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Abstract
Mapping epistatic (or genetic) interactions has emerged as an important network biology approach
for establishing functional relationships among genes and proteins. Epistasis networks are
complementary to physical protein interaction networks, providing valuable insight into both the
function of individual genes and the overall wiring of the cell. A high-throughput method termed
“epistatic mini array profiles” (E-MAPs) was recently developed in yeast to quantify alleviating or
aggravating interactions between gene pairs. The typical output of an E-MAP experiment is a
large symmetric matrix of interaction scores. One problem with this data is the large amount of
missing values – interactions that cannot be measured during the high-throughput process or
whose measurements were discarded due to quality filtering steps. These missing values can
reduce the effectiveness of some data analysis techniques and prevent the use of others. Here, we
discuss one solution to this problem, imputation using nearest neighbors, and give practical
examples of the use of a freely available implementation of this method.
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1. Introduction
1.1. Epistatic Mini Array Profiles

Genetic interactions are identified when mutations in multiple genes produce a phenotype
which differs from what is expected based on individual mutations in each gene. Recently,
high-throughput assays have been developed for the acquisition of large amounts of pairwise
genetic interaction data in model organisms. Epistatic mini array profiles (E-MAPs) are one
such approach capable of quantitatively measuring the strength of pairwise genetic
interactions in yeast. The procedure supports the identification of both positive (alleviating)
and negative (aggravating) interactions between genes, assignments that are extremely
valuable in interpreting the biological basis of the epistatic relationships (1).

An E-MAP is most commonly represented in the form of a symmetric matrix with real-
valued entries indicating the type and strength of interaction between each pair of genes
under consideration. These scores are calculated based on the divergence in growth of yeast
strains with two disrupted genes from the expected growth rate. Typically, a normalization
process is applied to the interaction scores so that positive matrix entries denote an
alleviating interaction, negative matrix entries denote an aggravating interaction, and values
close to zero indicate the probable absence of an interaction between two genes, i.e., they
function in independent pathways in the cell. Full details of the experimental procedure and
the normalization process are described in Collins et al. (2).
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The standard analysis technique applied to the E-MAP score matrix is agglomerative
hierarchical clustering using the the Cluster tool (3). This type of analysis often provides
insight into the underlying biology. For example, subsets of genes with similar interaction
profiles may signify complexes of proteins involved in common biological processes.

One common characteristic of E-MAPs is the high proportion of missing entries that they
contain (up to ~35%). Missing entries correspond to pairs of genes for whom interaction
strengths could not be measured during the high-throughput process or those that were
subsequently filtered due to unreliability. These missing values can reduce the effectiveness
of downstream analysis, e.g., introducing instability in clustering (4), and prevent the use of
others, e.g., matrix factorization techniques such as SVD and PCA. As each genetic
interaction implies a functional relationship between gene pairs, individual interactions
themselves can provide valuable biological insight. Consequently, there is a need for
imputation techniques to “fill in the blanks.”

1.2. Imputation
A growing body of work focuses on the prediction of genetic interactions, but to date the
emphasis has largely been on the prediction of binary links, i.e., synthetic lethality. These
methods have had some success by integrating diverse biological data (5) or by focusing on
network topology of the underlying protein interaction network (6, 7). Additionally,
methods have been developed for predicting synthetic lethality using only the graph of
synthetic lethal interactions (8, 9).

Recently, Ulitsky et al. (10) and Ryan et al. (11) have addressed the problem of imputing
quantitative genetic interactions within E-MAPs, with both groups adopting related
approaches.

Ryan et al. noted the similarities between E-MAP and gene expression datasets and adapted
techniques originally developed for gene expression to work with the symmetric pairwise
data found in E-MAPs. The goal in both cases is to construct a complete dataset by imputing
quantitative measurements in order to improve the subsequent data analysis. Additionally,
both E-MAPs and gene expression datasets display coherence among genes. For gene
expression data, this is considered to be indicative of co-regulation while for E-MAPs, it is
indicative of co-complex or pathway membership. An example of this coherence is shown in
Fig. 1.

A number of gene expression imputation techniques were adapted to work with E-MAP
data, including variations of the K nearest neighbors algorithm (12), local least squares (13),
and Bayesian Principal Components Analysis (14). The performance of these techniques
was assessed on a number of different datasets (including two different species) using a
number of different metrics. Symmetric nearest neighbor-based approaches offered
consistently accurate imputations in a tractable manner, and we focus here on one such
approach – weighted symmetric nearest neighbors (wNN).

Nearest neighbor imputation is a simple strategy that uses genes with similar interaction
profiles to impute missing values. Standard imputation algorithms based on nearest
neighbors involve imputing values in feature-based asymmetric datasets (e.g., gene
expression datasets). Ryan et al. proposed a simple modification to this approach designed to
handle symmetric data. For each missing interaction (i, j ), find the K nearest neighbor(s) for
both gene i and gene j. Then, find the values for the interaction of i with j 's neighbors and j
with i's neighbors. These values are averaged to provide an imputed value for the missing
entry (i, j). An illustration of this approach is shown in Fig. 2.
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One issue with standard nearest neighbor-based approaches is that the accuracy of the
method is very dependent on the choice of the parameter K. This can be alleviated by
weighting the contribution of the neighbors based on their similarity to the query gene so
that more similar genes make a greater contribution to the imputation. The degree of the
contribution can be controlled by the choice of the weighting system. Ryan et al. employed
the following weighting system (originally described in (15)), which ensures that closer
neighbors are considerably more influential than more distant neighbors. Given a value r
denoting the Pearson correlation between a gene i and its neighbor i′, the weight w(i, i ′) is
calculated as follows:

A benefit of this weighting system (determined empirically) is that once the choice of
neighbors is sufficiently high (K > 20), adding additional neighbors does not have a
significant negative impact on the accuracy of the imputation. Near-optimal performance
was obtained in all tested datasets with K = 50, so this is the default for the implementation
we discuss.

Ulitsky et al. used the nearest neighbors as the basis for a more advanced approach –
performing a linear regression over 167 features, including nearest neighbors, interactions
between neighbors, and diverse genomic information (e.g., protein–protein interactions,
shared phenotypes, Gene Ontology terms). However, they noted that this additional
information offered only a marginal improvement to the accuracy of imputation and that its
absence would not seriously affect imputation.

Although the E-MAP approach was developed for the budding yeast Saccharomyces
cerivisiae (16), it has recently been extended to the fission yeast Schizosaccharomyces
pombe (17). An analogous technique has also been developed for Escherichia coli (18)
while related approaches exist for other organisms (e.g., Caenorhabditis elegans (19)). The
additional genomic data available for these organisms is more limited than that for S.
cerivisiae. The method we describe here, the wNN method of Ryan et al., does not rely on
the availability of external data, a factor that may be important as the range of epistasis
studies increases. Furthermore, the implementation is freely available.

1.3. Assessing the Accuracy of Imputation
While methods for assessing the accuracy of imputation are primarily of interest to those
developing imputation methods, they should also be of concern to those applying the results.
No imputation method performs equally well on all datasets, so for each new data-set it is
worth estimating the accuracy of imputation prior to analyzing the results.

We introduce in the methods section an implementation of K fold cross validation, a simple
tool for estimating the accuracy of imputation on a given E-MAP. It works as follows – the
measured interactions are randomly partitioned into ten equally sized sets (or folds).
Imputation is then performed ten times – with the interactions from onefold hidden in each
run. We can then compare the imputations for these artificially introduced missing values
with their actual measured interactions.

The program uses two metrics for assessing the accuracy of imputation – Pearson's
correlation and the Normalized Root Mean Squared Error (NRMSE). Pearson's correlation
has a scale of –1 to 1, and a higher correlation indicates a more accurate imputation.
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NRMSE is defined as follows:

where ijanswer denotes the set of known values and ijguess denotes the corresponding set of
imputed values. This is designed so that estimating the dataset mean results in an NRMSE of
1 and more accurate imputation results in a lower score.

1.4. Benefits of Imputation
There are two primary reasons for imputation – to improve downstream analysis, such as
clustering, and to identify individual interactions which may be worth testing
experimentally. Ryan et al. gave an example of how imputation could improve the use of
average linkage hierarchical clustering, the standard analysis applied to E-MAPs. They
identified clusters which had a statistically signifi-cant overlap with a known protein
complex before and after imputation. They noted that after imputation in one E-MAP, a
number of complexes were found with higher precision while in another E-MAP, an extra
complex was identified.

Previous studies have used protein complexes as a way of interpreting genetic interactions –
either within or between protein complexes. Many complexes were found to be
“monochromatic” – enriched with either predominantly alleviating or predominantly
aggravating interactions. Ulitsky et al. showed how the number of such complexes was
increased significantly after imputation, suggesting a further benefit of imputation prior to
downstream analysis.

Both groups showed that gene pairs predicted to have a strong genetic interaction were
enriched with annotations similar to those of measured interactions (e.g., shared phenotypes,
shared biological process, protein–protein interactions). This is an indication that imputation
can generate reliable predictions for epistatic interactions, and thus may be worth validating
using smaller scale experiments.

2. Materials
An implementation of the symmetric nearest neighbors algorithm can be obtained from
http://www.bioinformatics.org/emapimputation.

This implementation requires an installation of Python 2.x preinstalled on many operating
systems and also available at http://www.python.org/download/.

The expected input to the program is a symmetric score matrix in tab-delimited plain text
with the first row and column containing gene names (see Note 1). For those using the E-
MAP toolbox for MATLAB (20), such a file can be created using the “export-
ForCluster3_0” command. If the matrix is in Excel, the plain text matrix can be created by
choosing “File” → “Save As” → “Tab Delimited Text.” For reference, an example matrix is
included with the implementation.

1Although tab-delimited text files are the default input file, other formats are acceptable using additional parameters. For example, to
read a comma-separated matrix where missing values are identified using the term “NA,” you would execute the following command:
python symmetricNN.py -i input.csv -o output.csv -s ‘,’ -m ‘NA’ This allows imputation to be carried out on matrices generated by
other applications, e.g., R.
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It may also be beneficial to prefilter the matrix (see Note 2).

3. Methods
Here, we give examples of three different use cases for our imputation software – obtaining
a complete matrix for further analysis, obtaining a list of strong interactions for small-scale
follow-up, and estimating the accuracy of imputation.

1. To obtain a complete matrix as output, run the program using the following
command:

python symmetricNN.py –i matrix_input.txt –o matrix_output.txt

This matrix can then be used as an input to other programs, e.g., the Cluster
program (3) (see Note 3) or the R environment (21). Additional input
parameters can be specified for this command, e.g., to adjust the number of
neighbors used for imputation, but in practice they are rarely needed (see Note
4).

2. To obtain a ranked list of strong genetic interactions, use the following command:

python symmetricNN.py –i matrix_input.txt –r ranked_output.txt

The output of this command is a list of genetic interactions predicted to be
strongly alleviating (score > 2) or strongly aggravating (score < –2.5). They are
ranked according to the total weight of their neighbors – so pairs which were
imputed using very similar neighbors are ranked higher than those with more
distant neighbors. There is no direct interpretation to the weight column;
however, the pairs at the top of the list can be considered a more reliable
estimate, and thus a better candidate for a small-scale follow-up. Sample
output is shown in Table 1.

3. The accuracy of imputation on a given dataset can be estimated using the following
command:

python test_imputation.py –i matrix_input.txt

Note that this command takes approximately ten times longer to compute than
standard imputation, as it is essentially performing the imputation ten times.

The output of this command is similar to the following:

Estimated correlation = 0.63

Estimated NRMSE = 0.77

2Genes for which there are very few measurements present can result in poor imputation because their correlation with other genes
may be overestimated. These genes can also cause problems with traditional clustering methods, so it is advisable to remove them
prior to analysis.
3There is no guarantee that imputation will “improve” clustering, just as there is no single metric for assessing the quality of a
clustering. One approach is to use external benchmarks – Ryan et al. use this approach to demonstrate that at least one use of
clustering (identifying known protein complexes) can be improved by imputation. Stability analysis is an alternative approach – a way
of assessing a clustering's robustness to slight perturbations – e.g., if a small percentage of missing values are added, does the resulting
clustering appear significantly different? Our own internal experiments indicate that imputation can significantly improve clustering
stability.
4The number of neighbors used for imputation can be specified using the “K ” parameter. As discussed, Ryan et al. previously showed
that wNN is relatively insensitive to the choice of K and that near-optimal performance is achieved in every dataset using K = 50.
Consequently, 50 is the default in our implementation and does not need to be altered. Additionally, it is possible to use the
application in an “unweighted” mode, where each of the K neighbors contributes equally to the imputation. In practice, this has never
returned more accurate results than wNN and is only included for completeness.
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Typically, for an E-MAP, the correlation is in the range 0.6–0.7 and the
NRMSE is in the range 0.7–0.8.
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Fig. 1.
An example of coherence taken from the Chromosome Biology E-MAP. Members of the
Swr1 complex display similar interaction profiles, and as a result are clustered together.
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Fig. 2.
Symmetric nearest neighbors with K = 1. To estimate the missing value (i, j), the values
given by (i′, j) and (i, j′) would be combined.
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Table 1

Strong epistatic interactions ranked based on the weight calculated from their neighbors

Gene A Gene B Score Weight

YJL004C YJL024C –7.08 53.61

YGL005C YGR261C –6.02 37.31

YBR288C YGL005C –6.33 35.31

YGL005C YHL031C –11.40 34.83

YLR039C YLR056W 4.33 33.24
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