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Abstract
Objectives—We aimed to define effects of PPARγ and PPARα agonist mono and combination
therapy on adipose tissue and skeletal muscle gene expression in relation to insulin sensitivity. We
further investigated the role of genetic polymorphisms in PPAR ligand-modulated genes in
transcriptional regulation and glucose homeostasis.

Methods—Genome-wide transcript profiles of subcutaneous adipose and skeletal muscle and
metabolic phenotypes were determined before and after 10 weeks of pioglitazone and fenofibrate
mono or combination therapy in 26 subjects with impaired glucose tolerance. To establish the
functional role of SNPs in genes modulated by pioglitazone alone or in combination with
fenofibrate, we interrogated genome-wide association data of continuous glycemic phenotypes
from the MAGIC study and adipose eQTL data from the MuTHER study.

Results—PPARγ, alone or in combination with PPARα agonists, mediated up-regulation of
genes involved in the TCA cycle, branched chain amino acid metabolism, fatty acid metabolism,
PPAR signaling, AMPK and cAMP signaling, and insulin signaling pathways, and
downregulation of genes in antigen processing and presentation, immune and inflammatory
response in adipose tissue. Remarkably few changes were found in muscle. Strong enrichment of
genes involved in propanoate metabolism, fatty acid elongation in mitochondria, and acetyl-CoA
metabolic process were observed only in adipose tissue of the combined pioglitazone and
fenofibrate treatment group. After interrogating MAGIC data, SNPs in 22 genes modulated by
PPAR ligands were associated with fasting plasma glucose and the expression of 28 transcripts
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modulated by PPAR ligands was under control of local genetic regulators (cis-eQTLs) in adipose
tissue of MuTHER study twins.

Conclusions—We found differences in transcriptional mechanisms that may describe insulin
sensitizing effects of PPARγ agonist monotherapy or in combination with PPARα agonist. The
regulatory and glucose homeostasis trait-associated SNPs in PPAR agonist-modulated genes are
important candidates for future studies that may explain the inter-individual variability in response
to thiazolidinedione and fenofibrate treatment.
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Introduction
Peroxisomal proliferator activated receptors (PPAR) are a subfamily of nuclear receptors
that regulate gene expression in response to ligand binding. They consist of three major
subtypes, PPARγ, PPARα, and PPARδ [1]. Thiazolidinediones (TZD) are PPARγ ligands
which are used for treatment of type 2 diabetes (T2D) as insulin sensitizers [2]. PPARγ is
highly expressed in adipose tissue and is involved in adipocyte differentiation, lipid storage,
glucose homeostasis, and adipocytokine regulation [3]. TZDs such as pioglitazone improve
insulin sensitivity by different mechanisms, including diverting fat from ectopic sites into
subcutaneous depots [4] and decreasing macrophage number in adipose tissue [5].
Approximately 40–50% of individuals with impaired glucose tolerance (IGT) progress to
T2D over their lifetimes [6]. Although recent studies have shown that pioglitazone can
reduce the risk of this progression by 72% [7, 8], approximately 30% of patients do not
respond to treatment with TZDs [9]. The precise mechanism by which PPARγ ligands
improve insulin sensitivity, and the role of regulatory genetic polymorphisms that may
modulate the PPARγ ligand-mediated gene expression response, are poorly understood.

A recent animal study suggested that combined PPARγ and PPAR α ligand therapy is more
effective in improving glycemic control compared to monotherapy [10]. PPARα is
expressed predominantly in muscle, liver, heart, and vessel wall, and regulates fatty acids
metabolism. Fenofibrate is a PPARα activator and is used to treat hypertriglyceridemia,
which is associated with insulin resistance and T2DM. Development of novel therapeutic
agents, including dual PPARγ/α agonists and agents that selectively block cdk5-mediated
PPARγ-Ser273 phosphorylation, is currently underway [11, 12]. Understanding the
synergistic actions of PPARγ and PPARα combination therapy compared to PPARγ
agonist monotherapy on adipose and muscle gene expression of patients with IGT will
expedite the development of more efficacious therapy against insulin resistance with fewer
side effects.

Based on these considerations, we designed a randomized clinical trial to determine the
global transcript profiles of subcutaneous adipose and skeletal muscle before and after 10
weeks of pioglitazone and fenofibrate monotherapy or combination therapy in subjects with
IGT. We selected individuals with IGT for this study to avoid variable degrees of
hyperglycemia and different anti-diabetes medications as confounding factors. We tested
four specific hypotheses: 1) treatment of pioglitazone alone or in combination with
fenofibrate will improve insulin sensitivity by restoring gene expression pattern in adipose
and muscle of IGT subjects; 2) compared to pioglitazone monotherapy, pioglitazone and
fenofibrate combination therapy will cause a more significant activation of biological
pathways and gene networks involved in lipid metabolism; 3) polymorphisms in a subset of
PPAR ligand-modulated genes will be associated with insulin resistance; and 4) genes in key
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biological pathways modulated by PPAR are under control of local genetic regulators (cis-
eQTLs).

Genome-wide expression analysis allowed us an unbiased assessment of the data. We
utilized statistical and bioinformatics analyses to investigate the differences and similarities
in biological pathways modulated by combination or monotherapy of PPAR agonists.
Combining these data with our previous genome-wide study on insulin-sensitive versus
insulin-resistant subjects [13], we could distinguish specific pathways involved in PPAR
agonist-mediated improvement of insulin sensitivity. Further, to establish the role of SNPs
in genes modulated by PPAR agonists, we interrogated genome-wide association data
comprised of meta-analyses of continuous glycemic phenotypes from the Meta-Analyses of
Glucose and Insulin-related traits Consortium (MAGIC) [14, 15]. Finally, to develop a
causal model of PPAR ligand pharmacogenomics, we analyzed the publicly available
subcutaneous adipose eQTL data from the MuTHER (Multi Tissue Human Expression
Resource) study [16] to explore the role of cis-regulatory variants in the expression of genes
in pathways modulated by PPAR ligands.

Methods
Study Subjects

Men and women (age 18–65 yrs and BMI 28–38 kg/m2) with IGT (defined by fasting blood
glucose <126 mg/dl and a two-hour glucose of 140–199 mg/dl after a 75 g oral glucose
tolerance test [OGTT]) were recruited for this study as a part of randomized clinical trial
(ClinicalTrials.gov identifier: NCT00470262). All subjects provided written, informed
consent under a protocol that was approved by the local Institutional Review Board. Studies
were conducted at the University of Arkansas for Medical Sciences/Central Arkansas
Veterans Health Care System General Clinical Research Center. Subjects with a history of
major health problem such as renal insufficiency (creatinine >1.4), liver disease (AST or
ALT> 2x normal), congestive heart failure, and coronary artery disease were excluded. In
addition, we excluded subjects who were taking medications known to affect adipose tissue
inflammation or insulin resistance, such as HMG Co-A reductase inhibitors (statins),
fibrates, anti-diabetes medications, or anti-inflammatory agents. During the first visit,
subjects underwent OGTT, routine blood tests, and body composition measurement by dual-
energy X-ray absorptiometry (DXA). Eligible participants underwent dietary stabilization
for one week on a 35% fat, eucaloric diet and were maintained on this diet throughout the
study. Insulin-modified, frequently sampled intravenous glucose tolerance tests (FSIGT)
were performed at the second visit after an overnight fast, followed by subcutaneous adipose
and skeletal muscle biopsies at their third visit. Subjects were then randomized to receive
either pioglitazone (45 mg/day, N=10), fenofibrate (145 mg/day, N=6), or both medications
(N=10) in an open-label design. Compliance and laboratory tests were monitored three times
during follow-up. After 10 weeks of treatment, the OGTT, FSIGT, DXA, and biopsies were
repeated. All biopsies were obtained in the fasting state as previously described [4]. Adipose
biopsies were obtained under local anesthesia from abdominal subcutaneous adipose tissue
by incision. Adipose tissue biopsy specimens were rinsed in saline, and frozen in liquid
nitrogen. All muscle samples were obtained from the vastus lateralis by Bergstrom needle
biopsy under local anesthesia and frozen in liquid nitrogen immediately. The study design is
outlined in Figure 1.

Laboratory measurements
Insulin was measured by the University of Arkansas General Clinical Research Center core
laboratory using an immuno-chemiluminometric assay (Invitron Limited, UK). Plasma
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glucose was measured by using a glucose oxidase method at LabCorp, Inc. (Burlington,
NC).

RNA extraction
Total RNA was isolated from adipose tissue using the RNAeasy Lipid Tissue Mini kit
(Qiagen Inc-USA, Valencia, CA), and from muscle (for 14 subjects treated with fenofibrate)
using the Ultraspec RNA kit (Biotecx Laboratories, Inc, Houston, TX). The quantity and
quality of the isolated RNA were determined by ultraviolet spectrophotometry and
electrophoresis using Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA),
respectively. Similar to our published studies [13], high-quality RNA with RIN (RNA
integrity number) > 8 was used for genome-wide transcriptome analysis.

Microarray studies
Genome-wide transcriptome analysis and initial array processing was performed by GenUs
Biosystems (Northbrook, IL) using Human Whole Genome 4x44k arrays (Agilent
Technologies) according to the vendor’s recommended standard protocol, similar to our
published studies [13]. In brief, labeled cRNA was prepared by linear amplification of the
Poly(A)+ RNA population within the total RNA sample. Total RNA (1 μg) was reverse
transcribed after priming with a DNA oligonucleotide containing the T7 RNA polymerase
promoter 5′ to a d(T)24 sequence. After second-strand cDNA synthesis and purification of
double-stranded cDNA, in vitro transcription was performed using T7 RNA polymerase.
The quantity and quality of the cRNA was assayed by spectrophotometry and on the Agilent
Bioanalyzer. We fragmented 1 μg of purified cRNA to a uniform size and hybridized
samples to Human Whole Genome 4x44k arrays (Agilent Technologies) at 37° C for 18 hrs
in a rotating incubator. Arrays were washed and scanned with a G2565 Microarray Scanner
(Agilent Technologies). Arrays were processed and background corrected with default
settings of the Agilent Feature Extraction software v.9.5.3.1 (Agilent Technologies). The
Agilent FE plug-in converts the complex set of 16 binary flag columns into three levels of
GeneSpring flags: Absent (A), Marginal (M) or Present (P). Raw data were analyzed with
GeneSpring GX v7.3.1 software (Agilent Technologies). To compare individual expression
values across arrays, raw intensity data from each gene were quantile normalized to the 75th
percentile intensity of each array. Only genes designated as present in at least 80% of
samples from the baseline or post-treatment groups were included in further analyses.

Processed arrays were analyzed using two-class paired sample analysis on normalized data
in Statistical Analysis for Microarray (SAM) V3.11 software [17]. In this analysis, baseline
(−k) and post treatment (k) expression values of each study subject are considered as a pair
(observation −k is paired with observation k); random exchanges are performed within each
−k; k pair to calculate false discovery rate (FDR) by permutation. We considered results
significant for a false discovery rate (q value) ≤ 10%, and average fold difference between
baseline and post treatment samples of ≥1.2 (or ≤0.83), based on at least 500 permutations.
Additional validation of SAM analysis was performed by paired sample t-test (p ≤ 0.05),
and we report only on probes corresponding to transcripts with NCBI/Entrez identifiers. We
excluded predicted and hypothetical genes (ORFs, FLJs and LOCs) from our significant
gene lists. Genes represented by multiple probes were considered significant only if at least
one probe met our stringent selection criteria and all probes were in the same direction of
differential expression (formatted data will be available at:
http://www.wakehealth.edu/research/research_default.aspx?id=29781 ).

Functional annotation of differentially expressed genes
Bioinformatic analysis was performed to investigate the enrichment of differentially
expressed genes in known biological pathways or Gene Ontology (GO) categories. We
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performed canonical pathway analysis and interaction network analysis of differentially
expressed genes using Ingenuity Pathway analysis (IPA ver9.0-3211;
https://analysis.ingenuity.com). Pathways with corrected p-value (Benjamini and Hochberg
p-value) ≤0.05 were considered significantly enriched in our gene lists. Additional
annotations of differentially expressed genes were performed by singular enrichment
analysis (SEA) using the DAVID v6.7 functional annotation tool
(http://david.abcc.ncifcrf.gov/) [18]. Detailed analysis parameters for SEA using the
functional annotation chart module of DAVID are described elsewhere [13]. In SEA
analysis, a category with a gene count >5, an EASE score ≤0.05 (modified Fisher’s exact p-
value), and FDR ≤15% was considered as a significance threshold. Gene set enrichment
analysis (GSEA) using advanced GSEA methods was performed in GeneTrail software
(http://genetrail.bioinf.uni-sb.de/) [19]. We used all probes corresponding to transcripts with
NCBI/Entrez identifiers irrespective of fold change for this analysis. In the GSEA input file,
we ranked our gene list based on SAM score (d, the T-statistic value). GeneTrail was run
with median occurrence for genes with multiple probes; we considered the KEGG pathway
and all GO categories with a minimum number of 6 genes in a category in our ranked
expressed gene list. The p-value of ≤0.05 after correcting for FDR (Benjamini and Hochberg
p-value) was considered as significance threshold for detecting an enriched category in this
analysis. Microsoft Access queries were generated for data management and comparing
genes differentially expressed and enriched pathways between data sets.

We recently showed enrichment of canonical pathways and GO categories among genes
differentially expressed in insulin-resistant subjects (IS, n=31) compared to insulin-sensitive
subjects (IR, n=31) matched for age, gender and BMI [13]. To understand the mechanisms
involved in improved insulin sensitivity due to PPAR ligand treatment, we analyzed the
overlap between pathways and GO categories enriched (in IPA and GSEA analysis) in our
IR/IS data set and our current study involving pre- and post-PPAR ligand treatment.

Clustering analysis
We performed unsupervised hierarchical clustering using PermutMatrix version 1.9.3EN
software to evaluate the predictive value of differentially expressed genes in identifying pre-
and post-treatment transcript patterns [20]. A dissimilarity matrix based on Pearson’s
correlation coefficient between each individual was generated using Z-score-normalized
values for each differentially expressed probes and seriation under multiple fragment
heuristics. The hierarchical clustering-based tree and heat map was generated using
McQuitty’s criteria. We further performed modulated modularity clustering (MMC) analysis
to identify coherent transcriptional modules among transcripts differentially expressed by
PPAR ligands [21]. We utilized the MMC tool (http://mmc.gnets.ncsu.edu/) for this analysis
and selected Spearman correlation coefficients to quantify pairwise relationships among
transcripts to define modules. Modules with ≥25 transcript members elicited by MMC were
further tested for their enrichment in known pathways or GO categories using DAVID v6.7.

Association of SNPs in PPAR ligand-modulated genes with glucose homeostasis traits
To establish whether the SNPs in genes modulated by pioglitazone were associated with
continuous glycemic phenotypes, we obtained meta-analysis association data (effect allele,
regression coefficient and p-values) from the MAGIC (Meta-Analyses of Glucose and
Insulin-related traits Consortium) investigators (http://www.magicinvestigators.org). In
MAGIC, fasting glucose and insulin resistance (HOMA-IR) datasets were generated by
performing a meta-analysis of up to 21 genome-wide association studies in up to 46,186
non-diabetic Caucasian participants. Two-hour glucose datasets were generated by a meta-
analysis of nine genome-wide association studies in 15,234 non-diabetic Caucasian
individuals [14, 15]. We interrogated the MAGIC data for association (p<0.001) of SNPs
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within and ±2 kb of 983 genes differentially modulated by pioglitazone treatment in
subcutaneous adipose tissue.

eQTL analyses
We explored the role of local regulatory elements or cis-regulatory variants in modulating
the expression of genes in pathways modulated by PPAR ligands to improve insulin
sensitivity. We used Genevar 3.0.2 software
(http://www.sanger.ac.uk/resources/software/genevar/) and analyzed subcutaneous adipose
gene expression data from the MuTHER study [16, 22]. This study implemented a matched
co-twin study design and includes 166 adipose tissue biopsies from Caucasian female twins
(twin 1, N=79 and twin 2, N=87). We searched for cis-eQTLs within ±500 kb of genes in
selected pathways by linear regression analysis. We considered an eQTL significant if the
genotype of a SNP was associated (unadjusted p ≤ 0.01) in linear regression analysis with
the expression of a transcript in both twin set analyses. Independent validation of selected
cis-eQTLs was performed in adipose tissue of 89 Caucasian non–diabetic subjects from our
laboratory.

Results
The baseline characteristics of the 26 subjects (10 who received pioglitazone, 10
pioglitazone plus fenofibrate, and 6 fenofibrate) did not differ by treatment group (Table 1).
Significant improvement in insulin sensitivity (SI) was observed in subjects treated with
pioglitazone alone (WSRT p-value = 0.011) or a combination of pioglitazone and
fenofibrate (WSRT p-value = 0.022) for 10 weeks, but no significant improvement in insulin
sensitivity was observed in subjects treated with fenofibrate alone (Table 1). Treatment with
pioglitazone alone or pioglitazone and fenofibrate in our study mediated similar
improvements in insulin sensitivity (SI). As expected, treatment with fenofibrate decreased
serum triglyceride concentrations, but pioglitazone did not have a significant effect on lipid
profiles. Interestingly, the combination of pioglitazone and fenofibrate had favorable effects
on triglyceride, LDL cholesterol, and HDL cholesterol concentrations (Table 1).
Pioglitazone is a ligand of nuclear transcription factor PPARγ, while fenofibrate is a ligand
for PPARα. Since PPARγ is most abundantly expressed in adipose tissue while PPARα is
highly expressed in muscle [2], we examined the effects of pioglitazone and fenofibrate
treatment in modulating the transcript profile of subcutaneous adipose and skeletal muscle,
respectively.

Changes in adipose tissue expression profile in response to PPAR agonists
Comparison of the pre- and post-treatment adipose transcript profiles in treatment groups
showing improved SI (combined set of 20 subjects treated either with pioglitazone or
pioglitazone plus fenofibrate) showed differential expression of 983 genes at an average fold
change of ≥1.2 fold and false discovery rate (q-value) of <10% (Supplementary Table 1).
Large inter-individual variability was observed in gene expression response and only 39
genes showed differential expression when we used more stringent criteria (average fold
change of ≥1.5 and q-value 0%). Unsupervised hierarchical clustering for transcripts
differentially expressed by PPAR agonists grouped the pre- and post- treatment samples in
two major clusters (Supplementary Figure 1); 17 of 19 samples in cluster 1 were from
pretreatment subjects, whereas 18 of 21 samples in cluster 2 were from post-treatment
subjects. As expected, the insulin sensitivity (SI) of samples in cluster 2 was significantly
higher than in cluster 1 samples (p= 4.32 × 10−4). Nonetheless, despite this heterogeneity,
we identified a set of genes that may characterize the transcriptional response of adipose
tissue associated with PPAR agonist-mediated improvement in insulin sensitivity in most
study subjects. However, the dissimilarity between pre- and post-treatment gene expression
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at mRNA level was low in five subjects; thus they were not classified into different clusters.
Pre-treatment expression levels of three of these subjects were classified in a post-treatment
cluster and indicate a high inter-individual variation in transcript expression. This
incomplete clustering based on mRNA expression cannot be explained by differences in
response to PPAR agonist as measured by changes in insulin sensitivity (SI). Thus, we
speculate that PPAR agonist- mediated improvement in insulin sensitivity is at least partly
contributed by its non-genomic effect and is independent of transcriptional modulation.

Ingenuity pathway analysis (IPA) among differentially expressed genes showed significant
enrichment of genes in important biological pathways, including degradation of the
branched chain amino acids (BCAA) valine, leucine, and isoleucine (p= 0.000068),
propanoate metabolism (p= 0.0025), angiogenesis (P= 0.0091), PPARα/RXRα activation
(p= 0.0095), and AMPK and cAMP signaling (p= 0.012 and p= 0.021; Table 2 and
Supplementary Table 2). IPA also calculated the statistically significant overlap between
differentially expressed genes and those regulated by a transcription factor. As expected,
genes regulated by PPARγ were most significantly enriched (p= 2.77 × 10−6, 21 PPAR γ–
modulated genes including ACSL1, SCD, INSIG1 and SORBS1) followed by the SREBF1
(p= 1.64 × 10−4). We also observed marginal enrichment for PPAR-alpha targets (p= 0.026).
Supplementary Figure 2 shows the regulatory relationships among genes modulated by
transcription factor PPARγ and SREBF1. Further, GSEA using the SAM score-ranked list
of all transcripts expressed in adipose tissue also indicated PPAR agonist-mediated up-
regulation of genes involved in the citrate (TCA) cycle; PPAR and insulin signaling; and
fatty acid, butanoate and propanoate, and BCAA metabolism. By contrast, genes involved in
antigen processing and presentation, and in immune and inflammatory responses, were
downregulated (Supplementary Table 3).

To investigate the differences in transcriptional response between subjects treated with
pioglitazone alone and pioglitazone plus fenofibrate, we further analyzed the adipose
transcript profile of these two groups separately. Despite the same statistical power (n=10 in
each group), 1839 genes showed differential expression (average fold change ≥1.2 and q-
value <10%) in subjects treated with pioglitazone alone (Supplementary Table 4), while
only 261 genes showed differential expression in subjects treated with pioglitazone plus
fenofibrate (Supplementary Table 5). Ninety-four genes showed differential expression in
both data sets (45 upregulated and 49 downregulated). Among the genes showing
upregulation were cholesteryl ester transfer protein (CETP), phosphoenolpyruvate
carboxykinase 1 (PCK1), serum glucocorticoid regulated kinase 2 (SGK2), protein
phosphatase 1-regulatory subunit 1B (PPP1R1B), adiponectin (ADIPOQ), 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 1 (PFKFB1), and vascular endothelial
growth factor A (VEGFA). Downregulated genes included hydroxysteroid-11-beta
dehydrogenase 1 (HSD11B1), ectonucleotide pyrophosphatase/phosphodiesterase 4
(ENPP4), phospholipase C- beta 4 (PLCB4), integrin, alpha-V (ITGAV), and p53 apoptosis
effector related to PMP22 (PERP). Interestingly, GSEA analysis showed a stronger
upregulation of genes involved in fatty acid metabolism, the BCAA metabolic process, TCA
cycle, oxidative phosphorylation, PPAR signaling pathway, and down-regulation of genes in
antigen processing and presentation in adipose tissue from those taking pioglitazone plus
fenofibrate compared to pioglitazone monotherapy (Table 3 and Supplementary Table 6).
Strong enrichment of genes in propanoate metabolism, fatty acid elongation in
mitochondria, and the acetyl-CoA metabolic process was observed in adipose samples of
subjects treated with pioglitazone plus fenofibrate, but these pathways did not reach
statistical significance in the pioglitazone monotherapy group.
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PPAR agonists modulate regulatory networks of genes in lipid metabolism
To better understand the effect of PPAR agonists on gene regulatory networks, we utilized
modulated modularity clustering analysis (MMC) and IPA knowledge-based biological
interaction network analysis. The MMC analysis identified 54 coherent transcriptional
modules among genes differentially expressed in adipose tissue in response to PPAR
agonists (Supplementary Table 7 and Supplementary Figure 3). Considering the 983
differentially expressed genes as statistical background, we used singular enrichment
analysis (SEA in DAVID) to access the degree to which biological processes and pathways
were overrepresented in large transcriptional modules (modules with ≥ 25 gene members).
Module 52 was enriched for genes in lipid metabolism (P= 0.0000684, FDR= 0.05). The
IPA biological interaction network analysis within differentially expressed genes further
revealed 25 highly significant interaction networks (Supplementary Table 8). Interestingly,
two of these top 25 interaction networks showed an important role in lipid metabolism
(networks 4 and 14) (Supplementary Figure 4). The network 4 (score= 34 with 28
differentially expressed genes) indicates a link between upregulation of lipid mobilization
factor zinc-α2-glycoprotein (AZGP1) and adiponectin (ADIPOQ) [23] and downregulation
of class A macrophage scavenger receptor (MSR1) [24]. This network also shows the
positive regulatory interaction of adiponectin with protein kinase B (AKT1), AMP/cAMP
kinases (PRKAG1 and PRKAR1A), and the IKK complex. The network 14 (score= 23 with
22 differentially expressed genes) showed a positive regulatory interaction with several
nuclear receptors (NCOA4, NCOR1, NR1D2 and NR1H3), lipoprotein receptor (CD36),
and lipid-metabolizing enzymes (ACACA, CETP, DGAT2, FASN and SCD). Thus, our
study indicates an important role of PPAR agonists in modulating regulatory networks
involved in lipid metabolism in adipose tissue.

Changes in skeletal muscle expression profile in response to PPAR agonists
Comparison of the pre- and post-treatment muscle transcript profile was performed in our
combined set of 14 subjects treated either with fenofibrate alone or in combination with
pioglitazone. Large inter-individual variability in transcriptional response was observed in
muscle after PPAR agonist treatment. Only the phosphatidylinositol-4-phosphate 5-kinase-
type II-gamma (PIP5K2C) gene showed significant differential expression in muscle of 14
subjects treated either with fenofibrate (N= 5) or fenofibrate and pioglitazone (N= 9). A total
of 172 genes, including fatty acid binding protein 4 (FABP4) and diacylglycerol O-
acyltransferase-2 (DGAT2), showed differential expression (average fold change ≥1.2 and
p-value ≤0.05) but failed to meet our false discovery rate criterion (≤10%). Similar results
were obtained when we considered only subjects treated with pioglitazone + fenofibrate
(N=9). We further performed GSEA to identify enrichment of genes in biological pathways.
GSEA considers all expressed genes by rank without a fold-change threshold, and thus may
identify altered pathways in which no individual members meet criteria of differential
expression. In contrast to adipose tissue, we found no enriched pathways that may be
modulated by PPAR agonists in skeletal muscle.

PPAR agonists restore a normal insulin-sensitive gene expression pattern in adipose
tissue

We recently showed significant enrichment of important biological pathways among genes
differentially modulated in insulin-resistant compared to insulin-sensitive individuals [13].
In the present study, we investigated if the pathways dysregulated by insulin resistance
overlap with those modulated by PPAR agonists in adipose tissue. As shown in Table 4 (and
in Supplementary Table 9), GSEA indicates that the genes in the TCA cycle, BCAA
metabolism (valine, leucine and isoleucine degradation), PPAR and insulin signaling, fatty
acid, butanoate and propanoate metabolism, and biosynthesis of unsaturated fatty acids
pathways – all of which were significantly downregulated in insulin-resistant subjects –
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were upregulated in adipose tissue after 10 weeks of treatment with the PPARγ ligand alone
or in combination with the PPARα agonist. Similarly, genes in KEGG pathways related to
immune and inflammatory function (antigen processing and presentation, proteasomes, cell
adhesion molecules, and cytokine-cytokine receptor interaction) that were upregulated in
insulin-resistant subjects were downregulated by the PPARγ therapy alone or combined
with PPARα agonists. When we considered only the top differentially expressed gene, IPA
analysis additionally showed the downregulation of AMPK pathway genes in insulin-
resistant subjects and was upregulated by PPAR agonist treatment (Supplementary Table
10). Thus, our genome-wide analysis of the adipose tissue transcriptome successfully
narrowed down the pathways involved in PPAR agonist-mediated improvement of insulin
sensitivity.

Interestingly, our analysis showed upregulation of 18 transcripts in the AMPK signaling
pathway in adipose tissue after PPAR agonist treatment. Published studies have
demonstrated decreased AMPK activity (due to reduced phosphorylated AMPK) in different
tissues, including subcutaneous adipose tissue of insulin-resistant subjects [25]. Several in
vitro and animal studies also demonstrated rapid activation of AMPK in different cells and
tissues after PPARγ agonist treatment independent of PPARγ–mediated gene transcription
[26, 27]. Activation of AMPK by phosphorylation triggers downstream signaling events,
including increased fatty acid oxidation and metabolism [28]. The mechanism of PPAR
agonist-mediated AMPK activation is incompletely understood. However, our transcriptome
analysis supports the concept that activation of AMPK signaling in human adipose tissue is
one mechanism involved in PPAR agonist-mediated restoration of insulin sensitivity.

Polymorphisms in PPAR ligand-modulated genes are associated with glucose
homeostasis traits

Improved insulin sensitivity with PPAR treatment resulted in a differential expression of
983 genes in subcutaneous adipose tissue. We investigated whether the SNPs within and ±2
kb of these 983 genes are associated with glucose homeostasis traits. Interrogation of large
meta-analysis data from the MAGIC consortium [14, 15] showed significant associations (p
<0.001) of 97 SNPs in 22 genes with fasting plasma glucose. Table 5 shows the most
significant SNPs for each of these 22 genes. The most significant SNPs associated with
fasting plasma glucose include rs11717195 (p= 1.11×10−9) in ADCY5 (adenylate cyclase 5)
and rs4308429 (p= 9.15×10−7) in WFS1 (Wolfram syndrome 1). Similarly, the MAGIC data
also showed significant association of SNPs with 2-hour glucose and HOMA-IR in 14 and
15 genes, respectively (Supplementary Table 11). Thus, a subset of genes modulated by
PPAR ligands harbor polymorphisms associated with glucose homeostasis traits, and are
genetic risk factors that may modulate insulin sensitivity.

Cis-regulatory SNPs modulate the expression of genes in pathways modulated by PPAR
agonists

Our study identified several biological pathways in adipose tissue that are dysregulated in
insulin-resistant subjects and restored by PPAR agonist treatment. We investigated whether
local SNPs (± 500 kb) regulate transcript level expression of the genes in these key
pathways in adipose tissue. Among the 189 selected genes annotated in four key pathways
(BCAA metabolism, PPAR signaling, AMPK- and cAMP-mediated signaling, and
propanoate metabolism), 28 genes were significantly regulated by local SNPs (cis-eQTLs)
in subcutaneous adipose gene expression data from the MuTHER study [16] (Table 6 and
Supplementary Table 12). Top cis-eQTLs included PRKAR1A (cAMP-dependent protein
kinase regulatory-type I-alpha) regulated by SNP rs2302234 (p <1×10−12) and CD36
(lipoprotein receptor) regulated by SNP rs3211931 (p <1×10−12). Independent validation of
these top cis-eQTLs was performed in adipose tissue of 89 Caucasian non–diabetic subjects
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utilizing microarray data followed by genotyping and real time q-PCR (see Supplementary
Table 13 for genotyping and real-time q-PCR assay). Genome-wide gene expression data
generated by microarray for these subjects were available from our previous study [29].
Genotyping of three selected SNPs (or their proxies) in this cohort replicated associations
between PRKAR1A-rs6958 (additive model p-value = 3.2×10−27, in r2 =1 with rs2302234),
CD36-rs7755 (additive model p-value = 1.38×10−11, in r2 =0.96 with rs3211931) and
CD36- rs3211870 (additive model p-value = 0.0083). Regulatory SNPs for CD36 were
further confirmed by gene expression data generated by real-time PCR in the same sample
set. Individuals with the TC or TT genotype for SNP rs7755 showed higher expression of
CD36 transcript in adipose tissue compared to individuals with the CC genotype (dominant
model p-value =0.013). Thus, our study indicates that gene expression in key biological
pathways modulated by PPAR agonists is under control of local genetic regulators.

Discussion
Morbidity and mortality in T2D arises from long-term complications. Early detection and
prevention of T2D is expected to have tremendous medical, economic, social, and human
implications. Lifestyle modifications (weight loss and increased physical activity) can
reduce the rate of conversion from impaired glucose tolerance to T2D, but it is difficult to
achieve and maintain weight loss [30, 31]. In contrast, oral antidiabetic agents that improve
insulin sensitivity do prevent progression of IGT to T2D [7, 8]. Utilizing a systematic
genetic approach, we examined the mechanism of actions of pioglitazone (PPARγ agonist),
fenofibrate (PPARα agonist), and their combination in IGT subjects in an unbiased and
statistically robust manner. To our knowledge, this is the first study to compare effects of
different PPAR ligands (pioglitazone, fenofibrate, or both) on adipose tissue and muscle
transcripts to elucidate mechanistic differences at the genome-wide transcriptional network
and biological pathway levels.

Our study was not designed to definitively show whether the combination or monotherapy is
more effective in preventing the progression of IGT to T2D, but provided mechanistic
information that could expedite the development of more efficacious therapy against insulin
resistance. This study delineated the pathways involved in PPAR agonist-mediated
improvement of insulin sensitivity in IGT subjects. Utilizing publicly available genomic
databases, we explored the role of regulatory polymorphisms that may modulate the
expression of genes in these pathways. These findings will form the basis of larger clinical
trials to understand the role of SNPs in modulating the PPAR agonist-mediated gene
expression response that might determine the outcome of therapeutic response.

Despite several advantages, our study cohort had limited statistical power to confidently
detect smaller changes in PPAR agonist-mediated gene expression. Thus, we used
moderately stringent statistical thresholds to avoid false-positive results. Our sample set also
was not sufficiently powered to detect gender-specific effects of drug response, and we have
not studied differential expression in response to PPAR agonists after stratifying for sex. We
compared pre-and post-PPAR agonist treatment differences within an individual (two-class
paired sample analysis) to minimize effects of gender-specific differences in expression
response. Our study was focused on changes in expression at the mRNA level after PPAR
agonist treatment. However, PPAR agonist-mediated improvement is insulin sensitivity may
also occur via changes in other molecular phenotypes, including miRNA, protein and
metabolite levels, and chromatin or epigenetic modifications. More inclusive studies will be
required to expand our knowledge on molecular mechanisms of PPAR agonist-mediated
improvement of insulin sensitivity.
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A recent study in mice indicated that rosiglitazone (a PPARγ ligand) plus fenofibrate was
more effective in improving glycemic control compared to monotherapy with either agent
[10]. Treatment of IGT subjects with either pioglitazone alone or pioglitazone and
fenofibrate in our study mediated similar improvement in insulin sensitivity (SI), as
measured by the minimal model analysis of the FSIGT data. However, the combination of
pioglitazone and fenofibrate had more favorable effects on lipid profiles compared to either
PPARα or γ ligand monotherapy. Interestingly, enrichment analyses indicated that those
taking the combined therapy had a stronger adipose tissue upregulation of genes involved in
fatty acid metabolism, BCAA degradation, the TCA cycle, and oxidative phosphorylation,
and downregulation of genes in antigen processing and presentation, when compared to
pioglitazone monotherapy. Significant enrichment of genes involved in propanoate
metabolism, fatty acid elongation in mitochondria, and the acetyl-CoA metabolic process
was only observed in the pioglitazone plus fenofibrate group. Our study indicates that this
combination therapy was more effective in normalizing the impaired gene expression pattern
in insulin-resistant subjects, and may prove more effective in prevention or treatment of
T2D in larger clinical trials.

PPARγ is expressed predominantly in adipose tissue, and a recent study in transgenic mice
showed that selective activation of PPARγ in adipocytes is sufficient for whole-body insulin
sensitization equivalent to systemic TZD treatment [32]. Thus, we have not studied the
effect of pioglitazone monotherapy on skeletal muscle transcripts. Since PPARα is highly
expressed in muscle, in our current study we analyzed the effect of fenofibrate alone or in
combination with pioglitazone on the muscle transcriptome. Fenofibrate monotherapy did
not improve insulin sensitivity, unlike the combination of fenofibrate and pioglitazone.

It may appear surprising that we found no statistically significantly enriched pathway in the
skeletal muscle transcriptome with PPAR agonist treatment, even though there was a
significant increase in insulin sensitivity (SI), which reflects peripheral glucose disposal. Our
muscle sample set had 85% power (at per gene α = 0.05 and SD[log2] of gene intensity =
0.7) to detect a 2-fold change in gene expression; the power of our sample set was low to
detect changes smaller than that. This relative lack of power may explain some of our
inability to detect differentially expressed transcripts in muscle. As noted in the Results
section, several genes involved in lipid metabolism, including FABP4 and DGAT2, showed
differential expression after PPAR agonist treatment in muscle, but failed to meet our FDR
criteria. However, the statistical power of our adipose data set was only marginally higher
than our muscle data set. Thus, we speculate that the PPAR agonist-mediated improvement
in peripheral insulin resistance is independent of its role in modulating transcription in
muscle and could be posttranscriptional. Several recent studies pointed out PPAR-dependent
and independent non-genomic mechanisms that may explain PPAR agonist-mediated
improvement in insulin sensitivity [33]. Those studies indicated that insulin-sensitizing
effects of PPAR gamma agonists in human skeletal muscle are partly dependent on
activation of the fuel-sensing enzyme AMPK (α-Thr172 phosphorylation of AMP-activated
protein kinase directly, or indirectly via increase in adiponectin from adipocytes),
phosphorylation (inactivation) of acetyl-coA carboxylase (ACC), and inhibition of pyruvate
dehydrogenase activity in skeletal muscle[34, 35].

Alternatively, the changes in adipose tissue alone probably can drive peripheral glucose
disposal. Our earlier study showed that pioglitazone improved insulin sensitivity
significantly along with a 34% decrease in intramyocellular lipids [4]; however this study
found no change in the expression of genes involved in lipid oxidation in muscle. On the
other hand, as discussed above, treatment with PPARγ agonists induced significant
upregulation of genes in lipid metabolism in subcutaneous adipose tissue, supporting the
hypothesis that the primary mechanism of TZD–induced skeletal muscle insulin sensitivity
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is enhanced partitioning of lipids into adipose tissue, relieving lipotoxicity in muscle.
However, a recent study by Sears et al [36] in a cohort of insulin-sensitive and -resistant
subjects (including diabetics) concluded that TZD (pioglitazone, rosiglitazone or
troglitazone)-mediated insulin sensitization is partly mediated by upregulation of transcripts
involved in adipogenesis in muscle or intramuscular adipocyte differentiation. Higher
expression of genes in lipid uptake/storage and adipogenesis (including FABP4, PLIN and
CEBPA) was observed in insulin-resistant versus insulin-sensitive subjects, and the
difference was increased upon TZD treatment. That study did not indicate enrichment of any
biological pathway among genes differentially expressed by TZD in muscle, but showed
amelioration of defective insulin-stimulated HK2 and PDK4 expression (genes in glycolytic
flux) in insulin-resistant subjects treated with TZD, in a post-hyperinsulinemic clamp
condition. A different study in Wistar rats indicated that TZD increased fatty acid uptake
(via upregulation of CD36) and triglyceride accumulation in skeletal muscle when
stimulated by insulin [37]. We analyzed our transcript profiles in fasting conditions, and in
non-diabetic subjects, and thus may have failed to detect changes observed in other studies
that included diabetic patients and which examined insulin-stimulated conditions.

We observed an overlap between biological pathways dysregulated in insulin-resistant
subjects that were modulated upon PPAR ligand treatment in adipose tissue. This analysis
helped us refine the biochemical and physiological mechanisms involved in PPAR agonist-
mediated improvement of insulin sensitivity in IGT subjects. Several cell biological,
metabolomic and animal studies also support the role of these pathways (including BCAA
metabolism, PPAR signaling, AMPK- and cAMP-mediated signaling, and fatty acid and
propanoate metabolism) in insulin resistance [38–41].

Our study also provides evidence for several novel mechanisms involved in PPAR agonist-
mediated improvement of insulin sensitivity in human subjects. Two novel regulatory
networks involved in lipid metabolism were modulated in subcutaneous adipose tissue of
subjects treated with PPARγ agonists in our study. Network 4 indicates a link between
PPAR agonist-mediated upregulation of adiponectin and upregulation of lipid mobilization
factor zincα2-glycoprotein. This network was predicated to alleviate inflammation by
downregulating macrophage scavenger receptor (MSR1). Network 14 supports a regulatory
interaction between PPARγ agonist-mediated upregulation of lipid-metabolizing enzymes
(ACACA, CETP, DGAT2, FASN and SCD) and nuclear receptors (NCOA4, NCOR1,
NR1D2 and NR1H3). Additionally, we observed enrichment of genes in several pathways,
including nuclear factor of activated T cells (NFAT) signaling, relaxin signaling, renin-
angiotensin signaling, nitric oxide signaling, and molecular mechanisms of cancer that are
modulated by PPAR agonists in adipose but were not differentially expressed in insulin-
resistant subjects. We speculate that these pathways may be involved in PPARγ agonist-
mediated adverse effects. Future efforts of designing new oral antidiabetic agents should
devise strategies to avoid activating these pathways.

Our integrative genomic analysis indicated that SNPs in PPAR agonist-modulated genes are
associated with glucose homeostasis traits and may modulate insulin sensitivity. Transcript-
level expression of several genes, including PRKAR1A and CD36, in these important
pathways are also regulated by cis regulatory SNPs. CD36 is a high-affinity receptor for
lipoproteins (including oxidized LDL), and a recent study confirmed the role of
polymorphisms in regulating its transcription and protein expression [42, 43]. Further
studies are required to determine if these regulatory polymorphisms can explain the
observed inter-individual variability in PPAR agonist-mediated transcriptional response.

There is precedent for the successful application of pharmacogenetic concepts to monogenic
forms of diabetes, such as maturity-onset diabetes of the young. A similar strategy for the
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common form of T2D is currently lacking [44]. Applying integrative genomics approaches
[45] that leverage the utilization of data from GWAS studies of disease or drug response
traits; eQTL data for drug target tissues; information on drug-mediated perturbation of
pathways and biological networks; and effects of eQTLs on drug-mediated modulation those
networks may improve our understanding of individual-level variability in drug response.
Although preliminary so far, our study shows promise that such integrative strategy may be
useful in: i) more effective use of existing antidiabetic agents, ii) designing new drug
molecules that bypass shortcomings of currently available ones; iii)developing new
therapeutic modalities including combination therapy; and iv) better understanding of the
underlying disease mechanisms.

Conclusions
Using an integrative biology approach, we present a comprehensive characterization of
PPAR agonist-mediated transcriptional response in adipose and muscle tissues of
individuals with impaired glucose tolerance. Our study defined biological pathways and
gene networks in adipose tissue that are changed following improvement of insulin
sensitivity with PPAR treatment, and these adipose tissue changes correspond well with
biological pathway differences that distinguished insulin-resistant from insulin-sensitive
subjects. However, PPAR treatment resulted in remarkably few changes in muscle gene
expression. We identified cis-regulatory SNPs associated with the expression of PPAR
agonist-modulated transcripts. SNPs in a subset of PPAR agonist-modulated genes were
associated with glucose homeostasis traits and may modulate insulin sensitivity. These SNPs
are important candidates for future pharmacogenomic studies that may explain the inter-
individual variability in TZD and fenofibrate response to treat or prevent diabetes.
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Figure 1.
Study design and experimental plan.
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Table 2

Subcutaneous adipose tissue transcripts modulated by pioglitazone or pioglitazone + fenofibrate treatment in
subjects with impaired glucose tolerance are enriched for important canonical pathways

Ingenuity Canonical Pathways p-value (B-H) # Gene Downregulated #Gene Upregulated

Valine, Leucine and Isoleucine Degradation 6.76E-05 1 15

Propanoate Metabolism 2.51E-03 0 13

Inhibition of Angiogenesis by TSP1 9.12E-03 1 8

PPARα/RXRα Activation 9.55E-03 6 16

AMPK Signaling 0.012 1 18

Role of NFAT in Cardiac Hypertrophy 0.012 6 17

Relaxin Signaling 0.012 2 17

Renin-Angiotensin Signaling 0.019 2 14

Molecular Mechanisms of Cancer 0.020 9 26

RAR Activation 0.020 2 19

Glutamate Metabolism 0.021 1 7

Breast Cancer Regulation by Stathmin1 0.021 4 19

GM-CSF Signaling 0.021 1 10

Citrate Cycle 0.021 0 7

p53 Signaling 0.021 5 9

Nitric Oxide Signaling in the Cardiovascular System 0.021 0 12

TR/RXR Activation 0.021 1 12

cAMP-mediated signaling 0.021 4 20

PTEN Signaling 0.021 2 13

RANK Signaling in Osteoclasts 0.021 4 9

Endothelin-1 Signaling 0.021 6 14

LXR/RXR Activation 0.021 4 8

B Cell Receptor Signaling 0.022 5 13

Glyoxylate and Dicarboxylate Metabolism 0.024 0 5

Amyloid Processing 0.029 0 9

Cardiac Hypertrophy Signaling 0.030 7 17

Glucocorticoid Receptor Signaling 0.030 8 19

IL-1 Signaling 0.030 4 9

Leptin Signaling in Obesity 0.033 2 9

Pancreatic Adenocarcinoma Signaling 0.034 4 10

Antiproliferative Role of TOB in T Cell Signaling 0.034 2 4

IL-2 Signaling 0.034 1 8

Role of Tissue Factor in Cancer 0.034 4 10

VEGF Signaling 0.036 2 10

Clathrin-mediated Endocytosis Signaling 0.043 2 16

Protein Kinase A Signaling 0.043 9 20

β-alanine Metabolism 0.043 0 8

Butanoate Metabolism 0.043 0 9
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Ingenuity Canonical Pathways p-value (B-H) # Gene Downregulated #Gene Upregulated

Fatty Acid Metabolism 0.049 0 13

Docosahexaenoic Acid (DHA) Signaling 0.049 1 6

Thrombin Signaling 0.049 4 16

Hepatic Fibrosis/Hepatic Stellate Cell Activation 0.049 4 12

FLT3 Signaling in Hematopoietic Progenitor Cells 0.050 0 10

Result from IPA canonical pathway analysis among genes modulated by pioglitazone in adipose tissue (in the combined set of 20 subjects treated
with pioglitazone alone or pioglitazone and fenofibrate) is shown. Only pathways showing enrichment at p ≤ 0.05 after Benjamini and Hochberg
multiple testing corrections (B-H P-Value) are presented.
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Table 3

KEGG pathways enriched in GSEA analysis in pioglitazone and pioglitazone + fenofibrate-treated subjects
(N=10 per group)

KEGG pathway

Pioglitazone Pioglitazone + Fenofibrate

p-value (FDR) enrichment p-value (FDR) enrichment

Fatty acid metabolism 0.03 up <1.0E-05 up

Valine, leucine and isoleucine degradation 0.01 up <1.0E-05 up

Citrate cycle (TCA cycle) 0.004 up <1.0E-05 up

Oxidative phosphorylation 0.004 up 3.63E-04 up

PPAR signaling pathway 0.02 up 6.89E-04 up

Parkinson’s disease 0.004 up 7.07E-04 up

Butanoate metabolism 0.01 up 0.007 up

Arginine and proline metabolism 0.04 up 0.007 up

Lysine degradation 0.03 up 0.010 up

Insulin signaling pathway 0.003 up 0.02 up

Propanoate metabolism NS <1.0E-05 up

Glyoxylate and dicarboxylate metabolism NS 0.00069 up

Fatty acid elongation in mitochondria NS 0.00095 up

Ribosome 0.03 down 5.14E-05 down

Antigen processing and presentation 0.004 down 3.78E-04 down

Graft-versus-host disease 0.004 down 0.002 down

Autoimmune thyroid disease 0.004 down 0.009 down

Allograft rejection 0.007 down 0.02 down

Viral myocarditis 0.03 down 0.03 down

Type I diabetes mellitus 0.004 down 0.03 down

Proteasome NS 1.96E-06 down

Natural killer cell-mediated cytotoxicity NS 6.71E-06 down

Result of advanced GSEA analysis (GeneTrail) for KEGG pathways showing enrichment p-value ≤0.05 after false discovery rate (FDR) correction
is shown. Pathways highly enriched in Pioglitazone + Fenofibrate group are marked. NS, not significant.
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Table 4

KEGG pathways enriched in adipose tissue of insulin-resistant subjects overlaps with pathways modulated by
PPAR agonist treatment

KEGG pathway in IR/IS analysis in PostTx/baseline analysis

p-value (FDR) enrichment p-value (FDR) enrichment

Citrate cycle (TCA cycle) 0.000693 down <1.0E-5 up

Valine, leucine and isoleucine degradation 5.4E-05 down 3.91E-05 up

PPAR signaling pathway 0.000567 down 0.000465 up

Insulin signaling pathway 0.000727 down 0.000693 up

Fatty acid metabolism 0.009271 down 0.000908 up

Butanoate metabolism 0.003297 down 0.001082 up

Propanoate metabolism 0.000281 down 0.00148 up

Lysine degradation 0.040107 down 0.002943 up

Pyruvate metabolism 0.026626 down 0.014727 up

Biosynthesis of unsaturated fatty acids 0.006467 down 0.04186 up

ECM-receptor interaction 0.043291 up 0.043069 up

Antigen processing and presentation 0.001375 up 7.34E-05 down

Proteasome 0.000194 up 0.008954 down

Cell adhesion molecules (CAMs) 6.37E-06 up 0.01419 down

Cytokine-cytokine receptor interaction 0.000194 up 0.042528 down

Result of advanced GSEA analysis (Genetrail) for KEGG pathways showing enrichment p-value ≤0.05 after false discovery rate (FDR) correction
is shown. KEGG pathways enriched in insulin resistant subjects were detected by GSEA analysis of ranked list of all expressed transcripts in
adipose of 31 insulin-resistant and 31 insulin-sensitive subjects (reanalyzed from our published data, Elbein et al, 2011). KEGG pathways enriched
after PPAR agonist treatment was detected by GSEA analysis of a ranked list of all expressed transcripts in adipose of 20 subjects with impaired
glucose tolerance, treated with either pioglitazone or pioglitazone and fenofibrate for 10 weeks.
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