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Serotonin (5-hydroxytryptamine, 5-HT) signaling is thought to modulate nervous system development. Genetic and pharmacological

studies support the idea that altered 5-HT signaling during development can have enduring consequences on brain function and

behavior. Recently, we discovered that 5-HT can modulate thalamic axon guidance in vitro and in vivo. Embryonic thalamic axons

transiently express the 5-HT transporter (SERT; Slc6a4) and accumulate 5-HT, suggesting that the SERT activity of these axons may

regulate 5-HT-modulated guidance cues. We tested whether pharmacologically blocking SERT using selective 5-HT reuptake inhibitors

(SSRIs) would impact the action of 5-HT on thalamic axon responses to netrin-1 in vitro. Surprisingly, we observed that two high-affinity

SSRIs, racemic citalopram ((RS)-CIT) and paroxetine, affect the outgrowth of embryonic thalamic axons, but differ with respect to their

dependence on SERT blockade. Using a recently developed ‘citalopram insensitive’ transgenic mouse line and in vitro pharmacology, we

show that the effect of (RS)-CIT effect is SERT independent, but rather arises from R-CIT activation of the orphan sigma-1 receptor(s1,

Oprs1). Our results reveal a novel s1 activity in modulating axon guidance and a 5-HT independent action of a widely prescribed SSRI. By

extension, (RS)-CIT and possibly other structurally similar SSRIs may have other off-target actions that can impact neural development

and contribute to therapeutic efficacy or side effects.
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INTRODUCTION

Genetic studies in mice show that disruption of
5-hydroxytryptamine (5-HT) signaling during a restricted
period of pre- and postnatal development results in long-
term behavioral abnormalities, such as increased anxiety
in adulthood (Gaspar et al, 2003; Oberlander et al, 2009).
Interestingly, the fetal programing of adult anxiety can be
triggered either by a transient knockdown of a single 5-HT
receptor (5-HT1A, (Gross et al, 2002)) during the pre- and
early postnatal periods or by a transient developmental
exposure to SSRIs (Ansorge et al, 2004; Ansorge et al, 2008).
Moreover, the forebrain acquires placenta-derived
5-HT during a period of substantial axon outgrowth
(Bonnin et al, 2011), for example of thalamocortical axons

(Lopez-Bendito and Molnar, 2003). This suggests that the
control of 5-HT signaling, either through the expression and
activity of 5-HT receptors or through extracellular 5-HT
availability, is critical for normal brain development. In
vitro, we demonstrated that 5-HT signaling through 5-HT1B/
1D receptors switches the response of thalamic axons to
netrin-1 from attraction to repulsion, mediated by a cAMP-
dependent pathway (Bonnin et al, 2007). Furthermore,
disruption of 5-HT1B/1D receptor expression in the dorsal
thalamus by in utero electroporation at embryonic (E) 12.5
leads to abnormal navigation of thalamocortical axons
through the internal capsule and cortex (Bonnin et al, 2007).

Interestingly during embryonic and early postnatal deve-
lopment, thalamocortical axons transiently express SERT
(Lebrand et al, 1996; Bruning and Liangos, 1997; Bruning
et al, 1997; Lebrand et al, 1998; Narboux-Neme et al, 2008).
The SERT-mediated uptake of 5-HT in thalamic axons has
been shown to influence the precision of cortical barrel map
formation (Lebrand et al, 1996; Persico et al, 2001).
However, during the early phase of fetal thalamocortical
axon growth, the role of SERT is not known. Based on 5-HT
signaling effects on thalamic axons guidance, we hypothesized
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that SERT-mediated uptake could restrict availability of
extracellular 5-HT levels in the vicinity of growing axons
and therefore affect the amplitude of 5-HT modulation netrin-
1 signaling. A prediction of this hypothesis is that blockade of
SERT in growing thalamicaxons in vitro should decrease the
minimal concentration of extracellular 5-HT needed to switch
axonal responses to netrin-1 from attraction to repulsion.

Therefore, we sought to compare the effects of increasing
concentrations of 5-HT on the response of thalamic axons
to netrin-1 in the absence and presence of a potent SSRI,
(RS)-CIT. Surprisingly, (RS)-CIT, but not the SSRI paroxetine,
switched thalamic axons response to netrin-1 in the absence of
extracellular 5-HT. Moreover, thalamocortical axons generated
from transgenic mice that lack high-affinity (RS)-CIT recog-
nition by SERT remained sensitive to the SSRI. We further
show that (RS)-CIT effects arise via R-CIT activation of the
high-affinity s1 receptor (Su, 1982; Narita et al, 1996).

MATERIALS AND METHODS

Animals and Reagents

Timed-pregnant C57BL/6J and CD-1 mice were purchased
from the Jackson Laboratory (Bar Harbor, ME, USA). Plug
date was considered E0.5 and the age of individual embryos
confirmed by measuring the crown-rump length and
checking for developmental landmarks such as digits and
eye formation. The production and characterization of SERT
M172 transgenic mice were described earlier (Thompson
et al, 2011). SERT M172 homozygous embryos were
obtained by crossing homozygous males and females. This
line has been backcrossed on the C57Bl/6J background for
more than 10 generations. All research procedures using
mice were approved by the Institutional Animal Care and
Use Committee at University of Southern California and
conformed to NIH guidelines. Unless otherwise noted, all
reagents were purchased from Sigma (St Louis, MO, USA).

Explant Assays

We used a coculture assay to monitor axonal growth from
embryonic thalamic explants toward or away from a source
of soluble guidance cues (HEK-293 cells stably expressing
netrin-1 or slit-2Fgift from J Wu (Northwestern University)).
The procedure, quantification methods, and statistical analysis
were previously described in detail in Bonnin (2010) and
Bonnin et al, (2007). The explants were coded so that the
investigators performing the quantitative analyses of axon
growth were blinded to the specific treatments.

Immunohistochemistry

Brains (n¼ 3) were harvested from E16.5 embryos and
immersion-fixed overnight at 41C in phosphate-buffered
4% paraformaldehyde (PFA; pH 7.2). Following cryoprotec-
tion in sucrose–phosphate buffer, sagittal cryostat sections
(20 mm) were collected for staining. PFA-fixed explants
(15 min) were incubated overnight in primary antibody
(2% BSA, 0.2% Tween-20 in PBS) using the following
dilutions: anti-s1, 1:500 (kind gift from Dr Su (NIH/DHHS));
Tuj1, 1:500 (Covance). For sections, the primary antibodies
used were: rabbit anti-SERT (Sigma; 1:200) and goat anti-Netrin

G1a (NetG1a, RnD; 1:250). NetG1a is a marker of fetal thala-
mocortical axons (Nakashiba et al, 2000; Bonnin et al, 2011).
Sections and explants were washed extensively, incubated
overnight with cy2/3-conjugated secondary antibodies (Jackson
Immunoresearch, 1:1000), washed, and for cryostat sections,
embedded in Prolong Gold with DAPI (Invitrogen) and
imaged using an Axiocam CCD camera coupled to a Leica
MZFLIII stereoscope and an Olympus confocal microscope.

RT-PCR

Primers used for s1 receptor cDNA detection, using 30 PCR
cycle amplification, were as follows: reverse: 50-ACGGAA
TAACACCCCGGCCGT-30; forward: 50-TTCTGCACGCCTC
GCTGTCTG-30. Primers span an 1102-bp intron of the s1
receptor gene (Mus musculus sigma non-opioid intracel-
lular receptor 1; Accession #: NM_011014) and therefore the
255-bp amplicon can only result from PCR amplification of
the s1 cDNA.

RESULTS

In order to explore the actions of 5-HT and SERT on axon
outgrowth in vitro, we used a previously described E14
thalamic explant assay (Braisted et al, 2000; Bonnin et al,
2007; Bonnin, 2010). This method allows the monitoring of
axon responses to the soluble guidance netrin-1 in a three-
dimensional matrix. We first established a dose response of
5-HT effect on thalamic axons response to netrin-1, using
concentrations ranging from 3 nM to 30 mM, the latter
being a concentration that we showed can switch netrin-1
attraction to repulsion (Bonnin et al, 2007). Replicating our
previous study (Bonnin et al, 2007), 5-HT significantly
affected thalamic axon response to netrin-1 at concentra-
tions equal to or greater than 30 nM in the culture medium
(Figure 1a). The lowest concentration of 5-HT tested (3 nM)
had no significant effect on directional growth. We then
tested whether a high-affinity blocker of SERT-mediated
5-HT uptake could decrease the minimal concentration of
extracellular 5-HT capable of switching their response to
netrin-1. RT-PCR and immunostaining demonstrated that
SERT is expressed by thalamic axons at E14 and E16
(Figures 1c–f; Bruning and Liangos, 1997; Bruning et al,
1997; Lebrand et al, 1998). To block thalamocortical axon
5-HT uptake in vitro, we performed a 5-HT dose-response
assay in the presence of the potent SERT antagonist (RS)-
CIT (10 mM). As expected, in the presence of (RS)-CIT the
lowest concentration of 5-HT (3 nM) was able to affect thalamic
axons responses to netrin-1 (Figure 1b). Unexpectedly,
however, (RS)-CIT alone was equally capable of switching
the response of thalamic axons to netrin-1 from attraction
to repulsion (Figure 1b), even in the absence of extracellular
5-HT. In separate (RS)-CIT dose-response experiments, we
observed that citalopram concentrations as low as 30 nM
were sufficient to significantly affect thalamic axons
response in the absence of extracellular 5-HT (not shown).

These data suggest that blocking SERT in thalamic axons
triggers a change in responsiveness to netrin-1, even in the
absence of extracellular 5-HT-mediated signaling. Alterna-
tively, (RS)-CIT could directly affect axons behavior inde-
pendently of its binding to SERT. In order to test this
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possibility, we took advantage of a recently developed
transgenic mouse line, mSERT M172; these mice possess a
modified copy of SERT with a single amino-acid substitu-
tion, I172M, proximal to the 5-HT-binding site (Henry et al,
2006; Thompson et al, 2011). The M172 substitution does
not impact the recognition or transport of 5-HT, but
disrupts high-affinity binding of many SSRIs. Importantly,
the M172 substitution confers an B1000-fold reduction in
potency for (RS)-CIT but not paroxetine, another SSRI at
mSERT (Henry et al, 2006), and mice bearing the substitu-
tion display insensitivity to (RS)-CIT in vivo. Therefore, we
compared the effect of 5-HT (30mM), (RS)-CIT (10mM), and
paroxetine (10mM) on the response of thalamic axons to
netrin-1 using explants generated from homozygous mSERT
M172 mice or wild-type embryos. As previously observed
(Figure 1a), 5-HT and (RS)-CIT switched the attractive effect
of netrin-1 on thalamic axons from wild-type embryos, but
paroxetine did not (Figure 2a). Furthermore, in cultures
generated from SERT M172 embryonic tissue, 5-HT and
(RS)-CIT still switched the attractive effect of netrin-1 on
thalamic axons, and paroxetine again had no effect
(Figure 2b). These data strongly argue that (RS)-CIT effects
are not mediated by SERT antagonism.

An alternative target of (RS)-CIT is the s1 receptor (Su,
1982; Narita et al, 1996; Sanchez and Meier, 1997). Like
several other SSRIs, (RS)-CIT can act as an agonist of s1
receptors, displaying an affinity of B2–300 nM for this
binding site; in contrast, paroxetine shows a much lower
affinity (B1900 nM) (Narita et al, 1996; Sanchez and Meier,
1997). s1 receptor transcripts are expressed in the dorsal
thalamus at E14 and E16 (Figure 3d), and the presence of
receptor proteins was detected along thalamic axons growing
in vitro (Figure 3e). In order to test whether s1 mediates
the (RS)-CIT effect on the response of thalamic axons to

netrin-1, we co-incubated the cultures with (RS)-CIT (10mM)
and BD-1047 (1mM), a potent s1 receptor antagonist
(Maurice and Su, 2009). Results showed that BD-1047 blocked
the effect of (RS)-CIT (Figure 3a). The antagonistic effect of
BD-1047 on (RS)-CIT action could be observed with
concentrations as low as 10 nM (not shown). BD-1047 by
itself had no effect (Figure 3b). Interestingly, the potent s1
receptor agonist PPBP (1mM) switched thalamic axons
response to netrin-1 from attraction to repulsion, similar to
the effect of (RS)-CIT (Figure 3b). Given that (RS)-CIT is
acting in a SERT-independent manner on axon guidance and
that the enantiomer R-CIT displays a 100-fold shift in potency
at SERT 172M (Henry et al, 2006), the R-isomer could be
preferentially acting at the s1 receptor. We therefore tested
the effects of R- and S-CIT on axon guidance independently.
Results showed that R-CIT, but not S-CIT, switched thalamic
axons response to netrin-1 (Figure 3c); furthermore, BD-
1047 blocked the effect of R-CIT (Figure 3c).

DISCUSSION

The data presented here reveal an unexpected, direct effect
of the SSRI (RS)-CIT on embryonic thalamic axons response
to the guidance cue netrin-1 in vitro. Our initial hypothesis,
based on 5-HT signaling effects on thalamic axons guidance
(Bonnin et al, 2007), was that SERT-mediated uptake could
control extracellular 5-HT levels in the vicinity of growing
axons and therefore affect the amplitude of 5-HT modula-
tion of their response to netrin-1. Therefore, we tested if
blocking 5-HT uptake with SSRIs in growing thalamic axons
decreases the minimal concentration of extracellular 5-HT
capable of switching their response to netrin-1 from
attraction to repulsion in vitro. We observed surprising
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activity of (RS)-CIT alone, in the absence of extracellular
5-HT in the culture medium, affecting the response of
thalamic axons to netrin-1; this suggested that SERT anta-
gonism might be responsible for the effect, independent of
5-HT transport. Previous studies showed that SERT supports
substrate-independent transient conductance in developing

thalamocortical axons in vitro, which could affect cellular
activity and can be blocked by antagonists (Quick, 2002,
2003). In order to test whether the (RS)-CIT effect was
mediated by blocking substrate-independent SERT activity,
we measured the influence of the drug on the response of
axons to netrin-1 using thalamic explants derived from
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mSERT M172 mice. Although (RS)-CIT shows B1000-fold
reduction in affinity at the SERT-binding site in the trans-
genic mice (Henry et al, 2006; Thompson et al, 2011), the
drug still induced a significant change in thalamic axon
responsiveness to netrin-1, supporting the idea that (RS)-
CIT effects are likely mediated independently of SERT.
Interestingly, studies have shown that several SSRIs, includ-
ing fluvoxamine and citalopram, can act as agonizts of s1
receptors (Narita et al, 1996; Sanchez and Meier, 1997;
Maurice and Su, 2009). Consistent with this possibility, the
effect of (RS)-CIT was blocked by the s1 receptor antagonist
BD-1047. Additionally, (RS)-CIT effects were mimicked by
the s1 receptor agonist PPBP. Interestingly, it was shown
that the enantiomer R-CIT displays a 100-fold shift in
potency at SERT 172M (Henry et al, 2006), suggesting that
neither R- or S-CIT would be working through SERT to
modulate axon guidance, as indicated by the use of racemic
citalopram. However, given that (RS)-CIT is acting in a
SERT-independent manner on axon guidance, this raises
the possibility that the R-isomer could be preferentially
acting at the s1 receptor. Consistent with this possibility, R-
CIT alone was capable of switching thalamic axons response
to netrin-1, and the s1 receptor antagonist BD-1047 blocked
this effect. Furthermore, we tested the actions of the SSRI
paroxetine, which has higher affinity for SERT than
citalopram (Henry et al, 2006) but is not an agonist of s1
receptors(Nishimura et al, 2008; Hashimoto, 2010). Im-
portantly, paroxetine retains full potency at mSERT M172
(Henry et al, 2006). In keeping with the SERT- and 5-HT
independence of SSRI action in our assays, paroxetine had
no effect on thalamic axon responses, either in the wild-type
or mSERT I172M explants. Using RT-PCR, we confirmed
that s1 receptor is expressed in the developing thalamus at
ages used to generate explant cultures (E14 to E16), and
interestingly, the protein appeared localized in discrete,
varicose-like, regions along thalamic axons growing in vitro.

Although the mechanism by which s1 receptor activation
affects axons response to netrin-1 remains to be investi-
gated, previous studies suggest several potential pathways;
for instance, stimulation of s1 receptors with fluvoxamine,
which potentiates nerve-growth factor-induced neurite
outgrowth in PC 12 cells, is mediated by s1 receptor
interaction with IP(3) receptors, PLC-gamma, PI3K, p38MAPK,
JNK, and the Ras/Raf/MAPK signaling pathways (Takebaya-
shi et al, 2002; Su et al, 2010). Each of these pathways
contributes to axon guidance mechanisms (Bashaw and
Klein, 2010). Interestingly, s1 receptor has been localized to
the endoplasmic reticulum (ER) membrane (Mavlyutov
et al, 2010; Su et al, 2010) and can modulate cell membrane
excitability by regulating the activity of several ion channels,
including intracellular Ca2 + channels (Hayashi and Su,
2007); changes in intracellular Ca2 + concentration is a well-
known modulator of axonal responses to guidance cues
(Hong et al, 2000; Xiang et al, 2002; Nishiyama et al, 2003;
Wang and Poo, 2005). Another intriguing possibility,
related to s1 receptor presence on ER membranes, is a
direct effect on guidance cue receptors localization at the
plasma membrane. Studies have shown that axonal ER entry
sites (ERES) may be used to facilitate axon guidance by
regulating the delivery of proteins such as the EphA2
receptor to the plasma membrane (Martin, 2004; Aridor and
Fish, 2009). Interestingly, the expression pattern of ERES

protein Sar1 along growing axons in vitro (Aridor and Fish,
2009) shows striking similarities with that of s1 receptor
described here. Thus, a testable hypothesis is that citalopram
and other s1 receptor agonizts could affect netrin-1 recep-
tors (eg, DCC and Unc5c) delivery to the plasma membrane
along thalamic axons and in growth cones. Similar to
previously described regulation of DCC translocation to the
cell surface by changes in intracellular cAMP, such ER/s1-
mediated receptor delivery modulation could affect axons
response to netrin-1 (Bouchard et al, 2004; Moore et al,
2008). In vivo, citalopram effect on SERT would concur-
rently raise extracellular 5-HT concentration potentially
leading to convergence of increased signaling through
5-HT1B/1D receptors (Bonnin et al, 2007) and s1 receptors,
which both induce switching of thalamic axons response to
netrin-1 (Bonnin et al, (2007) and present results).

Although an effect of citalopram on axon guidance in vivo
through s1 receptors must now be demonstrated, our
results suggest that in utero exposure of the fetal forebrain
to this SSRI could affect neural development, independent
of the effects of manipulating 5-HT signaling in vivo
(Bonnin et al, 2007). Citalopram crosses the placental barrier
(Hendrick et al, 2003) in humans, raising the possibility that
this agent, in particular the R-isomer, and its congeners may
have unintended consequences on fetal brain development.
Mood disorders themselves place the mother and fetus at risk
(Casper et al, 2003; Yonkers et al, 2009), and our studies
cannot serve to predict the risk/benefit aspects of SSRI
treatments during pregnancy. Further studies are needed to
determine whether s1 receptor-mediated actions participate in
the therapeutic or side effects of antidepressant treatment.
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