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Abstract
Modern neuroscientific research stands on the shoulders of countless giants. PubMed alone
contains more than 21 million peer-reviewed articles with 40–50,000 more published every
month. Understanding the human brain, cognition, and disease will require integrating facts from
dozens of scientific fields spread amongst millions of studies locked away in static documents,
making any such integration daunting, at best. The future of scientific progress will be aided by
bridging the gap between the millions of published research articles and modern databases such as
the Allen Brain Atlas (ABA). To that end, we have analyzed the text of over 3.5 million scientific
abstracts to find associations between neuroscientific concepts. From the literature alone, we show
that we can blindly and algorithmically extract a “cognome”: relationships between brain
structure, function, and disease. We demonstrate the potential of data-mining and cross-platform
data-integration with the ABA by introducing two methods for semiautomated hypothesis
generation. By analyzing statistical “holes” and discrepancies in the literature we can find
understudied or overlooked research paths. That is, we have added a layer of semi-automation to a
part of the scientific process itself. This is an important step toward fundamentally incorporating
data-mining algorithms into the scientific method in a manner that is generalizable to any
scientific or medical field.

1. Introduction
The scientific method begins with a hypothesis about our reality that can be tested via
experimental observation. Hypothesis formation is iterative, building off prior scientific
knowledge. Before one can form a hypothesis, one must have a thorough understanding of
previous research to ensure that the path of inquiry is founded upon a stable base of
established facts. But how can a researcher perform a thorough, unbiased literature review
when over one million scientific articles are published annually (Björk et al., 2009)? The
rate of scientific discovery has outpaced our ability to integrate knowledge in an unbiased,
principled fashion. One solution may be via automated information aggregation (Akil et al.,
2011). In this manuscript we show that, by calculating associations between concepts in the
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peer-reviewed literature, we can algorithmically synthesize scientific information and use
that knowledge to help formulate plausible low-level hypotheses.

Neuroscience is a particularly complex discipline that relies upon expertise from many
disparate fields (Akil et al., 2011). The aim of neuroscience is to understand relationships
between brain, behavior, and disease; yet, no one person or group can possibly unify all
neuroscientific understanding into a coherent framework. In this paper, we show that the
literature contains a hidden network of connected facts that, by definition, recapitulate
known neuroscientific relationships. Neuroanatomical, behavioral, and disease associations
can be quantified and visualized to speed research and education or to discover understudied
research paths (Yarkoni et al., 2010; Wren et al., 2004; Bilder et al., 2009). Rather than
allowing our limited ability to review the entire scientific literature bias our hypotheses, we
can algorithmically integrate millions of scientific research papers in a principled fashion.

To accomplish this, we used a co-occurrence algorithm to calculate the pair-wise association
index (AI) between neuroscientific terms (and their synonyms) contained within more than
3.5 million papers indexed in PubMed (see Methods). The primary assumption is that the
frequency with which terms appeared together across the titles or abstracts of manuscripts is
proportional to their probability of association. That is, we assumed an underlying structure
within the peer-reviewed neuroscientific literature that we could leverage to our advantage.
We conceive of our system as a proof-of-concept tool for knowledge discovery limited only
by the size and quality of the inputs. We believe that, in its current state, when combined
with the website search and visualization system we created to accompany it
(http://www.brainscanr.com), it acts as a more sophisticated complement to normal PubMed
searches. Furthermore, it provides, for the first time, a method for quantifying the
relationship between disparate neuroscientific concepts, paving the way for researchers to
incorporate statistical decision making into their future research.

2. Methods
2.1. Data collection

We populated a dictionary with phrases for 124 brain regions, 291 cognitive functions, and
47 diseases. Brain region names and associated synonyms were selected from BrainInfo
(2007) (Bowden et al., 2007), Neuroscience Division, National Primate Research Center,
University of Washington (Bowden and Dubach, 2003). Cognitive functions were obtained
from (http://www.cognitiveatlas.org/) (Poldrack et al., 2011). Disease names are from
(http://www.ninds.nih.gov/). The initial population of the dictionary was meant to represent
the broadest, most plausibly common search terms that are also relatively unique (and thus
likely not to lead to spurious connections). The full list of terms and their synonyms are
included in the Supporting List 1.

2.2. Association probabilities
We quantified the association between two terms using a weighted co-occurrence algorithm
(Jaccard index) that highlights the unique relationship between term pairs. For any given
pair of terms i and j, we define the association index,
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where the intersection between ci,j and di,j was calculated using the following query of the
PubMed database using the ESearch utility and the count return type (using the example c is
“prefrontal cortex” and d is “striatum”):

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=pubmed&field=word&term=(“prefrontal+cortex”+OR+“prefrontal+cortices”)
+AND+(“striatum”+OR+“neostriatum”+OR+“corpus+striatum”)&rettype=count

The union was calculated using the sum of two separate queries:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=pubmed&field=word&term=(“prefrontal+cortex”+OR+“prefrontal+cortices”)
+NOT+(“striatum”+OR+“neostriatum”+OR+“corpus+striatum”)&rettype=count

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?
db=pubmed&field=word&term=(“striatum”+OR+“neostriatum”+OR+“corpus
+striatum”)+NOT+(“prefrontal+cortex”+OR+“prefrontal
+cortices”)&rettype=count

Note that for these searches, all synonyms for a given term are included within the
parentheses and each term is individually surrounded by quotation marks to limit the search
to each exact phrase. Furthermore, the “field=word” modifier limits the search to the
article’s title and abstract. This reduces instances of false associations due to name or journal
title homographs (e.g., author name “Fear” or journal name “Language” as opposed to the
behavioral terms “fear” or “language”).

2.3. Data visualization and website creation
The brainSCANr website was created using the Google App Engine (Google, Inc.)
framework. Graph connectivity plotting (see Figure 3C for an example) was performed
using the JavaScript InfoVis Toolkit (Nicolas Garcia Belmonte, http://thejit.org/). The full
association database used in this study is available at that site for download. For Figure 2 the
graph was plotted using the GraphViz (AT&T Research Labs) radial plot function.

Clustering was performed using an iterative (k-means) clustering algorithm (MATLAB®
R2009b, Natick, MA; kmeans.m) and hierarchical clustering (linkage.m). For the brain
structure and functions analyses, we used 20 clusters, and for the disease analysis we used 5
clusters. It is important to note that there are many techniques for clustering data (see
Parsons et al., 2004), but the actual resulting clusters and dendrogram presented herein do
not affect the results, but rather are included for display purposes.

2.4. Allen Brain Atlas
Gene expression data from the Allen Brain Atlas (ABA) were taken from subject
H0351.2001 and visualized (Figure 4A) on the ABA website. In order to allow for cross-
database comparisons, raw expression intensity values for each gene g in brain region b was
normalized across all n brain regions B in the ABA by converting them to a z-score such
that,

To calculate a single expression value for broad neurochemical such as serotonin, which
may have many genes coding receptors and transporters, we averaged normalized gene
expression values across all relevant genes by searching the ABA genetic probe ontology for
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the neurochemical name. So, for example, the gene expression deviation value we report for
serotonin represents the average across 208 serotonin-related genes. Because both the ABA
and this manuscript use the same neuroanatomical naming ontology (Bowden and Dubach,
2003), we could compare brain region and gene expression data between databases.

For the analyses in Figure 5, gene expression deviation is defined as the absolute value of
average gene expression z-scores, as both gene under- and over-expression are heavily
researched. For the ABA/AI correlation analysis, we only correlated data where AI > 0 for a
given neurochemical/brain region pair, yielding 1131 correlated pairs out of 1500 possible
(25 neurochemicals times 60 brain regions). For surrogate correlation analyses (Figure 5B),
104 surrogate correlations were calculated by extracting the correlation coefficient r between
gene expression deviation and a random permutation of the AI data. This gave a distribution
of possible r values against which the real correlation could be compared by calculating the
z-score and associated p-value. For the surrogate difference analyses (Figure 5D) the same
technique was used as in the surrogate correlation analysis, however we compared the real
difference with 104 surrogate differences, rather than correlation data. Surrogate difference
scores were calculated by first combining all gene expression deviation values (for AI > 0
and for AI = 0) and then randomly drawing 1131 values (to represent data where AI > 0),
calculating the mean, and comparing that against the mean of the remaining 369 values.

2.5. Semi-automated hypothesis generation
We introduce two methods for semi-automated hypothesis generation. The first relies on a
simple “friend-of-a-friend should be a friend” concept wherein we assume that two terms
that each strongly relate to a parent term should relate to one another. If they do not, then
that relationship is flagged as a possible hypothesis. More technically, we considered each
“parent” term and looked to find the terms the parent is strongly related to (more than 1000
joint publications between parent and “child”). If the parent had two or more such
relationships we then examined the relations between each of these strong children. Any
child/child pair that had a weak relationship (fewer than 30 publications) was flagged as a
possible hypothesis. While the values used to define “strong” and “weak” relationships are
somewhat arbitrary, we sought to keep the number of hypothesis candidates low. This
choice of cutoffs yielded 896 hypotheses out of 175528 total term pairs (0.51% rate).

The second method for hypothesis generation looks for discrepancies between actual gene
expression data extracted from the ABA and the calculated neurochemical/brain relationship
from PubMed. ABA gene expression values for each of the 25 neurochemicals were first
sorted to find in which brain regions they are most strongly expressed. We then identified
cases where brain regions were found to strongly express a given gene, yet had relatively
few publications mentioning that region and gene.

3. Results
3.1. Cognome Construction

In order to reconstruct this cognome, we calculated the probability of association between

each term and every other term, giving an association matrix of size  (Figure 1 and
Methods). Once the full association matrix was calculated we 2 constructed a full brain
connectivity graph (Figure 2 and Supporting Figure 1), limited only by the dictionary used
to define the search terms (see Supporting List 1 for the full list). We find relatively strong
associations between all brain region terms. For visualization purposes we classified each
brain region as belonging to one of 8 predefined macroscale clusters and colored each node
according to group membership. This coloring highlights the clustering of brain regions by
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type; cortical regions form distinct groups farther from the central brainstem structures while
thalamic and basal ganglia structures cluster together nearer the brainstem.

We then blindly clustered structures based upon their association weights (Figure 1 and
Table 1). These clusters—defined by their PubMed associations—recapitulate known
neuroanatomical circuits. Several of these circuits are anatomically diffuse; for example, one
cluster, a “visual” circuit, associates the lateral geniculate nucleus and pulvinar, the superior
colliculus, and the primary visual and visual extrastriate cortices. We observe clusters of
brainstem auditory and prosencephalic auditory circuits as well as oculomotor nuclei. These
results show that there is an inherent structure to the peer-reviewed literature that can be
algorithmically recovered. Note that differences in clustering methods yield different results,
and that the clusters shown here are meant as illustrative examples of the structure inherent
to the data. The full hierarchical dendrogram can be viewed in Supporting Figure 2.

Just as we can indentify clusters of associated brain regions, we can also cluster functions or
diseases (see Figure 1). Conceptually, clustering cognitive and behavioral functions provides
a quantification of the relationship between two cognitive tasks or behavioral states
(Yarkoni et al., 2011; Poldrack et al., 2009). For example, there is a known relationship
between “visual working memory” and “delayed match to sample” tasks (Voytek and
Knight, 2010; Voytek et al., 2010) that is recovered by our algorithm (AI = 8.5*10−3);
similarly there is a weak association between “visual working memory” and “stress” (AI =
6.1*10−6), suggesting the two concepts are relatively unrelated. As can be seen in Table 2,
there are two clusters of tasks identified as “executive functions” and “monitoring and
control” clusters. The former contains 9 tasks such as the Stroop and Wisconsin card sorting
tasks, as well as working memory. The latter cluster contains tasks such as go/no-go, stop
signal, and antisaccade. These tasks are known to be functionally related and interdependent.
In Table 3 we outline clusters of diseases identified from their associations. This results in a
cluster of psychiatric disorders including bipolar disorder, schizophrenia, and obsessive-
compulsive disorder, as well as a cluster of agnosias such as Broca’s and Wernicke’s
aphasia, apraxia, and prosopagnosia.

While these classifications provide important data on within-category clustering, by
combining structural, functional, and disease terms in a unified matrix we can calculate
cross-category clusters (see Table 4). We observe cross-category relationships for language
terms including language comprehension, Wernicke’s area, and Wernicke’s aphasia. We
also find a Parkinson’s disease cluster containing terms such as Parkinson’s disease, caudate
nucleus, and substantia nigra. Such cross-category clustering demonstrates the utility of this
method for integrating and unifying complex interrelationships across a broad range of
neuroscientific fields.

3.2. Hypothesis Generation
While known relationships can be captured automatically, we can identify statistical “holes”
in the literature using a method we call “semi-automated hypothesis generation”. In Figure 3
we outline the algorithm used to find these statistical discrepancies, based on a simple
“friend-of-a-friend should be a friend” concept. For example, in Figure 3A we show a
hypothetical relationship between a parent term a and its two children: ai and aj. In this case,
both ai and aj are strongly related to their parent, but weakly related to one another. This is
the basis for our hypothesis-finding algorithm (Figure 3C). In Figure 3D we show one real-
world example (out of 896 identified) wherein both striatum and migraine are strongly
related to serotonin (>2900 publications for each relationship), yet the striatum and
migraines have few shared publications (only 16). While the lack of association may be due
to a publication bias wherein null results go unreported, there may be a true association
between the two concepts that is understudied. Using this method, the process of uncovering
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new research paths could drastically speed knowledge discovery (the full list of identified
hypotheses is available in Supporting List 2).

We can extend this hypothesis discovery technique by incorporating gene expression data
from the ABA (Lein et al., 2007). In Figure 4 we show comparisons between regional
human gene expression data for serotonin-related genes versus the relationship between
serotonin and those brain regions in PubMed. We find a significant discrepancy between
actual gene expression data and literature associations. For example, serotonin-related genes
are most highly expressed in the zona incerta, yet there are only 42 papers that discuss the
zona incerta in relation to serotonin. In contrast, there are 1584 papers that discuss the
nucleus accumbens and serotonin. While the first method finds statistical holes in the
literature, this method identifies biases in neurochemical research.

3.3. Data Validation
We sought to validate our data by correlating the AI calculated from PubMed associations
with real data. Because the Allen Brain Atlas uses the same neuroanatomical naming
ontology as used by our database, we could more easily compare these two datasets than we
could with other external sources. We find that the calculated AI for neurochemical/brain
region relationships is significantly correlated (r1131 = 0.11, p < 0.001) with the gene
expression magnitude for the same gene expression/brain region pairings (Figure 5A), and
that this correlation is unlikely due to an artifact of our calculation and integration methods
(Figure 5B). Furthermore, as would be expected, actual gene expression magnitude is lower
for pairings where we find no neurochemical/brain region relationship in the literature (AI =
0) than for when there is a relationship (AI > 0) (t1498 = 2.36, p = 0.018), and that this effect
is unlikely due to differences in the amount of data between the two groupings (Figure 5D).

4. Discussion
In this manuscript we demonstrate that, by mining the peer-review literature for associations
between neuroscientific terms, we can recapitulate known scientific relationships.
Furthermore, we introduce an algorithm for semi-automated hypothesis generation that can
be used to speed research discovery. Although the current analysis is restricted to a limited
dictionary of terms, the association and visualization methods are applicable to any search
term or phrase found in PubMed, meaning that our method can be more broadly generalized
to any scientific field using any peer-review database. Of course, there are limitations to our
method. While we show that calculated AI does significantly correlate with real gene
expression data, the correlation is relatively weak and explains only about 1% of the
variance. This may be caused by several underlying factors, including, but not limited to, a
loss of specificity as a result of averaging across a wide range of genes, inaccuracies in our
text-mining approach or in the literature itself, the reliance upon gene expression data from a
single human subject, or an incompatibility between the IA metric and gene expression data.
Nevertheless the significance suggests that literature mining can capture real relationships
(Figure 5A).

Furthermore, our calculations are by definition based upon the existing literature, thus
associations may reflect publication biases (though there is a well-described publication bias
such that negative results are underreported (Begg and Berlin, 1989; Dirnagl and Lauritzen,
2010; Ioannidis et al., 1997; Stern and Simes, 1997). Furthermore, our method does not
differentiate positive from negative results: if a paper states that the amygdala does not
relate to fear, that paper is weighted equally to a paper that finds a positive relationship.
Despite these limitations, our associations map onto known relationships with remarkable
accuracy.
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Given the matrix of association values for each brain region, we show that we can recreate
known neuroanatomical circuits using blind, automated clustering algorithms. These
algorithms identify physically diffuse but functionally associated networks such as
subcortical-cortical visual pathways, brainstem auditory nuclei, and even behavioral circuits
involved in speech and other high-level cognitive processes. By clustering cognitive
functions, we can quantify the relationship between a variety of cognitive tasks commonly
used in neuroscientific research, such as the relationships between tasks used to study
executive functioning or cognitive control, similar to automated meta-analytic methods
(Yarkoni et al., 2011). Finally, searching across all brain structures, functions, and diseases,
we show that we can uncover statistical discrepancies in the literature to aid in scientific
discovery. While we cannot confirm that such algorithmically identified hypotheses are
correct without conducting actual experiments, the search space in the biomedical sciences
is so vast that we believe that any principled methods to reduce that space can only help
speed discovery, as even ruling out incorrect relationships is helpful. That is, these
hypotheses are not meant to represent a teleological endpoint, but rather a stepping-stone for
researchers to help unmask possibly hidden mediating factors.

There is currently a massive scientific effort to identify the human connectome (Sporns et
al., 2005; Modha and Singh, 2010; Editors, 2010). Even at the relatively macroscopic scale
of systems and networks, the intricacies of neuroanatomical interconnectivity and how brain
regions give rise to cognition and relate to disease are difficult to comprehend and visualize.
Often these connectivity data are spread across dozens of research manuscripts, brain
atlases, websites, and other repositories in static formats not openly accessible to all
researchers. While fields such as genetics have put great effort into ontological projects
(Zhang et al., 2010), the adoption of ontologies for neuroanatomy and cognition has been
slow (but see (Bowden et al., 2007; Bohland et al., 2009; Larson and Martone, 2009;
Stephan et al., 2000)). While the semantic associations we present herein appear to work
well for the biomedical and psychological sciences, they may have more limited use in the
physical sciences, for example, where the ontological weight is carried less by textual
relationships.

Nevertheless, we can leverage the power of millions of publications to bootstrap informative
relationships (Michel et al., 2010) and uncover scientific “metaknowledge” (Evans and
Foster, 2011). Furthermore, the use of network mapping of textual relationships has recently
been used in a variety of psychological and neuroscientific domains, including an analysis of
comorbidity in psychiatric disorders based upon DSM-IV diagnostic criteria (Borsboom et
al., 2011) and relationships between genes (Alako et al., 2005). By mining these
relationships, we show that it is possible to add a layer of intelligent automation to the
scientific method as has been demonstrated for the data modeling stage (Schmidt and
Lipson, 2009). By implementing a connection-finding algorithm, we believe we can speed
the process of discovering new relationships. So while the future of scientific research does
not rely on these tools, we believe it will be greatly aided by them. This is a small step
toward a future of semi-automated, algorithmic scientific research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Calculating brain structure, function, and disease relationships. We begin by (A) populating
a database with search terms and their synonyms. From this we calculate (B) the probability
of association (p) between a term (in) and all other terms (j), giving us (C) a series of
association matrices. Each row/column index in this matrix represents the probability of
association between two terms as calculated from PubMed. For each matrix, data are sorted
according to the clusters identified via k-means clustering using 20 structure clusters, 20
function clusters, and 5 disease clusters. This method highlights several within-cluster
associations along the diagonal (see Supporting Tables for clusters).
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Figure 2.
Inferred systems-level connectome. Based upon a pre-defined dictionary of 124 brain
regions and their 703 synonyms, we calculated the probability of association between all
pairs of brain regions based upon their co-occurrence in the scientific literature indexed via
PubMed. This method recovers known neuroanatomical relationships (see Supporting Table
1). In the center rings, brainstem structures cluster together, with telencephalic/neocortical
structures arranged in the outside rings. Note the clustering of thalamic and basal ganglia
structures in the middle rings. Graphic visualization was performed using GraphViz (AT&T
Research Labs) with a connectivity threshold of 0.095.
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Figure 3.
Semi-automated hypothesis generation. A simple algorithm is used to evaluate possible
novel or under-studied research topics based upon statistical discrepancies in the scientific
literature. In the example above, we algorithmically determine a possible relationship
between migraine and serotonin-related brain regions such as the striatum (for a full list of
possible hypotheses, see Supporting List 2). (A) The hypothesis generation model is based
on a simple “friend-of-a-friend should be a friend” concept: if term a is strongly associated
with two terms (ai and aj), yet the association between ai and aj is weak, then perhaps we are
(scientifically) missing a relationship between ai and aj. (B) In order for the algorithm to flag
a relationship as a plausible hypothesis, three conditions must be met: terms ai and aj each
need to have a strong relationship with their parent term, a, and the relationship between ai
and aj should be weak. (C) The topic network for term a can be visualized (here using
http://www.brainSCANr.com) to highlight relative associations between terms (main term a:
blue star; brain regions: gold circles; diseases: purple circles). (D) An example of an
algorithmically-defined hypothesis. Here, the term serotonin is strongly associated with two
terms: striatum (2943 joint publications) and migraine (4782 joint publications). In contrast,
however, there are only 16 publications (at the time of this writing) that jointly mention
striatum and migraine. Given that serotonin is so strongly related to these two topics,
perhaps there is a missing association between migraines and the striatum.
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Figure 4.
Allen Brain Atlas integration. A second approach toward semi-automated hypothesis
generation is accomplished via integrating our data with the Allen Brain Atlas (ABA). (A)
From the ABA we extract real gene expression values for a sub-selection of human brain
regions (60 were used in our ABA analyses). Here we show an expression map for HTR1A,
the gene that encodes the 5-HT1A receptor. (B) We begin by ranking the brain regions that
most strongly express genes related to a specific neurochemical (here, serotonin). According
to the ABA (A, green), serotonin-related genes are most strongly expressed in the zona
incerta (z, red). However according to our data (b, orange), serotonin is most strongly
associated with the brain region raphe nuclei; the zona incerta ranks 30th out of 60 brain
regions. (C) When we examine the number of publications in PubMed that discuss serotonin
with the 5 brain regions that most strongly express serotonin-related genes, we find that the
nucleus accumbens has orders of magnitude more publications than the other regions (1584
publications), whereas only 42 papers discuss serotonin and the zona incerta, despite the fact
that the zona incerta expresses serotonin-related genes most strongly. This discrepancy
suggests that the role of the zona incerta in serotonergic processes and serotonin-related
functions is poorly understood. Our method demonstrates that such holes in our
understanding may be identified automatically and algorithmically.
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Figure 5.
Allen Brain Atlas / brainSCANr validation. We validated PubMed association probabilities
by comparing them to brain/gene expression data from the ABA. (A) We find a significant
correlation between association index (AI) and gene expression magnitude from the ABA
for 1131 brain/gene expression relationships. (B) Resampling statistics suggest that the
observed correlation (r = 0.11) is unlikely due to an artifact caused by AI or gene expression
magnitude calculation techniques (see Methods). (C) ABA gene expression magnitude is
lower when the PubMed association probability equals zero. That is, when there are no
published manuscripts relating a given brain region with a specific neurochemical, the
magnitude of actual gene expression is likely to be lower than for cases where brain/
neurochemical relationships do exist in PubMed (two-sample t-test, p = 0.018). (D)
Resampling statistics suggest that the observed difference between the mean gene
expression magnitudes when AI equals zero (n = 369) versus when AI is greater than zero (n
= 1131; real diff = 0.17) is also unlikely due to an artifact caused by a difference in the
number of trials between groups.
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Table 1

Brain structure clusters. Clusters identified via k-means clustering of the brain region association matrix.
Cluster titles were defined post-hoc based upon author’s interpretation.

Unknown Speech/Motor Basal Ganglia Thalamic

cerebellum Broca’s area caudate nucleus centromedian nucleus

cuneate nucleus of the medulla insula globus pallidus intralaminar nuclear group

emboliform nucleus operculum nucleus accumbens reticular nucleus of the thalamus

hippocampus premotor cortex putamen ventral anterior nucleus

hypothalamus primary motor cortex substantia nigra ventral posterior nucleus

orbital gyri supplementary motor cortex ventral tegmental area ventral posterolateral nucleus

thalamus Wernicke’s area zona incerta

Basal Ganglia II Cingulate Prefrontal Heschls gyrus

basal ganglia anterior cingulate gyrus medial prefrontal cortex planum temporale

striatum cingulate gyrus prefrontal cortex transverse temporal gyrus

subthalamic nucleus posterior cingulate gyrus

Visual Hippocampal Amygdalar Hypothalamic

lateral geniculate nucleus dentate gyrus amygdala dorsomedial nucleus of the hypothalamus

primary visual cortex entorhinal area basal forebrain nucleus medial dorsal nucleus

pulvinar perirhinal area basal nucleus of the amygdala posterior nucleus of the hypothalamus

superior colliculus subiculum diagonal band ventral posteromedial nucleus

visual extrastriate stria terminalis

Prosencephalic Auditory Brainstem Auditory Oculomotor Cranial Nerve Nuclei

inferior colliculus cochlear nuclei abducens nucleus dorsal motor nucleus of the vagus nerve

medial geniculate body superior olive interstitial nucleus of Cajal hypoglossal nucleus

primary auditory area trapezoid body oculomotor nuclear complex nucleus ambiguus

trochlear nucleus solitary nucleus

Brainstem Cortical

locus ceruleus angular gyrus

medulla fusiform gyrus

periaqueductal inferior frontal gyrus

pons inferior parietal lobule

raphe nuclei inferior temporal gyrus

lingual gyrus

medial frontal gyrus

medial parietal gyrus

middle frontal gyrus

middle temporal gyrus

parahippocampal gyrus

postcentral gyrus

precuneus

superior frontal gyrus

superior parietal lobule

superior temporal gyrus
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Table 2

Functional clusters. Clusters identified via k-means clustering of the functions association matrix. Cluster
titles were defined post-hoc based upon author’s interpretation.

Social/Emotional Attention Cogntion/Consciousness Language

affect recognition attentional capacity anticipation language comprehension

emotional perception attentional shifting arousal language processing

emotional recognition attentional blink association learning language production

face perception attentional resources awareness lexical processing

face recognition auditory attention classical conditioning lexical retrieval

facial expression divided attention cognition phonological encoding

familiarity focused attention consciousness picture naming

happiness inhibition of return decision making semantic processing

long term memory oddball fear sentence comprehension

memory consolidation selective attention intelligence sentence production

memory storage spatial attention pain syntactic processing

memory trace sustained attention Pavlovian conditioning word comprehension

object recognition target detection reward word production

recognition memory target processing stress

reconsolidation visual attention uncertainty

social cognition visual search

spatial memory

theory of mind

Monitoring and Control Executive Functioning Learning and Memory Learning and Memory II

antisaccade delayed recall declarative memory autobiographical memory

behavioral inhibition digit span habit learning episodic memory

cognitive control executive function habit memory memory retrieval

deductive reasoning set shifting procedural learning semantic knowledge

error detection Stroop procedural memory semantic memory

executive control trail making skill learning

go/no-go verbal memory

inductive reasoning visual memory

performance monitoring Wisconsin card sorting

stop signal

task switching

Working Memory Phonological Processes Knowledge Perception

central executive phonological buffer declarative knowledge auditory perception

phonological loop phonological discrimination nondeclarative knowledge color perception

short term memory phonological working memory nondeclarative memory form perception

spatial working memory word repetition procedural knowledge visual perception

working memory

Speech Implicit/Explicit Learning Analogical Processes Implicit/Explicit Memory

articulation explicit knowledge analogical problem solving explicit memory

speech perception explicit learning analogical reasoning implicit memory
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speech production implicit knowledge

Eye Movement Sequence Learning Intelligence

eye movement motor sequence learning crystallized intelligence

saccade sequence learning fluid intelligence
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Table 3

Disease clusters. Clusters identified via k-means clustering of the disease association matrix. Cluster titles
were defined post-hoc based upon author’s interpretation.

Psychiatric Disorders Agnosias Alzheimer’s Eating Disorders

anxiety agnosia Alzheimer’s disease anorexia

bipolar disorder aphasia dementia bulimia

depression apraxia

obsessive compulsive disorder Broca’s aphasia

panic disorder prosopagnosia

schizophrenia Wernicke’s aphasia

social phobia
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Table 4

Cross-category clusters. Clusters identified via k-means clustering of the entire association matrix. Cluster
titles were defined post-hoc based upon author’s interpretation.

Visual Cognition Language Learning and Reward Speech Prodcution

antisaccade language comprehension association learning articulation

attentional shifting sentence comprehension classical conditioning speech perception

auditory attention syntactic processing reward speech production

cognitive control Broca’s aphasia medial prefrontal cortex word recognition

divided attention Wernicke’s aphasia nucleus accumbens aphasia

executive control Broca’s area prefrontal cortex apraxia

focused attention Wernicke’s area ventral tegmental area dyslexia

inhibition of return

selective attention

spatial attention Consciousness Parkinson’s Facial Perception

sustained attention consciousness Parkinson’s disease face perception

task switching ataxia caudate nucleus face recognition

visual attention coma globus pallidus agnosia

visual search cerebellum putamen prosopagnosia

frontal eye field medulla substantia nigra

visual extrastriate pons

TMS Alzheimer’s fMRI Medical EEG

transcranial magnetic stimulation cognition functional magnetic resonance imaging electroencephalography

premotor cortex Alzheimer’s disease inferior frontal gyrus epilepsy

primary motor cortex dementia insula

supplementary motor cortex
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