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1000 Genomes-based imputation identifies novel
and refined associations for the Wellcome
Trust Case Control Consortium phase 1 Data

Jie Huang1, David Ellinghaus2, Andre Franke2, Bryan Howie3 and Yun Li*,4

We hypothesize that imputation based on data from the 1000 Genomes Project can identify novel association signals on a

genome-wide scale due to the dense marker map and the large number of haplotypes. To test the hypothesis, the Wellcome

Trust Case Control Consortium (WTCCC) Phase I genotype data were imputed using 1000 genomes as reference (20100804

EUR), and seven case/control association studies were performed using imputed dosages. We observed two ‘missed’ disease-

associated variants that were undetectable by the original WTCCC analysis, but were reported by later studies after the 2007

WTCCC publication. One is within the IL2RA gene for association with type 1 diabetes and the other in proximity with the

CDKN2B gene for association with type 2 diabetes. We also identified two refined associations. One is SNP rs11209026 in

exon 9 of IL23R for association with Crohn’s disease, which is predicted to be probably damaging by PolyPhen2. The other

refined variant is in the CUX2 gene region for association with type 1 diabetes, where the newly identified top SNP rs1265564

has an association P-value of 1.68�10�16. The new lead SNP for the two refined loci provides a more plausible explanation for

the disease association. We demonstrated that 1000 Genomes-based imputation could indeed identify both novel (in our case,

‘missed’ because they were detected and replicated by studies after 2007) and refined signals. We anticipate the findings

derived from this study to provide timely information when individual groups and consortia are beginning to engage in 1000

genomes-based imputation.
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INTRODUCTION

It has been four years since the publication of one of the first and
largest genome-wise association studies (GWAS), the Wellcome Trust
Case Control Consortium (WTCCC) study.1 Although imputation-
based analysis was already adopted at that time for refining association
signals, its use was limited and few results were reported based on
imputations. In one study, an imputed missense mutation in gene
GCKR is found to be more strongly associated with triglyceride.2

Imputation significantly increases the statistical power of GWAS
and allows meta-analysis of studies genotyped on different plat-
forms.3–5 Until recently, most imputation work has been using
HapMap haplotypes as a reference panel.6 However, the recent
publication of the 1000 Genomes Pilot Project and the availability
of phased haplotypes from both the pilot and main project bring
opportunities for much denser imputations and more extensive
analysis.7 The 1000 genomes-based imputation has already been
shown to refine association signals and identify underlying genetic
variants that are in high linkage disequilibrium (LD) with variants that
were included in the genotyping platform.7 However, there have been
few reports of novel findings using this latest imputation approach on
a genome-wide scale.8,9 The Oxford-GSK study8 used 1000 genomes-
based imputation to refine a single genetic region and successfully
identified a SNP that is in the promoter region of a biologically

plausible gene with a more significant P-value than that without 1000
genomes imputation. The Sardiana study9 fully utilized the reference
panels from HapMap2, HapMap3, and the 1000 genomes, but did not
specifically evaluate the power gains from each panel. It also has a
smaller discovery sample size (N o1700) compared with the WTCCC
study. In contrast, our study is hypothesis driven, based on a flagship
study with rich phenotypes and a large sample size. We reason it is
very important to confirm that genotype imputation based on the
latest 1000 genomes release could identify novel variants on a genome-
wide scale, beside refining associations at a regional level, given the
large amount of efforts needed for scientists around the globe poised
to apply this emerging tool to their scientific investigation.

We hypothesize that 1000 genomes-based imputation can identify
novel variants beyond what could be seen from purely genotyped data
or HapMap imputed data, due to the much denser SNP coverage and
a much broader representation of reference populations. We test this
hypothesis by re-examining the WTCCC Phase I data after imputing
the genotype data to the full set of SNPs present in 1000 genomes
latest release (version 20100804). We re-run association analysis for
the seven traits based on 1000 genomes imputed dosages and highlight
novel and refined genetic associations that would have been discovered
by the original study should the 1000 genomes reference panel
be available back then.
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METHODS
We obtained approval for using the raw genotype data for the original WTCCC

data set, and we created one harmonized genotype data set by applying quality

controls similar as the original study to the downloaded files (details provided

in Online Supplementary Section S1). Using this genotype data with embedded

disease status, we ran the case/control association tests with PLINK and verified

that the results are similar as those reported in the original study with negligible

difference.10 To match the genomic position used by the 1000 genomes

reference, we mapped all SNPs to NCBI’s build37 (hg19).

We used the MaCH program to first phase the haplotypes and then ran

MiniMac for genotype imputation.11 We used the recommended two-step

approach and recommended parameters of 20 iterations of the Markov sampler

and 200 states. The 1000 genomes reference panel was obtained from the

University of Michigan Abecasis lab, version 20100804 (http://www.sph.umich.

edu/csg/abecasis/MACH/download/1000G-2010-08.html). A total of 566 refer-

ence haplotypes of the European ancestry served as the reference panel. We ran

a logistic regression analysis based on imputation dosages via MACH2DAT

(thus taking imputation uncertainty into account) for each of the seven traits

with the shared control without covariate adjustment, a similar statistical

analysis approach presented by the original WTCCC study. We included

all SNPs with estimated R2 40.3 and minor allele frequency 40.01 for

analysis.

SNPs were considered in the same region if they are within the same gene or

are o1 Mb apart. We define ‘novel’ for any SNP with association P-value

reaching the genome-wide significance level (5�10�8) in a region not reported

in the original study that analyzed genotyped data. Novel variants that were

later reported by other studies after the original 2007 WTCCC paper are

designated as ‘missed’ instead of ‘novel’. We define ‘refined’ for any association

where there is a reported association in the same region in the original study

but the new lead SNP has a P-value more significant even after correcting the

number of new SNPs tested. For ‘refined’ association, we further require that

the lead SNP has either a functional support or is pinpointing to biologically

more relevant gene. We used PolyPhen-2 to predict the possible impact of

amino-acid substitutions in silico.12 To evaluate whether the genome-wide

significant threshold of 5�10�8 widely used in HapMap2 imputed analysis

would be sufficiently conservative in 1000 genomes imputed analysis, we picked

tagging SNPs using a greedy algorithm similar to that in ldselect13 at R2¼0.9 for

the SNPs included in our analysis.

For all genetic loci identified as novel or refined, a 5-Mb region around the

lead SNP was re-imputed and then analyzed with an independent imputation

program (BEAGLE)14 and association analysis tool (PLINK)10 by an indepen-

dent analyst (DE; Supplementary Section S2).

RESULTS

After SNP quality control and mapping of genomic positions to
build37, a total of 389 827 SNPs for 16 179 samples were retained as
input genotype data for imputation. After imputation, a total of
6 233 112 SNPs with estimated R2 40.3 and minor allele frequency
40.01 were used for association analysis. The estimated genomic
inflation factor l15 for the seven case/control GWAS ranges from 1.04
to 1.09, which is comparable to the original study and indicates low
genomic inflation. Association Manhattan plots for all seven analyses
are shown in Supplementary Figure S1. We compared the signals with
those in the original WTCCC study, and highlighted two missed and
two refined variants that we identified through this latest imputation
method (Table 1). All four loci were confirmed by an independent
analysis using BEAGLE and PLINK (JH, DE).

As shown in the regional plots, the two missed variants would not
have been identified with HapMap2-based16 imputation (shown as
red color in Figure 1). For the refined CUX2 region, the best
HapMap2 imputed SNP is less significant than the genotyped SNP
originally reported. For the refined IL23R region, the best HapMap2
SNP is not exonic and not predicted to have functional consequence.

A total of 1 915 543 tagging SNPs were picked for the total of
6 233 112 SNPs included in our analysis, at the R2 threshold of 0.9. T
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Therefore, compared with the previous assumption of one million
independent loci across the genome,17and a genome-wide significance
threshold of 5.0�10�8, we propose a genome-wide threshold of
2.5�10�8 assuming two million independent SNPs. All four SNPs
in Table 1 meet genome-wide significance applying this conservative
(because of correlation among the tagging SNPs) threshold.

DISCUSSION

This is the first study to comprehensively assess the utility of 1000
genomes-based imputation for identifying novel genetic association
signals. We identified two associations that were not reported in the
original WTCCC study but later established through other GWAS.
One is within gene IL2RA for association with type 1 diabetes (T1D)
and the other is 128 kb downstream of gene CDKN2B for association
with type 2 diabetes (T2D). No association with phenotypic trait(s)
was reported in the original study for these two loci. But as the two
lead SNPs are no longer genome-wide significant once conditioning
on the SNPs established by independent studies after the publication
of the original WTCCC study18–20 we view them as ‘missed’ rather
than ‘novel’ loci.

Furthermore, we identified two refined SNP associations: one is
SNP rs11209026 in the exon of IL23R gene for association

with Crohn’s disease. It is predicted to be probably damaging by
PolyPhen-2 and has a P-value of 1.41�10�21 compared with the
previous best association P-value of 5.85�10�12 (SNP rs11805303
within intron 6 of IL23R, see Table 1) from the original WTCCC
study. Although the lead SNP rs11209026 is still genome-wide
significant after conditioning on the lead genotyped SNP, we consider
it a refined signal for two reasons. First two SNPs reside within the
same gene and in physical vicinity (30.4 kb apart). Second, the P-value
of rs11209026 dropped by more than three orders of magnitude (from
4.2�10�21 to 7.6�10�17), suggesting that the two signals are partially
dependent or tagging the same underlying/untyped causal SNP(s) or
haplotype(s). The other refined association is located in the CUX2
region for association with T1D, where the newly identified top SNP
rs1265564 has an association P-value of 1.68�10�16. The original
WTCCC study reported a best association P-value of 1.51�10�14

(rs17696736) within the gene NAA25 (Table 1). These two SNPs
are 780 kb apart, however, the CUX2 gene has been shown to
directly regulate the expression of NeuroD, a gene that can cause
T1D when mutated.21 The lead SNPs for these two refined loci
(IL23R for CD and CUX2 for T1D) are no longer genome-wide
significant after conditioning on the nearest lead SNPs reported in
literature to date.18,22

Figure 1 Regional plots for two novel (missed) and two refined loci. The top two plots are for two novel (‘missed’) regions, where highly significant SNPs

meet genome-wide significance (Po2.5�10�8). The bottom two plots are for two refined regions. SNPs are represented by three different colors: black for

WTCCC genotyped SNPs, red for HapMap2 imputed SNPs, and green for 1000 genomes imputed SNPs. Chromosome base pair positions (NCBI build 37)

are represented on the X-axis. On the Y-axis, statistical significance is expressed as –log10 of the P-values. The horizontal line marks the P¼2.5�10�8

threshold of genome-wide significance.
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We tend to believe that the two missed loci, namely the IL2RA locus
for T1D and CDKN2B locus for T2D, are the same as reported in later
studies for two reasons. First, the two missed loci fall in the same
region with the SNPs reported in post-2007 literature with physical
distance ranging from 3.6 to 28.8 kb. Although the level of LD is
largely moderate, given such close physical vicinity, it is hard to rule
out the possibility that both our lead SNPs and the SNPs reported in
literature are tagging the same (untested) SNP(s) or haplotype(s). Our
second reason is that the P-values of our lead SNPs drop by an order
of three or four, and all 42.9�10�5 once conditional on the SNPs
reported in the post-2007 literature. For the IL2RA locus, more
detailed haplotype and fine-mapping analyses would be required to
fully appreciate the complex architecture of causal variants in
this region.

The independent imputation and association analysis using
BEAGLE and PLINK identified the exact same four SNPs showing
best association signals in the four regions identified by MaCH and
MACH2DAT, confirming our findings that two are novel and two
are refined, except that the BEALGE/PLINK generated a P-value
for the CDKN2B locus slightly above the 5�10�8 threshold. Both
MaCH and BEAGLE have been recommended for practical
use because of their user-friendly interface and computational
efficiency.23–26

We adopted a conservative genome-wide significance threshold
2.5�10�8 to guard against false positives particularly given that we
are testing seven phenotypic traits instead of a single one. The fact
that we only have genome-wide significant signals from four well-
established regions suggests that our conservative threshold fulfilled
its purpose. Future studies may gain additional power with more
sophisticated methods to control type-I error27–30 or with methods
that handle multiple related phenotypes.31,32 On the other hand, for
four out of the seven traits, our 1000 genomes-based imputation
detected nothing novel on top of the original WTCCC study,
suggesting that the potential power of imputation is limited by the
genetic architecture of the trait(s) of interest and the genomic coverage
of the GWAS genotyping panel used.

We present here an example where 1000 genomes-based imputation
identifies both novel and refined signals. By using 1000 genomes-
based imputation, we identified two SNPs that are genome-wide
significantly associated with two of the seven traits in the WTCCC
study, neither discovered in the original study with only genotyped
SNPs. The two SNPs ‘missed’ from the original analysis serve as
positive controls because the two residing regions were both estab-
lished by other studies after the 2007 WTCCC publication. Our
analysis also provided further insights into two regions identified in
the original study by identifying SNPs that are either more significant
or point to a biologically more plausible gene. Importantly, we had
no other signals based on our conservative genome-wide significance
threshold, suggesting that we have no inflated false discovery rates.
Taken together, our findings suggest that applying 1000 genomes-
based imputation to the large number of GWAS data sets existing
nowadays has the potential both to identify novel disease-associated
genetic variants and to advance our understanding in known regions
by examining a much denser set of imputed variants. We believe that
larger reference panels continuing to be released by the 1000 Genomes
Project will benefit the community even more, by performing single-
marker analysis as presented here or rare or structural variant
analysis.11,33
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