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Abstract
The prediction of loop structures is considered one of the main challenges in the protein folding
problem. Regardless of the dependence of the overall algorithm on the protein data bank, the
flexibility of loop regions dictates the need for special attention to their structures. In this article,
we present algorithms for loop structure prediction with fixed stem and flexible stem geometry. In
the flexible stem geometry problem, only the secondary structure of three stem residues on either
side of the loop is known. In the fixed stem geometry problem, the structure of the three stem
residues on either side of the loop is also known. Initial loop structures are generated using a
probability database for the flexible stem geometry problem, and using torsion angle dynamics for
the fixed stem geometry problem. Three rotamer optimization algorithms are introduced to
alleviate steric clashes between the generated backbone structures and the side chain rotamers. The
structures are optimized by energy minimization using an all atom force field. The optimized
structures are clustered using a traveling salesman problem based clustering algorithm. The
structures in the densest clusters are then utilized to refine dihedral angle bounds on all amino
acids in the loop. The entire procedure is carried out for a number of iterations, leading to
improved structure prediction and refined dihedral angle bounds. The algorithms presented in this
article has been tested on 3190 loops from the PDBSelect25 data set and on targets from the
recently concluded CASP9 community-wide experiment.
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1 Introduction
Loops are seen to typically be shorter in length than the ordered secondary structure
components of a protein and are extremely vital to proteins. The presence of loops permits
the formation of the secondary structure topology of a protein. The amino acids in loop
regions are important to the formation of β-hairpins.1 Further, loops are typically exposed
on the surface of the proteins, thus making them directly accessible to the outside
environment of the protein. Loops provide a means for sheltering the hydrophobic core of
the protein from the external solvent, especially in globular proteins. Loops have been key
participants in active and binding sites on the protein.2 Detailed reviews of loop structure
prediction techniques have been presented elsewhere.3–5
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1.1 Challenges in Loop Structure Prediction
Since loops form the parts of the protein sequence that lie between secondary structures,
they possess greater randomness and structural flexibility than the secondary structure
components of the protein. Most successful methods for the prediction of secondary
structure regions in a protein have employed the explicit or implicit use of the protein data
bank.6 By observing and deriving patterns of sequential identity from previously existing
proteins, successful predictions regarding the locations of secondary structure elements are
made. The prediction of the arrangement of β-strands in a protein is also orderly, and
follows a definite, albeit currently incomplete, set of rules. This permits the use of physical
and database derived constraints which can be used to enhance the β-sheet topology
prediction algorithm. The absence of an ordered structure in loops suggests that exclusively
database driven techniques cannot be employed consistently for the prediction of loop
regions in proteins. In addition, given their much increased exposure to the outside
environment, loops are observed to have relatively fewer and inconsistent contacts with the
remainder of the protein structure, thus making it significantly more challenging to predict
their structure. Given the flexibility associated with loop structures, the problem has
previously been described as a mini ab initio protein folding problem.7 Given the very weak
correlation between sequence and structure in loop structures,8 the comparative modeling
techniques widely used in protein structure prediction become unsuitable. Fold recognition
techniques are based on the idea that folds of proteins are conserved much more than
sequence. However, loop structures do not have any observable patterns which can be
categorized into the standard “folds”. Further, one of the main outstanding challenges in fold
recognition algorithms is the prediction of loop structures,9,10 thus making the approach
unsuitable for the prediction of the structure of loops. The consensus in the field of protein
structure prediction has been to tackle the problem of loop structure prediction using first
principles or knowledge-based approaches.11–13

The main aim of the loop structure prediction stage is the determination of tight bounds on
the backbone dihedral angles of the amino acids in the loop. The prediction of the
experimentally favored structure of a loop is extremely challenging. Loops are the most
flexible parts of proteins, and move constantly under interactions with the environment.
Thus, the “exact” structure of a loop is very hard to determine, and what is observed in
experimentally elucidated structures is a snapshot of the structure of the loop. For an
optimization-driven approach towards predicting the final three-dimensional structure of a
target protein, the provision of tight dihedral angle bounds on loop residues is very
important.

1.2 Flexible stem and Fixed stem loop structure prediction
Most loop structure prediction algorithms can be broadly classified into flexible stem and
fixed stem structure prediction algorithms based on the input to the algorithm. The fixed
stem geometry problem assumes that the structure of flanking secondary structure elements
to a given loop is known. Thus, the flanking secondary structure residues, or “stems” can be
fixed to the experimentally determined structure, and the problem is narrowed down to one
of determination of the structure of the intermediate loop. The flexible stem geometry
problem does not assume the knowledge of the structure of the flanking secondary structure
elements. The only information available to a flexible stem geometry problem is the identity
of the type of secondary structures which flank the loop, that is, α-helix or β-strand. It can
be seen that the flexible stem geometry problem is a more challenging version of the loop
structure prediction problem. Recent work has demonstrated the differences in the
challenges facing flexible stem and fixed stem loop structure prediction problems.14 In this
work, the authors perturbed 6–12 residues away from their crystal conformation and placed
all side chains in non-native, but low energy conformations. Even for such small
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perturbations, it was seen that the resulting regeneration problem was much more
challenging than the loop reconstruction problem.

2 Background
Most successful methods for loop structure prediction followed a series of steps consisting
of improved dihedral angle sampling, removal of steric clashes, energy minimization and
clustering of predicted structures to identify the best representative structures from the
predicted ensemble.

A large part of the recent success in dihedral angle sampling can be attributed to the
improved computational resources available, allowing finer discretizations of the dihedral
angle space available to amino acids. Additional computational resources have also
permitted the generation of a larger number of initial structures, resulting in an improved
coverage of the structural space. The common theme of dihedral angle sampling in loop
structure prediction techniques is the generation of initial dihedral angles from a large
database of known structures. Xiang et al. have applied this process to a test set of 553
loops, ranging between five and twelve amino acids.7 As the approach was developed for
fixed-stem geometry problems, tighter dihedral angle distributions were used to generate the
initial loop structures. Similarly, de Pristo et al. generate 1000 initial structures by sampling
backbone dihedral angles from a large database of dihedral angles generated from known
loop structures, by using varying degrees of coarseness.11 Based on their analysis, it was
concluded that smaller number of samples generated from a finer distribution outperform the
generation of a large number of initial structures from a coarser distribution. In a varied
implementation of the previous algorithm, elimination criteria based on minimum number of
occurences in a bin were used to filter initial structures generated from a database-derived
dihedral angle distribution.9 Further, coarser discretization of the dihedral angle plane was
used as a means to discard conformers that were too similar to ones previously generated. A
number of additional criteria have also been used to discard initial structures generated from
probability distributions. One approach towards improving initial structure generation in
fixed-stem geometry problems has been to reject the structure if it becomes apparent that
side-chain atoms cannot be fit, or if a closure of the loop to the fixed stem residues is not
possible.7 A recent approach has derived a pseudo potential to deduce the quality of an
initial structure derived from a probabilistic database.15 The authors use a pareto optimal
searching (POS) method to span the search space of a large number of contact potentials, to
derive a diverse initial conformational ensemble. Choi and Deane have used environment
specific scoring parameters to improve the sampling for their loop structure prediction
algorithm, FREAD.16 By including parameters specific to the environment and flanking
secondary structures, it was shown that the initial structures generated were superior, both in
terms of steric clashes and in terms of proximity of dihedral angles to the native structure.
Initial structures generated have been shown to be directly correlated with the quality of the
database they are derived from.17–19 The quality of the database includes parameters such as
the number of loop structures, pairwise sequence similarity of the database, variation in loop
lengths and experimental method used to derive the native structure of the protein. Given the
lack of correlation between loop sequence and structural similarity, it is still believed that
the most successful initial structure generation algorithms are based on ab initio
methods.13,20 The analysis of the interaction of any predicted initial loop structure to the rest
of the protein is another useful criterion that has been used previously for the generation of
loop structures from large databases.21 Near-native loop structures have been identified
using initial structure generation and structure optimization using the all atom CHARMM
force field.22 Two representative states for each alanine-like residue, and four representative
states for glycine are used to generate the initial sampling of loop structures. In addition,
interactions with the protein core have been included into the scoring function. A number of
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successful approaches presented in literature have combined database driven and ab initio
initial structure generation procedures.23 Recent methods have used energy based criteria to
eliminate initial structures before carrying out local optimization.24 The approach identifies
and removes initial structures with low hydrophobic and hydrogen bonding interactions
before implementing side chain and all atom optimization procedures to generate an
ensemble of predicted loop structures. Recent work has shown a significant improvement in
sampling and initial structure generation for very long loops, using the inclusion of dipeptide
segment sampling and the OPLS-AA force field.25

A number of energy functions have been used for the structure optimization stage of loop
structure prediction algorithms. These include database derived force fields, as well as first
principles based energy functions. Most first principles based energy functions are modified
forms of the AMBER,26 CHARMM27 or ECEPP/328 force fields, with parameters modified
to target the loop structure prediction problem. In addition, knowledge derived statistical
potentials have been utilized for the problem of fixed stem loop structure prediction.16,29

Terms representing energetic contributions due to solvation, steric clashes, hydrogen
bonding and short and long range contacts have been seen to be included in knowledge
derived force fields. Hierarchical methods, which incorporate all-atom physical potentials
with explicit and implicit solvent models, have been presented for the case of fixed stem
loop structure prediction.9 This algorithm applies a multiscale approach, starting from a
coarse model which explicitly incorporates crystal packing, and refines the initial structures
using all atom potentials. Other methods have incorporated corrective terms to account for
discrepancies in the hydrophobic expressions found in all atom potentials.24 In addition,
energy functions have also been used to classify native from non-native loop structures in
large ensembles.30

The structure optimization stage of loop structure prediction algorithms requires the energy
minimization of the initial structures previously derived. Many methods have been used to
efficiently navigate the tertiary structure space of a target loop. The optimization algorithms
that have been employed for the purposes of loop structure prediction include molecular
dynamics,31 simulated annealing,32 torsion angle mechanics33,34 and nonlinear
optimization.13 In addition, a number of side chain optimization algorithms have been
introduced to alleviate steric clashes between the randomly generated side chain and
backbone of the initial loop structures. Most side chain optimization algorithms use a large
database of known side chain angles.13 A combination of side chain dihedral angles for any
amino acid is known as a rotational isomer, or rotamer, of the residue. A number of rotamer
libraries have been presented, which document all observed combinations of side chain
dihedral angles. Two of these rotamer libraries have been used in the loop structure
prediction algorithms presented in this article. In addition, methods have been presented in
literature which address the side chain optimization problem using detailed atomistic or
knowledge based potentials, by incorporating additional effects like ionization and
solvation,35 where the dielectric constant of interaction between side chain atoms is allowed
to vary as a function of the interacting residues to account for these effects.

The next section presents the derivation of dihedral angle propensities for the purposes of
generation of initial structures. This is followed by a description of the generation of initial
loop structures, combined with checks to ensure uniqueness of the generated structures.
Three rotamer optimization steps are presented, which alleviate local steric clashes between
the side chains and the backbone generated. This is followed by a description of the
constrained non-linear optimization stage for loop structure prediction, and an overview of a
traveling salesman based clustering algorithm for the identification of tighter bounds on the
dihedral angles of loop residues.
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3 Mathematical Model
In this section, the mathematical models for loop structure prediction using fixed stem and
flexible stem geometry are presented. The two methods primarily differ in their approaches
towards developing initial loop structures, since the input data for the flexible stem
geometry problem does not include structural data. A three-stage rotamer optimization
procedure is implemented, which aims at alleviating steric clashes between the backbone
and the side chains of the amino acids of the loop. This is followed by constrained non-
linear optimization of all loop structures using the full-atom ECEPP/3 potential. Optimized
structures derived out of this stage are subjected to clustering to identify high quality
structures from the predicted ensemble. These structures are used to refine the dihedral angle
bounds on the loops, before carryout out the entire algorithm in an iterative process.

3.1 Derivation of Dihedral Angle Propensities
The generation of initial structures is a crucial step when local optimization techniques are
employed. For the flexible stem geometry algorithm presented in this article, a large
repository of structures from the PDBSelect25 data set was used as a library for generation
of loop angle probability distributions. This data set contains 4092 single chain proteins,
with pairwise sequence similarity below 25%. We collect loop segments between the lengths
of 4 and 20 from this database, as longer lengths provide a very sparse distribution of amino
acid dihedral angles. For each amino acid, we discretize the Ramachandran plot into a grid
of size 10° X 10°. Based on the database of collected loop segments, we count the frequency
of backbone dihedral angle occurences for each amino acid in each dihedral angle bin. A
similar distribution is generated for each kind of loop, that is, separate distributions are
generated from loops between helices, strands and any combination thereof. An example of
the difference in dihedral angle distributions generated is shown in Fig 1. For any target
loop, a set of 2000 initial structures are generated using these probability distributions. The
process of generating initial structures is descibed as follows.

3.2 Generation of Initial Structures
3.3 Flexible Stem Geometry

For each amino acid in each type of loop, each discretized bin in the Ramachandran plot is
assigned a number ni that corresponds to the frequency of dihedral angle occurences
observed. Hence the first, second and in general ith bin can be represented by the numbers:

(1)

By generating a random number between 1 and Σj nj, and identifying the bin it corresponds
to, we can assign a backbone angle to an amino acid. However, since the initial dihedral
angles of each amino acid are generated by unique distributions, possibilities of backbone
steric clashes in the generated structure are high. In order to alleviate backbone steric
clashes, we re-sample pairs of amino acids which are identified as having clashing
backbones.

3.4 Fixed Stem Geometry
Prior to the implementation of the structure optimization algorithm in the fixed stem
geometry problem, it is vital to get initial structures which fall into the feasible space of the
optimization problem. Here, the feasible space of the problem is defined by the dihedral
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angle and distance bounds that can be derived from the experimental data of the stem
residues flanking the loop. Various algorithms have been used for the problem of identifying
structures which satisfy a sparse set of distance and dihedral angle constraints. For protein
structure prediction problems, distance geometry algorithms like EMBED36 and dgsol37

have been used to produce feasible initial structures. In addition to distance geometry
methods, a number of other algorithms like variable target methods38 and molecular
dynamics39 have also been employed for this problem. A detailed review on algorithms for
constrained protein structure determination is available elsewhere.40

Initial structure generation in the fixed stem geometry problem is carried out through a
torsion angle dynamics package, CYANA.41 By fixing the covalent bonds and bond angles
to their mean values, the torsion angle dynamics package works in the dihedral angle space,
thus reducing the number of variables drastically. Further, unlike target minimization,
molecular dynamics allows itself the possibility of overcoming energy barriers, due to the
presence of kinetic energy. Unlike classical molecular dynamics simulations, the torsion
angle dynamics algorithms combine steric clashes-based energy terms and constraint-based
penalties in a simplified target function. This allows for faster calculations, and results in the
algorithm aiming to identify structures which are fairly low in energy, but are more
importantly, feasible. Algorithmic implementation details of the initial point selection can be
found elsewhere.42

3.4.1 Uniqueness of Initial Structures—In order to ensure that initial structures
generated are not very similar to each other, any new structure is required to be unique to
each of its predecessors. Uniqueness is defined by the following equation

(2)

where φi,k and ψi,k refer to the backbone dihedral angles of amino acid i of loop conformer
k. Here, Ndih represent all the dihedral angles of the loop. The index j runs over all loop
conformers previously generated, while the index k refers to the new loop struture generated
from the probability distribution. The equation requires that when comparing the new loop
structure to its predecessors, at least one dihedral angle is found in a bin different to the
previously generated structure.

3.5 Rotamer Optimization
Rotamer optimization is an important intermediate step in the loop structure prediction
framework. Given an initial loop backbone, there is a very high likelihood that strong steric
clashes exist between side chains of loop residues and the backbone of the loop. The
objective of introducing a rotamer optimization step is to identify a better starting point for
the full atom local optimization of the loop structure. It is also crucial to note that the
rotamer optimization step is an intermediate stage used for steric clash removal only. Hence,
a fast rotamer optimization algorithm essentially behaves as an efficient local minimization
step.

Most successful rotamer optimization algorithms, especially for loop structure prediction,
use rotamer libraries to carry out local energy minimization. Rotamer libraries consist of
combinations of side chain angles observed in the database. The computational time
required for a rotamer optimization algorithms depends on two factors: the energy function
being considered and the size of the rotamer library being employed.43,44 Hence, the aim is
to devise rotamer optimization algorithms which use an energy function resembling an
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atomic force field and a search method that is exhaustive, while ensuring that the algorithm
does not become computationally prohibitive.

Since the primary objective of the rotamer optimization step is the removal of steric clashes
between the side chains, the use of an all atom force field may not be judicious. Further, the
implementation of the rotamer optimization step is targeted towards removing steric clashes
in the initial structures, without guarantees that the resulting side chains would remain fixed
or feasible after the complete structure optimization. The use of an approximate energy
function is the best tradeoff for the purposes of rotamer optimization. Most combinatorial
rotamer optimization algorithms divide the energy of a conformation into two parts, given
by the following equation:

(3)

Here  represents the contribution of the interaction of a rotamer with all fixed atoms
during the rotamer optimization. In other words, the energy of interaction of movable atoms
of the side chain of an amino acid i with all immovable atoms, including backbone atoms

and Cβ atoms, is expressed by this term. The second term ( ) represents the pair energy,
and is a representation of the energy of interaction between rotamer k of residue i and
rotamer l of residue j.

The efficiency of any rotamer optimization algorithm depends on the energy function, and
can hence be signficantly improved by using an approximate energy function. The chosen
energy function should closely resemble the all atom energy function it is derived from,
while being computationally inexpensive. The energy function used in the rotamer
optimization algorithms presented in this article is a piecewise linear approximation of the
repulsive part of the Lennard Jones and hydrogen bonding potential terms in the ECEPP/3
force field. The repulsion terms are approximated by piece-wise linear functions that
intersect the original expression at 2, 5, 10, 20, 50 and 100 kcal/mol. All energetic
contributions above 100 kcal/mol are approximated by the last piecewise expression, while
all energetic contributions less than 2kcal/mol are ignored.

In the loop structure prediction algorithms presented in this article, we have incorporated
three rotamer optimization algorithms. The algorithmic details of the rotamer optimization
steps have been presented previously.42 Here, the overview of the algorithms, along with
changes made to the algorithms are presented.

3.5.1 Rotamer Optimization: FASTER—The first rotamer optimization algorithm,
known as FASTER,44 has been shown to produce nearly identical results to the global
optimization dead end elimination algorithm, while being nearly 100–1000 times faster than
it. The key steps of this rotamer optimization algorithm are:

1. Insert all backbone and Cβ atoms onto a fixed grid. All backbone and Cβ atoms are
assumed to be immovable during the rotamer optimization step. This is to ensure
that the rotamer optimization focuses only on identification of rotamer
combinations which minimize the energy for the initial backbone generated using
the probability distributions.

2. Load rotamers of each loop amino acid from the Penultimate library.45

3. Pre-compute the self energy energy terms for each possible rotamer of each amino
acid in the loop. In order to do this, we take each possible rotamer of any given
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amino acid, and evaluate the energy of the loop when this rotamer is used. This is
possible since the self energy term is evaluated against all non-movable atoms of
the loop. Similarly, we pre-compute the pair energies of combinations of rotamers
of all amino acids in the loop. If the distance of a pair of rotamers is above a
threshold, this computation is ignored.

4. Starting from the first amino acid of the loop, we iterate over all amino acids of the
loop. For any amino acid, we iterate over all the possible rotamers of the amino
acid. If the sum of the self and pair energy for any rotamer results in a total energy
is better than the current energy, we replace this structure to be the current active
structure. This structure is referred to as the Backbone determined minimum
structure (BMEC). For each of the subsequent steps presented in this algorithm, the
overview of the step is presented, and the reader is referred to the original work for
details.44

5. The first pass of the FASTER algorithm, called iterative batch relaxation (iBR), is
split into 3 main steps. First, the total energy for all of the rotamers in each residue
for the current configuration i is evaluated and stored. Next, the rotamer position k
in each residue i that yields the minimum energy for the current loop configuration
is saved. Finally, the total energy of the new conformation is calculated. This
procedure is carried out until the energy of the loop configuration stabilizes or
starts oscillating.

6. The next phase of FASTER is called the conditional iterative batch relaxation
(ciBR). This step is similar to the previous step, except that the rotamer positions
with lower energy are only accepted with an 80% probability. Ten iterations of ten
optimization cycles each are performed and the lowest energy conformation is
retained.

7. The final phase is the single-residue perturbation/relaxation (sPR) phase. This is a
final iteration of the iBR phase, carried out by fixing the rotamer of one amino acid
at a time and iterating over the remaining residues of the loop.

3.5.2 Rotamer Optimization: Cyclical Search Algorithm—The second rotamer
optimization algorithm is a cyclic search method, and uses the enhanced rotamer library
from Xiang and Honig.7 The main steps of the algorithm are presented below:

1. Insert all backbone and Cβ atoms onto a fixed grid. All backbone and Cβ atoms are
assumed to be immovable during the rotamer optimization step.

2. Load rotamers of each loop amino acid from the Xiang and Honig library.7

3. Randomize the order in which amino acids would be visited by the algorithm. For
each amino acid in this randomized list, we carry out the following steps.

4. Randomly rearrange the order of the residues to be visited by the rotamer
optimization algorithm. For each residue i, the energy of the each rotamer k is
evaluated using the approximate energy function. This includes the intra-chain and
inter-chain interactions. In addition, the total ECEPP/3 energy of the original
rotamer of the amino acid i is evaluated. If the approximate energy value of the
new rotamer is within a cutoff value of the true ECEPP/3 energy of the original
rotamer, the total ECEPP/3 energy of the new rotamer is evaluated. If this new
energy is lower than the previous existing rotamer for this amino acid, we replace
the rotamer of amino acid i with this new rotamer k.

5. This procedure is repeated until all amino acids of the loop have been addressed.
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3.5.3 Rotamer Optimizaton: Random Rotamer Search—For the third phase of the
rotamer optimization stage, we employ a procedure similar to the cyclic search algorithm
presented in the previous section. However, instead of using the rotamer library by Xiang
and Honig, we choose to restrict the rotamer search to the local neighborhood of the
rotamers identified at this stage. It is assumed that the previous algorithms would bring the
rotamers close to the local minima for the given fixed backbone. Hence, we create a rotamer
library using a narrow Gaussian distribution around the current available rotamer. The mean
of this distribution is the current rotamer itself, while a standard deviation of 10° is used.
The aim of this step is to provide additional refinement to the rotamers in the neighborhood
of the recorded value in the library. The algorithmic steps are outlined below.

1. Insert all backbone and Cβ atoms onto a fixed grid. All backbone and Cβ atoms are
assumed to be immovable during the rotamer optimization step.

2. Load rotamers of each loop amino acid from a library of 50 rotamers created
around the current existing rotamer, as explained previously.

3. Randomize the order in which amino acids would be visited by the algorithm.

4. For each amino acid visited, carry out the cyclical search algorithm presented in the
previous section.

The advantage of using the three step procedure to rotamer optimization has been presented
in literature,42 and a 35%–65% improvement in the energy of a structure at the end of the
rotamer optimization steps is obtained.

3.6 Energy Minimization
Once the rotamer optimization step has been carried out, the loop structures are subjected to
all atom energy minimization. The energy function used for this purpose is the all-atom
ECEPP/3 potential, given by the expression

(4)

In Equation 4, rij represents the distance between a pair of atoms i and j, given that both the
atoms fall into the set of atoms over which the summation is carried out. The parameter Fij,
which represents the relative impact of the repulsive part of the Lennard-Jones expression, is
taken as 0.5 for 1 – 4 interactions, and 1.0 for 1 – 5 interactions. Non-bonding parameters

such as Aij, ,Bij and Cij are atom pair dependent. The sets ES, NB and HB are defined
over the set of pairs of atoms i and j that can have electrostatic, non-bonded and hydrogen
bonding interactions, respectively. The set TOR runs over all torsion angles of the protein
that can contribute to the last term of the expression.

The energy minimization problem can be represented as a constrained nonlinear
programming problem. The constraints to the model are the backbone dihedral angle
bounds. These bounds are refined at each stage, as is described in the next section. The
Sequential Quadratic Programming (SQP) method is used via NPSOL.46 This is attractive
for protein structure prediction problems because it requires fewer evaluations of the
objective function, which is computationally expensive.

3.7 Clustering
The main challenge behind the clustering step is the identification of a subset of predicted
structures, which can be considered representative of the better structures of the ensemble.
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In the loop structure prediction framework, we address this challenge by implementing an
iterative novel Traveling Salesman Problem (TSP) based clustering approach, known as
ICON.47 By considering each conformer generated from the ASTRO-FOLD 2.0 framework
as a node on a traveling salesman path, we identify the globally optimal path through each of
these nodes. Once the optimal path is determined, this path is partitioned into clusters such
that the clusters minimize the global sum of intracluster differences in values. An overview
of each of the steps of ICON is presented below, and the details can be found in
literature.47,48

With each conformer of the target loop as a node on the TSP path, we define binary
variables yi,i′ for any pair of nodes i and i′ as:

(5)

The objective function is then defined as:49

(6)

where φmi,j,mi′,j is given by:

(7)

Here, the index j runs over all the pairs of (φ, ψ) angles of each amino acid of the target
loop. Constraints which ensure that each node has exactly one node preceding and following
it on the TSP path are implemented. In addition, efficient TSP solvers like Concorde50

introduce additional cuts which eliminate circular tours and subtours. Once the optimal path
through all conformers is determined, we propose an integer linear programming (ILP)
model to determine the cluster boundaries for a given optimal ordering.48 Since for any node
on the TSP path, we know the immediate neighbors on the path, the aim is to simply
determine the points on the TSP path where immediate neighbors on the path fall into
separate clusters. This would be sufficient to identify the boundaries of clusters. In order to
do this, we generate a distribution of φi,i+1 (where φi,i+1 are defined as in Equation 7). For
any local window of x elements, we identify nodes where the neighbor distance falls below
one standard deviation of the global average of this distribution. In addition, this distance
would be the minimum in its local window, so as to ensure that we do not separate out
elements that are very similar. By selecting local minima points of this distribution as cluster
“seeds”, we now have the problem of placing the remaining “outlier” points with the cluster
seed element immediately before or after them in the optimal TSP path. This has been
modeled as an integer linear programming (ILP) model, with binary variables assigning the
outlier points to either the cluster before or after them. The objective function includes terms
which account for the fixed cost (distance between an outlier and the seed of the cluster) and
variable cost (distance between two outliers both assigned to the same cluster seed).
Constraints are introduced to ensure that there are no crossovers, i.e. for any pair of outliers
i, i + 1, the assigned cluster of element i + 1 should be greater than or the same as that of
element i. Details of the mathematical implementation of the model can be found
elsewhere.48 Subsequently, the cluster centroids for each cluster are identified by
determining the cluster element with the minimum distance to all other elements of the
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cluster, with the distance being defined again as in Equation 7. Following this, we eliminate
loosely bound clusters by analyzing cluster densities. All clusters with cluster densities
greater than the median value are retained for future iterations. At the end of 10 iterations or
when left with half the initial number of conformers, we re-rank the final list of cluster
centroids using high resolution distance dependent force fields.51,52 The lowest energy
structures are identified as the structures nearest to the native.

3.8 Generation of improved bounds and iterative approach
Using the loop decoys in the top 10 clusters sorted by cluster density, we develop new
backbone dihedral angle bounds for each amino acid in the loop. These new bounds replace
previously existing bounds only if they are tighter. If this is not the case, we continue with
the old bounds for the next iteration. Using the existing probability distribution, we re-
generate initial structures for the next iteration of the loop structure prediction algorithm.
However, if the initial backbone dihedral angles do not lie within the updated bounds, the
value is rejected and the angle is re-generated from the probability distribution. The entire
procedure consisting of rotamer optimization, all-atom energy minimization and clustering
is repeated for five iterations.

At the end of the five iterations, the structures of the top 10 clusters sorted by cluster density
are used to generate the final set of bounds that would be useful in the tertiary structure
prediction of proteins.42,53

4 Computational Results
The loop structure prediction algorithm was tested on a large number of loops, ranging from
five to fourteen amino acids in length. The distribution of the number of loops for each loop
length is given in Figure 2. Three amino acids on either side of the loop were taken as the
stem residues. This was done to ensure that the stem residues belonged to a secondary
structure element, as the minimum number of amino acids in a helix and a strand are
assumed to be four and three, respectively. As has been described previously, information
regarding the type of secondary structure of the stem residues was available, while their
structure was unknown to the algorithm. Figure 2 also shows the fraction of loops that were
found in each kind of neighborhood (i.e., helices on both sides, strands on both sides or any
combination thereof). As shown in the figure, loops belonging to all four classes have been
included in the test set to avoid bias to any specific type of loop.

4.1 Fixed Stem Geometry
Figure 3 shows the distribution of the best predicted loop structure against the number of
amino acids in the loop. As discussed previously, the input to the model included the
sequence, secondary structure and structural information of the stem residues flanking the
target loop. The best loop structure is defned to be the one with the lowest root mean
squared deviation (RMSD) to the native structure. For each loop, the RMSD of the best
structure in the predicted ensemble was evaluated, and the RMSD values were averaged
across all loops of the same length.

Figure 3 also shows the average RMSD distribution of the best selected structure using the
ICON clustering algorithm in the final stage of the algorithm. As shown in the figure, the
algorithm achieves an average best structure RMSD of 0.42 Å for five residue loops. For
loops with 14 amino acids, an average best structure RMSD of 1.99 Å was observed. In
addition, the figure also shows the results of the clustering process in the final stage of the
loop structure prediction algorithm. The clustering procedure is utilized in the final stage of
the fixed stem loop structure prediction algorithm to identify a subset of five high quality
structures from the predicted ensemble of loop structures. By utilizing a high resolution
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distance dependent force field,51 the algorithm identifies structures with an average RMSD
of 0.49 Å for loops of length five, which rises up to 2.53 Å for loops of length fourteen.

4.2 Flexible Stem Geometry
Figure 4 shows the distribution of the best predicted loop structure against the number of
amino acids in the loop. The best loop structure is defned to be the one with the lowest root
mean squared deviation (RMSD) to the native structure. For each loop, the RMSD of the
best structure in the predicted ensemble was evaluated, and the RMSD values were averaged
across all loops of the same length.

Figure 4 also shows the average RMSD distribution following the exclusion of the three
stem residues attached to each loop. As shown in the figure, the algorithm achieves an
average best structure RMSD of 0.63 Å for five residue loops (1.10 Å when including the
stem residues). For loops as long as 14 residues, an average best structure RMSD of 2.12 Å
without the stem residues, and 2.61 Å when they are included is observed. The average rank
of the cluster which includes the best structure in the ensemble is 13.9. It is noteworthy that
when the stem residues are included, a 14 residue loop structure prediction problem is
equivalent to the ab initio prediction of the structure of a twenty amino acid peptide, with the
knowledge of the type of secondary structure for three amino acids at either terminus.

Two additional observations can be made based on the results shown in Figure 4. First, we
observe an almost consistent separation between the two lines representing the average best
RMSD values with and without the stem residues, respectively. This suggests that the
contribution of the stem residues to the RMSD is almost consistent across all loops. The
stem residues of the loop are the only regions which are ordered, that is, have a secondary
structure pattern associated. The dihedral angle bounds imposed on the stem residues are
therefore much more stringent than their counterparts on the loop residues. Hence, the
contribution of the stem residues to the RMSD would be expected to be lower and be
consistent across different lengths of loops considered. Second, we observe an almost linear
growth in the average best RMSD with respect to the loop length. The rate of growth of
average best RMSD to the number of residues in the loop can be fit to an approximately
straight line. With increasing number of amino acids in the loop, the tertiary structure space
is expected to increase very nonlinearly. However, a combination of iteratively improving
dihedral angle sampling, rotamer optimization, all atom energy minimization and near-
native structure identification ensures that the RMSD of the best structure of the predicted
ensemble continues to grow linearly. The RMSD of the best structure for each of the loops
in the data set has been presented in the supplementary material.

As discussed previously, the loop structure prediction algorithm is used to predict tight
dihedral angle bounds on the backbone angles of the loop residues. Hence, while the
prediction of low RMSD structures in the ensemble is encouraging, it is important that
bounds generated on the backbone dihedral angles are as tight as possible. Figure 5
represents the width of the bounding box represented by the bounds on the backbone
dihedral angles of the loop residues. The bounding box is defined as the difference between
the upper and lower bounds on the dihedral angles of a loop.

As shown in Figure 5, the bounds predicted on the φ backbone dihedral angle are much
tighter than the ones predicted on the ψ backbone angle. It has frequently been observed that
the variation in φ is much smaller than the variation in the ψ dihedral angle, given that the φ
values for the α-helical and β-strand residues are much closer than their corresponding
values of the ψ dihedral angle.54 For the φ dihedral angle, the lowest average bounding box
width is 52° for loops of length six, and largest of 85° for loops of length eleven. For the ψ
dihedral angle, corresponding values of 79° for loops of length five, and 138° for loops of
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length fourteen are observed. The bounding box width for both dihedral angles are seen to
increase monotonically with loop length. With larger number of residues in a loop, the
predicted loop structures are seen to span a wider range of RMSD values. The structures in
the top clusters, which are used for the prediction of dihedral angle bounds tend to diverge,
resulting in wider bounding box constraints on the dihedral angles. It is noteworthy that the
bounding box range plateaus very early with the increase in number of amino acids in the
loop. Beyond loops of length eleven, the average bounding box width for the backbone
dihedral angles are seen to be almost constant. Given that the three dimensional search space
expands significantly with increasing number of amino acids, the dihedral angle sampling,
all atom optimization and clustering procedures in the loop structure prediction are seen to
be successful in providing tight backbone dihedral angle bounds on all the residues of longer
loops as well. Further, an average accuracy of 86.14% was seen for the bounding boxes of
all amino acids in all loops. The accuracy of the bounding box was defined by:

(8)

An analysis of the amino acids with erroneous predicted bounds shows that the average error
in the prediction of the φ and ψ angles were 25.6° and 11.9°, respectively. The original
bounds applied on each amino acid of the loop are derived from the PDB-Select25 data
base. Since an iteration is counted only if the bounds on at least one amino acid are reduced
by at least one bin, an iterative approach results in a reduction of bounds on the amino acids
over each iteration. Hence, the final set of bounds are always tighter than the original bounds
derived out of the PDBSelect25 data set. The error in the prediction of ψ angles is seen to be
smaller, given that the average bounding box width is much larger. The error in prediction
was calculated by evaluating the difference between the true dihedral angle and the closest
predicted dihedral angle bound. Therefore, while the predicted bounds for more than 86% of
loop amino acids include the true dihedral angle, the average error for the remaining
residues are seen to be significantly smaller than the size of the Ramachandran plot itself.

4.3 Selected CASP9 targets
The loop structure prediction algorithms were applied to targets provided during the recently
concluded CASP9 experiment. In order to define the loop regions of the protein, secondary
structure prediction was first carried out to determine the regions of secondary structure in
the protein. A mixed integer optimization based secondary structure prediction algorithm,
CONCORD,55 was used to determine the locations of α-helices and β-strands for any target
protein.

4.3.1 Fixed Stem Geometry—Figure 6 shows the distribution of the best predicted loop
structure against the number of amino acids in the loop for selected targets from the CASP9
experiment. For the purposes of the fixed stem geometry problem, we use the native
secondary structure of the target protein. The structural data of the stem residues for any
target loop was incorporated into the model in the form of distance and dihedral angle
constraints. The number of loops for each loop length is shown in Table I.

Figure 6 also shows the average RMSD distribution of the best structure and the selected
structure using the ICON clustering algorithm in the final stage of the algorithm. As shown
in the figure, the algorithm achieves an average best structure RMSD of 0.44 Å for five
residue loops. For loops with 14 amino acids, an average best structure RMSD of 2.00 Å
was observed. By utilizing the high resolution distance dependent force field,51 the
algorithm identifies structures with an average RMSD of 0.61 Å for loops of length five,
which rises up to 2.28 Å for loops of length fourteen.
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4.3.2 Flexible Stem Geometry—Figure 7 shows the variation in the accuracy of the
bounding box for the backbone dihedral angles of the selected CASP9 targets. As shown in
Figure 7, the weighted average φ and ψ accuracies were seen to be 75.9% and 73.8%
respectively. The accuracy of the bounding boxes are seen to vary between 55% for T576
and 96.4% for T600.

No correlation was observed between the length of the target protein and the accuracy of the
bounding boxes. Table II shows the best RMSD structure derived out of the loop structure
prediction algorithm, as compared to the Zhang-Server predictions for loops belonging to
the subset of the proteins shown above with low sequence similarity to the protein data
bank. As shown in the table, the average best RMSD of the structures of the loops
considered are comparable to the average results observed in the PDBSelect25 data set. This
further demonstrates that the loop structure prediction algorithm is not significantly affected
by the similarity of a protein to the protein data bank. Similar results for all of the selected
CASP targets are presented in Table II of the supplementary material.

Other external factors were seen to affect the quality of bounding box predictions for the
CASP9 targets. Figure 8 shows the variation of the bounding box accuracy with the
accuracy in secondary structure prediction. The secondary structure accuracy is typically
measured by the Q3 parameter, which evaluates the fraction of amino acids correctly
assigned to one of three classes of secondary structure (helix, strand and coil).

It is noteworthy that a positive correlation value of 0.6543 and 0.5291 (for φ and ψ
respectively) was observed between the bounding box accuracy and the accuracy of the
secondary structure prediction. The accuracy of the secondary structure prediction is a
reflection of the length of loop, the type of loop ( i.e, the secondary structure elements on
either side of the loop) and the residue types of the stem residues at the ends of the helix.
Each of these parameters can affect the loop structure prediction process significantly. As
discussed previously, the three dimensional search space expands exponentially with
increasing amino acids in the loop sequence. The determination of the true length of the loop
is crucial towards the loop structure prediction process. Similarly, in the description of the
model, it was shown that separate probability distributions were created for loops depending
on the secondary structure elements they are found between. Given that the distributions
vary significantly, the initial structures, and therefore, the final predicted structures would be
affected by accurate identification of the type of loop. Finally, the nature of the stem
residues is vital since the side chain atoms of the stem residues affect the rotamer
optimization of the loop residues. As the rotamer optimization is only carried out on the loop
residues, the inclusion or exclusion of an amino acid in the loop can affect the output of the
rotamer optimization stage.

A separate study on the accuracy of the dihedral angle bounding boxes is presented in Figure
9. The figure shows the variation of the bounding box accuracy with the J-Score of target
proteins.

J-Score is a metric of the similarity of a target protein to the Protein Data Bank.6 The metric
is evaluated by the 3-D Jury server,56 using a multiple sequence alignment approach
involving BLAST and PSI-BLAST.57 As shown in Figure 9, a correlation study between the
accuracy of the predicted loop dihedral angle bounding boxes and the J-Score of the target
protein shows a very small correlation for both the φ and ψ backbone dihedral angles. A low
correlation of the bounding box accuracy with the J-score of a protein indicates a low degree
of dependence on the sequence similarity between a target protein and the protein data bank.
Even though the initial structures are generated from a database derived probability
distribution, the rotamer optimization and all atom physical potential based nonlinear
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optimization procedure ensure that the similarity of a target loop to the database has a
minimal impact on the quality of prediction. Further, a lack of correlation between the J-
score and bounding box accuracy is understandable given that the initial structures are not
generated by using the loop structures of the top hits from the PSI-BLAST search.
Homology modeling methods have been seen to have limited success in loop structure
prediction, owing to the varied observed structures of loops with very similar sequences.
The algorithm presented in this article is hence able to avoid the pitfalls of database driven
loop structure prediction, even with the use of a probability distribution driven initial
structure sampling procedure.

5 Conclusions
In this article, new iterative algorithms for loop structure prediction with flexible and fixed
stems were introduced. The flexible stem geometry algorithm only requires the knowledge
of the sequence and the secondary structure type of the three stem residues at each end of the
loop, while the fixed stem geometry algorithm also requires structural information of the
stem residues flanking the loop. Loop structure prediction is a critical intermediate step
towards the tertiary structure prediction of proteins, as it provides tight dihedral angle
bounds on the backbone dihedral angles of the residues in the loop regions of proteins. The
flexible stem geometry algorithm employs an initial structure generation procedure based on
a derived probability distribution. Initial structure generation in the fixed stem geometry
algorithm is carried out using torsion angle dynamics. Three rotamer optimization
procedures are incorporated to alleviate steric clashes between rotamers of the amino acids
and the generated backbone of the loop. A full atom physics based energy function, ECEPP/
3, is used to carry out nonlinear constrained optimization to collect predicted structures of
the loop. A traveling salesman based clustering algorithm, ICON, is used to identify a subset
of representative structures which are used to develop tight bounds on the backbone dihedral
angles of the residues in the loop. The algorithms were applied on two data sets: a large
number of loops from the PDBSelect25 data set, and loop regions of blind target proteins
provided during the recently concluded CASP9 community-wide experiment. The
algorithms were seen to predict high resolution structures for a large number of loops, and
were able to derive tight dihedral angle bounds for amino acids in the loops. In the flexible
stem geometry problem, a low degree of correlation was seen between the quality of the
dihedral angle bounds and the similarity of a target protein to the Protein Data Bank, and
hence the improved bounds on the dihedral angles do not depend on the J Score.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Illustrative example of variation in distribution of Loop Residue Angles
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Figure 2.
Distribution of number and type of loops in the Loop Test Set
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Figure 3.
Average best structure RMSD distribution over loop length
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Figure 4.
Average best structure RMSD distribution over loop length
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Figure 5.
Average best structure RMSD distribution over loop length
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Figure 6.
Average best structure RMSD distribution over loop length for CASP9 data set
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Figure 7.
Average Accuracy of Loop Bounding Box for selected CASP9 targets
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Figure 8.
Variation of bounding box accuracy with Secondary structure accuracy
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Figure 9.
Variation of bounding box accuracy with J-Score
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Figure 10.
Image for Table of Contents
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Table I

The number of loops for given loop lengths in the CASP9 data set

Loop Length Number of Loops Loop Length Number of Loops

5 25 6 21

7 18 8 12

9 15 10 13

11 11 12 13

13 3 14 2
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Table II

Comparison of average RMSD of CASP loop structures for low similarity proteins

Loop Length Number of Loops Lowest RMSD RMSD (Zhang-Server)

5 5 1.21 1.24

6 4 1.31 1.39

7 3 1.46 1.45

8 2 1.63 1.67

9 1 1.72 1.73

10 2 2.01 1.99
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