,
Colony-forming units; FW., fresh weight. B, Representative photo-
graphs showing macroscopic disease symptoms of 4-week-old plants
infected with PtoDC3000 at 5 d post inoculation.

signaling is still lacking (Kwaa1taal et al., 2011; Michard
et al., 2011; Vatsa et al., 2011). Ca?"* homeosta31s is also
controlled through the function of Ca** ATPases, and
our data show that FLS2 forms a complex with ACA8
It is possible that FLS2 transphosphorylates the Ca**
ATPase to regulate its activity, as ACA10 is differen-
tially phosphorylated upon flg22 treatment (Benschop
et al., 2007).

Based on our mutant loss-of-function data, ACA8 and
ACAI10 cofunctlon to positively regulate the MAMP—
induced Ca burst. Because of their function as Ca?
pumps, Ca** ATPases mediate the efﬂux of Ca®* ions
out of the cytosol. Therefore, loss of Ca** ATPase func—
tion should result in an enhanced and prolonged Ca**
burst (Romani et al., 2004). In line with this assumption,
Ca” fluxes triggered by the MAMP cryptogein in N.
benthamiana were increased in amplitude and duration
when endoplasmic reticulum-localized NbCAI1 was si-
lenced (Zhu et al., 2010). Our data on ACA8 and ACA10
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unexpectedly revealed a reduction in the MAMP-
induced Ca*’ burst. We cannot exclude the possibility
that other members of the ACA family, such as ACA12
and ACA13, may substitute at least partially for ACAS8
and ACA10 function in the mutant backgrounds, as
evidenced by the increased ACA12 and ACA13 tran-
script levels upon flg22 elicitation. This would indicate
that the observed phenotypes of aca$ acal0 mutants are
rather an indirect effect. However, ACA12 did not as-
sociate with FLS2 in our BiFC analysis, ACAI12 and
ACA13 transcript levels were not generally increased in
aca8 acal0 mutants, and our transcriptome data did not
point at obvious expression changes of any other
member of the ACA family. Alternatively, it is possible
that the enhanced transcript levels of CaM-like genes in
aca8 acal0 plants reflect a mechanism to compensate for
elevated steady-state levels of cytosohc Ca®*. This may in
turn lead to the decreased influx of Ca** into the cytosol,
because CaM-like proteins were shown to regulate cy-
clic nucleotide-gated channels, a class of cation channels
with a documented role in Ca®" influx (Ali et al., 2007;
Boursiac and Harper, 2007). CaM-like proteins can also
activate Ca** ATPases and are thus key regulators of
Ca*" homeostasis (Boursiac and Harper, 2007). How-
ever, we cannot exclude a yet unknown modality of
Ca®* ATPase function implying a direct rather than in-
direct action. Based on current knowledge, it is possible
to speculate that FLS2 may transiently down-regulate
ACA8 and ACAILQ activities ,upon flg22 treatments,
thereby allowing a cytosolic Ca** burst, possibly masked
by investigating stable loss-of-function mutants.

The flg22-induced ROS production was decreased in
aca8 acal0) mutants, which is m agreement with a reduc-
tion of the flg22- tnggered Ca®* burst. Likewise, chemical
inhibition of Ca** ATPase function resulted in reduced
ROS production in response to the fungal MAMP oligo-
galacturonide, placing ACA proteins upstream of RbohD
(Romani et al., 2004). As Rboh proteins contain two EF
hand motifs in their N-terminal domains (Ogasawara
et al., 2008), an altered Ca®* signature in aca8 acal0 plants
may impair ROS generation catalyzed by the NADPH
oxidases. In potato (Solanum tuberosum), CDPK signaling
promotes Rboh-mediated ROS production (Kobayashi
et al,, 2007). This supports the idea of changed CDPK
activation in aca8 acal0 plants and ACA8/ACA10 regu-
lating kinase signaling, which is substantiated by altered
flg22-induced gene expression caused by ACAS and
ACAI10 loss of function. The MAPK/CDPK differential
gene expression shows that the flg22-induced Ca** burst
is required for the concerted activation of the kinase sig-
naling pathways in order to properly reprogram the
transcrlptome upon MAMP perception.

Ca* ATPases have also been shown to regulate
defense responses by affecting programmed cell death
(Nemchinov et al., 2008). Silencing of NbCA1 causes an
enhanced hypersensitive response cell death upon to-
bacco mosaic virus activation of the tobacco (Nicotiana
benthamiana) N immune receptor (Zhu et al., 2010).
Knockout plants of ACA4 and ACAI11 display cell
death-like lesions similar to those triggered by avirulent
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pathogens, which were dependent on SA accumulation
(Boursiac et al., 2010). Cell death-related phenotypes
were not observed in aca8 acal0 plants. Instead, they
were supersusceptible to infection with PtoDC3000.
Unlike the observed genetic redundancy between
ACAS8 and ACA10 in plant development and the partial
phenotype observed when monitoring 1nd1v1dua1
flg22 responses, the two members of the Ca** ATPase
family are equally required for plant immunity, with
single mutants exhibiting a similar level of susceptibility
to fls2 mutants. This apparent difference may be due to
the different time frames measuring early flg22 responses
and the end point of bacterlal infections. A sustained
increase of cytosolic Ca®* rather than a transient burst
activates downstream defenses (Blume et al., 2000).
Additionally, other than MAMP responses, pathogen
growth depends on multiple layers of basal immunity
(e.g. interference of immunity by effectors from
PtoDC3000). Effectors can target MAMP receptors at
the plasma membrane (Block and Alfano, 2011), or
effectors could dlrectly affect the molecular components
controlling Ca”* fluxes. Alternatively, perception of the
complex mixture of different MAMPs present in
PtoDC3000 may require independent functions of ACAS8
and ACA10 or other members of the ACA family. This is
supported by the differential expression pattern of aca8
acal0 deregulated genes in response to flg22 or oligoga-
lacturonides (Supplemental Fig. S6). Moreover, CaM is
implicated as a negative regulator in SA-mediated dis-
ease resistance, and the CaM-binding protein CBP60g
contributes to flg22-elicited SA accumulation and anti-
bacterial defense (Du et al., 2009; Wang et al.,, 2009),
which demonstrates a role for the ACA8/ACA10
deregulated CaM-like genes in plant immunity.
MAMPs are known to trigger a Ca®* burst, one of the
most upstream responses in defense signaling (Boller
and Felix, 2009; Segonzac et al., 2011). However, the
molecular components underlymg the complex regula-
tory network regulating the Ca”" fluxes are still poorly
described. In thls study, we identified two plasma
membrane Ca” ATPases, ACA8 and ACA10, which,
based on mutant loss-of-function data, act as positive
regulators of early MAMP responses. Our findings
further illustrate the importance of coordmated and
fine-tuned MAMP responses, including Ca®* signaling,
for plant immunity. Given the altered MAMP-induced
MAPK-/CDPK-dependent transcriptional changes to-
gether with the ACAS8-FLS2 complex formation at the
plasma membrane, our results suggest a mechanistic link
between the receptor complex and signaling kinases via
the secondary messenger Ca**. Although root tip growth
upon fIg22 treatment and in fls2 mutants remains to be
inspected in more detail, our data also suggest a broader
function of Ca** ATPases in RK-mediated signaling. The
functional relevance of the interaction of ACAS8 and BRI1
is supported by the aca8 acal0 mutant phenotype
showing defects in the early differentiation of root stem
cells (Clouse and Sasse, 1998; Hacham et al., 2011). BRI1-
mediated brassinosteroid signaling has been shown to
affect root growth through regulation of the cell cycle
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(Gonzales-Garcia et al., 2011). Additionally, it is possible
that ACA8 and/or ACA10 associate with the Arabi-
dopsis CRINKLY4 RK, known to regulate root stem cells
via the CLV3-related peptide CLE40, in particular as root
cell type-specific expression data provide evidence for
ACAI0 transcripts accumulating around the stem cell
niche (Brady et al., 2007; Winter et al., 2007; De Smet
et al., 2008; Stahl et al., 2009). In analogy to the multiple
roles of the coreceptor BAK1/SERKS3, this places plasma
membrane Ca** ATPases as important components of
RK signaling pathways, likely through the regulation of
Ca®" fluxes in the cytosol. Dlssectmg the precise molec-
ular mechanism of the RK-Ca?* ATPase interaction will
further advance our understanding of receptor-mediated
signal transduction in the future.

MATERIALS AND METHODS
Plant Lines and Growth Conditions

T-DNA lines for Arabidopsis (Arabidopsis thaliana) ACA8 (GK-688H09) and
ACA10 (GK-044H01) were obtained from the European Seed Stock Center
Nottingham Arabidopsis Stock Centre (http://arabidopsis.info/), and the
tilling ACA8Y"" line was obtained from the Seattle Tilling Project (http://
tilling.fherc.org/). Homozygous insertions of all aca8, acalO, aca8 acal0,
aca8?’”", and aca8?¥"" acal0 mutant plants were validated in the F2 populations
by PCR and sequencing. 355:ACA8-GFP, 35S::Aeq transgenic, and fIs2 mutant
lines were described previously (Knight et al., 1991; Zipfel et al., 2004; Lee
et al., 2007). Homozygous crossed aca8 acal0 ACAS-GFP, aca8 Aeq, acal0 Aeq,
aca8 acal0 Aeq, and fls2 Aeq were confirmed by PCR (all oligonucleotides used
in this study are summarized in Supplemental Table S3). Arabidopsis plants
grown on soil were kept under short-day conditions for 4 to 5 weeks. Arab-
idopsis seedlings were grown in vitro on plates or in liquid containing Mur-
ashige and Skoog (MS) medium and 1% Suc and kept under long-day
conditions for 10 to 14 d. Nicotiana benthamiana plants were soil grown under
long-day conditions for 4 to 5 weeks.

BiFC

FLS2-Yc, FLS2-Yn, BRI1-Yc, BRI1-Yn, CLV1-Yc, CLV1-Yn, ACA8-Yc, ACAS-
Yn, ACA12-Yc, and ACA12-Yn constructs were made by PCR cloning the cor-
responding full-length cDNAs using Gateway technology in the pAMPAT
destination vector series and introduced into Agrobacterium tumefaciens strain
GV3101 carrying the p19 silencing suppressor (Voinnet et al., 2003; Lefebvre
et al,, 2010). Overnight cultures were diluted to an optical density at 600 nm
of 0.1 in water supplemented with 100 um acetosyringone and inoculated into
4-week-old N. benthamiana leaves. Leaf samples were imaged at 1 d post inoc-
ulation using a Leica confocal TCS SP5 microscope with the Leica LAS AF
system software. YFP emission and chlorophyll autofluorescence were detected
at emission spectra of 520 to 600 nm and 680 to 780 nm, respectively, after ex-
citation at 488 nm. All samples were imaged with a 20X objective. Photographs
were taken in line averaging of four scans. The same confocal settings were used
to image all samples. Representative images of over three biological replicates
are shown.

FRET-FLIM Measurements

FLS2-CFP, FLS2-YFP, ACA8-CFP, and ACAS8-YFP constructs were PCR
cloned as the corresponding full-length cDNAs using Gateway technology in
the pCZN575 and pCZN576 vectors and improved sCFP3A and sYFP2
chromophore variants, respectively (Kremers et al., 2006; Karlova et al., 2011).
Constructs were transfected into mesophyll protoplasts from soil-grown
Arabidopsis Col-0 plants as described before (Russinova et al., 2004), which
were prepared using the tape sandwich method (Wu et al., 2009). FRET-FLIM
measurements were performed using the Bio-Rad Radiance 2100 MP system
combined with a Nikon TE 300 inverted microscope and a Hamamatsu
R3809U MCP PMT (Russinova et al., 2004). FRET between CFP and YFP was
detected by monitoring donor emission using a 470- to 500-nm band-pass
filter. Images with a frame size of 64 X 64 pixels were acquired, and the
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average count rate was around 0.5 X 10* photons per second for an acquisition
time of *120 s. Donor fluorescence lifetimes (CFP) were analyzed using
SPCImage 3.10 software (Becker & Hickl) using a one- and two-component
decay model. Average fluorescence lifetimes of different combinations in several
cells (n > 10) along the plasma membrane were calculated (Supplemental Table
S1). The statistical significance of differences between donor-only and donor-
acceptor combinations was determined using Student’s ¢ test.

Ca?* Measurements

Twelve-day-old sterile-grown seedlings in liquid medium were supplied with
100 uL of MS medium containing 10 um coelenterazine (Biosynth) and dark
incubated overnight. Seedlings were supplied with 100 uL of fresh MS medium
and dark incubated for 30 min. Aeq measurements were performed using the
Centro LB960 luminometer system (Berthold Technologies). Luminescence from
single wells was detected over 0.25 s, and each well was measured every 30 s
After 2 min of measurement, flg22 (EZBiolab) and chitin (Sigma) were added to
final concentrations of 1 um or 0.1 mg mL ", respectively, and luminescence was
measured over 40 min. For calculation of Ca®* concentrations, 100 pL of 2 M
Ca(l, in 20% ethanol was added and luminescence was measured over 30 min
(0.25 s per well every 63 s). Ca?* concentrations were calculated according to
Rentel and Knight (2004). Differences in Aeq levels due to transgene expression
and seedling size were corrected by calculating Ca** concentrations and not
using luminescence counts. Per treatment, two assays of eight individual wells
were averaged. Ca”" transients were compared between treatments within one
experiment unless stated otherwise. Significant differences were evaluated using
ANOVA with Tukey’s honestly significant difference test.

ROS Measurements

Leaf discs of 5-week-old plants were used for ROS measurements as de-
scribed previously (Segonzac et al., 2011). Oxidative burst was elicited with
100 nm f1g22 or 100 g mL ™! chitin oligosaccharide; a negative control without
MAMP elicitation was included in all experiments. Luminescence was mea-
sured over time using an ICCD photon-counting camera (Photek).

Biochemical Analysis

For western blotting, proteins were separated on 10% SDS-PAGE gels,
transferred onto polyvinylidene difluoride membranes using a semidry
transfer system, followed by blocking in 5% milk or 3% bovine serum albumin.
Antibodies were diluted as follows: anti-p42/44 MAPK (Cell Signaling
Technology; 1:1,000), anti-FLS2 (Mersmann et al., 2010; 1:5,000), and alkaline
phosphatase-conjugated anti-rabbit (Sigma; 1:20,000-1:30,000). Alkaline phos-
phatase activity was detected using the CDP-Star (Roche).

For MAPK assay, 14-d-old seedlings grown on MS plates were sprayed
with 2 um flg22 for 0, 5, 15, or 60 min before harvest. A total of 100 mg of plant
material was ground and solubilized in 200 uL of buffer (50 mwm Tris-HCI, pH
7.5, 150 mm NaCl, 10% glycerol, 1 mm EDTA, 10 mm NaF, 2 mm NaVOj,, 25 mm
B-glycerophosphate, 1 mm Pefabloc, 1 mm dithiothreitol, 1 mm phenyl-
methylsulfonyl fluoride, and 0.1% Tween 20) supplied with 3.4 uL per 100 mg
fresh weight protease inhibitor cocktail (Sigma). Extracts were centrifuged,
solubilized by 5 min of boiling in 2% SDS Laemmli buffer, and equal amounts
were loaded onto SDS gels. MAPK activation was detected with anti-p42/44
MAPK antibodjies.

Transcript Profiling

For quantitative reverse transcription-PCR analysis, 14-d-old sterile-grown
seedlings were untreated or treated with 1 um flIg22 for 1 or 24 h. RNA was
extracted and DNA digested using the RNeasy Plant Mini Kit and the RNase-
Free DNase Set (Qiagen). A total of 2 ug of RNA was used to synthesize
c¢DNA using the SuperScript II enzyme (Invitrogen). One microliter of a 10X
dilution of the cDNA was used for each quantitative PCR, using a Bio-Rad iQ5
apparatus and SYBR Green I detection. All oligonucleotides used in this study
are summarized in Supplemental Table S3.

Pathogen Infection Assays
Four-week-old soil-grown (Jiffy pellets) Arabidopsis plants were surface

inoculated with Pseudonionas syringae pv tomato DC3000 bacteria at 10° colony-
forming units mL ' and sampled at 3 d post inoculation. Two leaf discs were
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pooled from six individual plants, and bacterial extraction was done as de-
scribed before (Zipfel et al., 2004). The results of three independent experi-
ments were combined, and ¢ test analysis was performed.

Sequence data from this article can be found in the GenBank/EMBL data
libraries under accession numbers FLS2 (AT5G46330), BRI1 (AT4G39400),
CLV1 (AT1G75820), ACA8 (AT5G57110), ACA10 (AT4G29900), and ACA12
(AT3G63380).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Characterization of ACA8 and ACAI0 loss-of-
function lines.

Supplemental Figure S2. Identification of ACA8 and ACA10 peptides by
mass spectrometry analysis of immunopurified FLS2-GFP.
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Supplemental Figure S4. Steady-state Ca®* levels before flg22-triggered
Ca®* burst and after the burst.

Supplemental Figure S5. Patterns of the Ca?* burst induced by flg22 and
chitin over time.

Supplemental Figure S6. Altered gene expression in aca8 acal0) mutants.
Supplemental Figure S7. Protein kinase activation in flg22 signaling.
Supplemental Figure S8. Expression analysis of defense marker genes.
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lated genes.
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