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A General Framework for Two-Stage Analysis
of Genome-wide Association Studies and Its Application
to Case-Control Studies

James M.S. Wason1 and Frank Dudbridge2,*

Two-stage analyses of genome-wide association studies have been proposed as a means to improving power for designs including family-

based association and gene-environment interaction testing. In these analyses, all markers are first screened via a statistic thatmay not be

robust to an underlying assumption, and the markers thus selected are then analyzed in a second stage with a test that is independent

from the first stage and is robust to the assumption in question. We give a general formulation of two-stage designs and show how one

can use this formulation both to derive existing methods and to improve upon them, opening up a range of possible further applica-

tions. We show how using simple regression models in conjunction with external data such as average trait values can improve the

power of genome-wide association studies. We focus on case-control studies and show how it is possible to use allele frequencies derived

from an external reference to derive a powerful two-stage analysis. An illustration involving the Wellcome Trust Case-Control Consor-

tium data shows several genome-wide-significant associations, subsequently validated, that were not significant in the standard analysis.

We give some analytic properties of the methods and discuss some underlying principles.
Introduction

Although there is consensus on simplemethods of primary

statistical analysis in genome-wide association studies

(GWASs), there have been continuing efforts to develop

more powerful approaches as the vast extent of polygenic

heritability of complex traits has become apparent.1,2

A strategy that has received much attention is that

of reducing the inherent multiplicity by performing a

two-stage analysis. In the first stage, a preliminary

screening of markers is performed, and this is followed

by a final analysis on a subset of markers with a reduced

multiple-testing adjustment. For example, it can be cost

efficient to perform the full GWAS on a subset of the study

sample but to hold back the remainder for a confirmatory

analysis of the most promising markers.3,4 Alternatively,

one can analyze all data in different ways at each stage

and use each analysis to reduce the number of tests

performed.5,6

In this paper we are concerned with a class of two-stage

approaches in which a single sample is analyzed twice with

two independent statistics. In the first pass, the data are

analyzed with a statistic that is valid only under some

underlying assumptions. The markers that are selected

from this stage are then analyzed in a second pass via an

independent test that is robust to the assumptions in

question. Because the statistics in the two stages are inde-

pendent by construction, the final multiplicity depends

only on the markers tested in the second stage; these

markers are potentially much fewer than those in the first

stage.

This approach was initiated in the context of family-

based association tests of quantitative traits.7 The standard
1Medical Research Council Biostatistics Unit, Institute for Public Health, Ca

London School of Hygiene and Tropical Medicine, WC1E 7HT, UK

*Correspondence: frank.dudbridge@lshtm.ac.uk

DOI 10.1016/j.ajhg.2012.03.007. �2012 by The American Society of Human

760 The American Journal of Human Genetics 90, 760–773, May 4, 2
analysis is a within-family test that is robust to population

stratification, but a first-stage analysis can be performed

with between-family information that might be con-

founded by stratification. Reasonable gains in power over

standard GWAS analysis have been postulated,8 and the

method has been adapted for binary traits.9

A related approach has been developed for tests of gene-

environment interaction.10 The traditional test compares

the gene-environment association in cases to the same

quantity in controls. In the two-stage approach, the first

stage tests the marginal gene-environment association in

a full case-control sample. This test is independent of the

traditional test but assumes that the gene and environ-

ment are not associated in the source population. Again,

simulations have demonstrated that using this approach

results in potential gains in power.

An approach for gene-gene interaction uses the two

marginal gene-disease associations in the first stage.11

Although this is also a two-stage method, it is somewhat

different from the methods discussed here because the

two stages are not independent (although in practice

they are nearly so) and because there is no additional

assumption needed in stage 1. Recent work has adapted

this idea to gene-environment interaction and has shown

that it can offer small improvements over the earlier

method.12

Another two-stage approach has been proposed for case-

control analysis. In this approach, the first stage compares

the deviation from Hardy-Weinberg equilibrium (HWE) in

cases to that in controls.13 The second stage uses a standard

test of the trend in log-odds of disease. This approach is of

limited use in real GWASs because most associations found

to date have followed a log-additive model of risk, under
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which both cases and controls would follow HWE and the

first stage would have no power.

In this paper we propose a general formulation of two-

stage approaches in terms of constructing two indepen-

dent estimators of a single quantity. We show how

family-based and gene-environment strategies can be ex-

pressed in this formulation and show how the principle

can be generalized to a wide range of analyses. We focus

on linear models and show that when external reference

information, such as allele frequencies or trait means, is

available, it can serve to improve the power of a GWAS

while retaining robustness to mis-specification of that

information. Illustrating our approach on data from the

Wellcome Trust Case-Control Consortium (WTCCC),14

we identify as significant several regions that were not

significant in the original analysis but whose association

with disease has been validated by follow-up studies.
Material and Methods

Construction of Two-Stage Analysis
We consider the analysis of individual markers within a GWAS.

For ease of exposition, we assume the markers are diallelic and

have additive effects on an appropriate scale, but our analysis

and results generalize without difficulty. Suppose we are concerned

with the effect of a marker expressed by a parameter b1. A moti-

vating example is the linear regression model in which the trait

Yof a subject is related to its genotype by EðYjXÞ ¼ b0 þ b1X, where

x denotes the number of minor alleles carried. Then the usual

null hypothesis is H0:b1 ¼ 0, which may be tested by a Wald test

on the maximum likelihood estimator (MLE) bb1. This will form

the basis of the second stage of the analysis.

Suppose that the trait also depends on a nuisance parameter

b0, which we will also estimate from the data. In the linear

regression example, b0 is the intercept. Now let us postulate a

fixed value b�0 a priori. If indeed b0 ¼ b�0, then

b1 ¼ b1 þ sðb0 � b�0Þ for any s. Notice that (1) bb1 þ sðbb0 � b�0Þ andbb1 can be written as A þ B and A � B, where

A ¼ bb1 þ
1

2
sðbb0 � b�0Þ and B ¼ 1

2
sðbb0 � b�0Þ and that (2) if bb0 and

bb1 areMLEs, thenA and B are asymptotically normally distributed.

If A and B have the same variance and are normally distributed,

then A þ B and A � B are independent. Thus by choosing s such

that var

�bb1 þ
1

2
sðbb0 � b�0Þ

�
¼ var

�
1

2
sðbb0 � b�0Þ

�
, we can form

an estimator for b1 that is asymptotically independent of bb1.

A calculation gives s ¼ �varðbb1Þ=covðbb0; bb1Þ.
We therefore have the following general two-stage procedure:

Stage 1: calculate bb1 þ sðbb0 � b�0Þ for all markers, where

s ¼ �varðbb1Þ=covðbb0; bb1Þ, and let T1 ¼ bb1 þ sðbb0 � b�0Þ=SEðbb1þ
sðbb0 � b�0ÞÞ.

Stage 2: for all markers for which jT1j > t1, where t1 is a fixed

threshold, calculate T2 ¼ bb1=SEðbb1Þ. Declare as significant those

markers for which jT2j > t2, where t2 is chosen such that under

H0, PrðjT2j > t2Þ ¼ Ma=m0, where a is the target type 1 error rate

per marker, M is the total number of markers, and m0 is the

number of markers carried forward from stage 1.

The first-stage threshold t1 should be high enough to eliminate

many null markers from stage 2 but low enough to permit most
The Am
associatedmarkers to pass stage 1. We discuss the choice of t1 later.

The two key properties of this procedure are as follows: (1) if the

postulated value b�0 is correct, then bb1 þ sðbb0 � b�0Þ and bb1 are two

independent estimators of the same quantity b1; and (2) whether

or not b�0 is correct, the two estimators remain independent, and

the two-stage procedure maintains the specified type 1 error

rate.10 We note that score or likelihood-ratio tests could be used

in place of T1 and T2 because of their asymptotic equivalence to

theWald tests. TheWald tests are needed for the formal definition

of the procedure because they are independent by construction.

In some circumstances we might be more interested in the

difference between two parameters, b1 � b0, in which a postulated

value b�0 is again available. An example of such a difference might

be that in allele frequencies between cases and controls. By similar

arguments, we then base stage 1 on

bb1 � bb0 þ s
�bb0 � b�

0

�
;

where

s ¼ var
�bb1

�þ var
�bb0

�� 2cov
�bb0; bb1

�
var

�bb0

�� cov
�bb0; bb1

� (1)

and stage 2 on bb1 � bb0.

The variances and covariances used in the calculation of s

typically dependon the true parameters b0;b1 which are unknown.

Onecan estimate them fromthedata by assuming either thenull or

alternative hypothesis. In common with many standard proce-

dures, we assume the null hypothesis when estimating s, which

also has the effect of reducing or removing any correlation induced

between T1 and T2 by the estimation of standard errors.

We now show how previous two-stage methods can be ex-

pressed in this formulation, and we will then describe some

additional applications.
Family-Based Association
Two-stage approaches of this type were initiated by Van Steen

et al.,7 who considered parent-child trios in which markers are

tested for association to a quantitative trait in the children. The

second stage uses the FBAT test,15 whereas the first stage is based

on a ‘‘conditional mean model,’’ which predicts the expected

trait in the child given the parental genotypes. Up to technical

details this approach is equivalent to one based on the orthogonal

linear model of Abecasis et al.16

EðY jX;XM ;XFÞ ¼ mþ bb Bþ bwW;

where B ¼ (XM þ XF)/2, in which XM and XF are the number

of minor alleles in the mother and father, respectively, and W ¼
X � B. The within-family association parameter bw is unbiased

for the additive effect of the minor allele, even under population

stratification, whereas the between-family parameter bb is

confounded by stratification. This model can be rewritten as

EðY jX;XM ;XFÞ ¼ mþ ðbb � bwÞBþ bwX;

from which we see that our two-stage approach uses b1 ¼ bw,

b0 ¼ bb � bw and a postulated value (under no population stratifi-

cation) of b�0 ¼ 0. Because bb and bw are independent by construc-

tion, we have s ¼ 1 so that stage 1 is based on bb.

Forbinary traits, a commondesignuses case-parent trios, inwhich

case the above model cannot be used because there is no variation

in Y. Murphy et al.9 propose an approach that is equivalent to

one based on the retrospective full likelihood of Dudbridge17
erican Journal of Human Genetics 90, 760–773, May 4, 2012 761



PrðC jM; F;Y ¼ 1Þ ¼ bwXðCÞP $

aM;F

P
c˛SðM;FÞ

bbXðcÞP P ; (2)
c˛SðM;FÞ
bwXðcÞ

m;f

am;f
c˛Sðm;f Þ

bbXðcÞ

where C, M, and F are the genotypes of the child, mother, and

father, respectively, X(C) is the number of minor alleles in geno-

type C, S(M,F) is the set of phased genotypes of the possible chil-

dren of parents M and F, and aM;F are additional parameters that

model the mating-type frequencies. In this model, bbw and bbb are

independent, and we can again apply our two-stage approach by

using b1 ¼ bw, b0 ¼ bb � bw, and b�0 ¼ 0, which is true under no

population stratification.

Murphy et al. prefer to estimate bb from certain restricted

comparisons of mating-type frequencies and to thus avoid the

need to estimate parameters a, which might be difficult to esti-

mate under latent population stratification. However, their

approach depends on an assumption of HWE in the population,

and such an assumption is itself sensitive to population stratifica-

tion. They give four estimators of bb, but the optimal combination

of these estimators depends on the mating-type frequencies. The

advantages of using estimators of bb that are independent of

a therefore seem limited.

Furthermore, under the commonly assumed multiplicative

model of risk, the relative risk is identified inonly oneof the estima-

tors proposed by Murphy et al. (This estimator is R2 in their Equa-

tion 6).Wewould therefore expect their approach to be less power-

ful than one based on estimating bb from the full data by using the

likelihood (Equation2).Wegiveanumerical example in theResults.

The lackof adistributional theory for theestimatorbasedonR2, and

the fact that this estimator is the solution of a quadratic equation

that might not have real roots, also argue against the use of R2 to

estimate bb. The between-family effect bb is estimated from (Equa-

tion 2) by the UNPHASED software,17 and we can then obtain

a test of bbb ¼ 0 by comparing the likelihoods of the alternative

hypothesis with and without its ‘‘-parentrisk’’ option.

Both quantitative- and binary-trait models can be generalized to

families with multiple siblings and missing parents, but this is not

our focus here. The binary-trait model can be adapted for two-

stage analysis of matched case-control studies because the case-

parent trio design is equivalent to a matched analysis of the case

and three pseudo-controls.18 The details would be straightforward

and are deferred to a future study.

Gene-Environment Interaction
In themethod proposed byMurcray et al., a binary environmental

exposure is considered, and we wish to test whether it modifies the

odds ratio of a genetic marker in a case-control study.10 The first

stage treats the environment as the response and tests for

a marginal association between gene and environment in the

entire sample of cases and controls:

E½logitðPrðE ¼ 1 jXÞÞ� ¼ g0 þ ggX (3)

The second stage tests the interaction term in a standard logistic

regression model for case-control data

E½logitðPrðY ¼ 1 jX;EÞÞ� ¼ mþ bgXþ beEþ bgeXE

To relate this method to our formulation, we note that the interac-

tion term bge is the same as that in the model with environment as

outcome

E½logitðPrðE ¼ 1 jX;YÞÞ� ¼ m0 þ b0
gXþ byY þ bgeXY; (4)
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so we can base the second stage on Equation 4 by setting b1 ¼ bge.

Under the stage 1 assumption of gene-environment independence

in the population, and under the assumption of a rare disease,

there is no association between the gene and environment in

the controls, so that b0g ¼ 0. Therefore, we can use b0 ¼ b0g with

the postulated value b�0 ¼ 0, and we base the first stage on

bge þ sb0g , where s ¼ �varðbbgeÞ=covðbbge; bb0
gÞ.

This two-stage approach differs from that of Murcray et al., who

base the first stage on the marginal model (Equation 3); the differ-

ence is that we condition on Y in both stages. Indeed, their

marginal parameter gg confounds the parameters b0g ;by, and bge,

whereas our scheme estimates bge in both stages. Although the

use of gg gives correct type-1 error rates across the two stages, it

can lead to increased type-1 error rates within stage 1 if b0g and

by are such that ggs0 even while bge ¼ 0. This could lead to

a decrease in power because more null markers might be selected

into stage 2 than expected from the choice of first-stage threshold.

Our proposed approach based on bge þ sb0g does have the expected
type-1 error rate in stage 1 and in that respect is robust to the main

effects bg and be of gene and environment, respectively. In the

Results we give some numerical illustrations of this point.
Quantitative-Trait Association
We now consider some applications of our two-stage formulation

to common designs in GWASs. For quantitative traits, a simple test

of association is derived from the linear regression model

EðYjXÞ ¼ b0 þ b1X. The two stages can be based on bb1þ
sðbb0 � b�0Þ and bb1 as described, but there is a difficulty in specifying

the postulated value of the intercept b�0. This is the expected trait

value for carriers of the reference genotype, but this is typically not

known.Wemight, however, have an external estimate of the pop-

ulationmean, and this estimate serves as a good approximation to

b0 when b1 is small. We can therefore apply the two-stage analysis

by using the population mean EðYÞ as b�0, but the following

remarks show a limitation of this approach.

The variance-covariance matrix of ðbb0; bb1Þ is

s2

�
n

P
XP

X
P

X2

��1

¼ s2

n
P

X2 � ðPXÞ2
� P

X2 �P
X

�P
X n

�

where s2 is the variance of the trait, n is the number of observa-

tions and the sums are over the sample subjects. Therefore

s ¼ X
�1

, where X is the sample mean of genotype scores X.

Then, conditional on a vector of scores X, the stage 1 estimator

has expectation

E
�bb1 þ s

�bb0 � b�
0

� jX� ¼ E
�bb1 þX

�1�bb0 � b�
0

� jX�
¼ X

�1�
EðY jXÞ � b�

0

�
Therefore, if EðYjXÞ ¼ b�0, the stage 1 statistic has a mean of zero,

whatever the value of b1, and has no power to detect an associa-

tion in the first stage. Under random ascertainment, we have

asymptotically EðYjXÞ ¼ EðYÞ ¼ b�0, so we expect the first stage to

contribute no power to the analysis. In practice, we expect the

two-stage analysis to offer a negligible gain in power in a randomly

ascertained sample if we use the population mean for b�0.
Two-stage analysis could offer improved power in a sample as-

certained for X because then the expected sample mean EðYjXÞ
differs from the population mean EðYÞ ¼ b�0. This would apply to

a ‘‘recall by genotype’’ study, in which subjects carrying particular

rare variants are over-sampled in order to improve the power to

detect their effects. An example not involving genotypes is
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a comparison of transcript levels ðYÞ between normal tissue

samples ðX ¼ 0Þ and abnormal (e.g., tumor) samples ðX ¼ 1Þ;
here the population mean would be an accurate estimate of the

regression intercept b0. These examples are not standard instances

of GWASs because selection on exposures X cannot be done simul-

taneously for all markers. Instead, this approach can be applied to

so-called phenome scans,19,20 in which a limited set of markers X,

on which the sample is selected, are tested for association to a large

set of traits Y, for each of which a population mean is postulated.

Case-control studies are a further example of sample selection, to

be discussed below.

More generally, we may use a generalized linear model to repre-

sent the genotype-trait association

hðEðY jXÞÞ ¼ b0 þ b1X;

where h is an appropriate link function. Here we can again use an

external estimate of the population mean in the postulated value

of b0. For example, for a disease trait the usual link function is the

logit, and we may use the population prevelance EðYÞ to specify

b�0 ¼ hðEðYÞÞ. Again, we can expect negligible gain in power under

random ascertainment, although we state this as a conjecture

because there is no general closed form for bb1 þ sðbb0 � b�0Þ.

Case-Control Studies
The standard analysis of case-control data is a prospective logistic-

regression model:

E½logitðPrðY ¼ 1 jXÞÞ� ¼ b0 þ b1X:

Although the data are selected on Y, this model gives the same

inference on b1 as a retrospective model for PrðXjYÞ and is compu-

tationally easier to fit to data. However, the intercept b0 is biased

for the population risk of disease, and the estimate of covðbb0; bb1Þ
is incorrect under case-control sampling. Therefore, naive use ofbb1 þ sðbb0 � b�0Þ as the stage 1 statistic is problematic.

One solution is to fit the model to the data with the addition of

the fixed offset logðð1� pÞq0=pð1� q0ÞÞ, where p is the proportion

of cases in the sample and q0 is the population prevalence of

disease.21 We can then use bb1 þ sðbb0 � b�0Þ in stage 1 in the usual

way, by using q0 again in b�0 ¼ logitðq0Þ. However, as we argued

above, this approach would have little power unless there were

also selection for genotypes X.

Alternatively, in stage 1 we can adopt a retrospective model in

which the outcome is genotypes. For simplicity, we describe an

approach that uses alleles as the outcome, which can be easily

generalized to genotypes. Treating alleles now as the sampling

unit, let X ¼ 0 for a major allele and 1 for a minor allele. We fit

the logistic regression model

E½logitðPrðX ¼ 1 jYÞÞ� ¼ b0 þ b1Y;

where b0 is now the log-odds of the minor allele in controls. With

an external estimate of the population allele frequency, we can

base stage 1 on bb1 þ sðbb0 � b�0Þ, where b�0 is the logit of the postu-

lated allele frequency. Such estimates are becoming increasingly

available through the growth of biobanks and public repositories

of genotypes from control and population samples. As before,

this approach only has power if the data are selected for Y, which

does indeed apply to a case-control study.

Treating alleles as the response assumes HWE in the population,

and a more robust approach would be to use a generalized logistic

model to treat genotype as a categorical response. Alternatively,

HWE could be incorporated into the stage 1 assumption, and
The Am
a robust test from prospective logistic regression (such as the

Armitage trend test) could be used in stage 2.

Many software packages report allele frequencies separately

for the cases and controls, and we can use these separate frequen-

cies to derive a retrospective stage 1 statistic without fitting

a logistic regression model. Let p0 denote the allele frequency in

controls, p1 the frequency in cases, and p* the external estimate

of allele frequency. Then stage 1 can be based on Equation 1, as

follows:

log

�bp1

�
1� bp0

�
ð1� bp1Þbp0

�
þ s log

�bp0ð1� p�Þ�
1� bp0

�
p�

�
;

where

s ¼ varðlogitðbp1ÞÞ þ var
�
logit

�bp0

��
var

�
logit

�bp0

��
¼

n�1
1

�
p�1
1 þ ð1� p1Þ�1

	
þ n�1

0

�
p�1
0 þ �

1� p0
��1

	
n�1
0

�
p�1
0 þ �

1� p0
��1

	

¼ 1þ n0

n1

;

where n0 and n1 are the numbers of controls and cases, respec-

tively, under the null hypothesis that p0 ¼ p1. Thus, it is straight-

forward to conduct the two-stage analysis of a case-control study

by using the output of packages such as PLINK22 and

UNPHASED.17

For good power, we need the external estimate p* to be close to

the allele frequency in controls p0. If the controls are selected to be

disease free but the external estimate is from the general popula-

tion, then the estimate will be accurate for a rare disease but less

so for a common disease. In Appendix A we show that, when

the controls are screened but the external estimate p* is obtained

from an unselected sample, the first-stage statistic has expectation

zero, and no power, when the prevalence q0 is

q0 ¼
~p
�
1þ ~p

	�1

� p0

p1 � p0
(5)

where ~p ¼
�

p1
1� p1

�v�
p0

1� p0

�1�v

with v ¼
�
1þ n0

n1

��1

:

Power Calculations
To illustrate power gains that are possible through a two-stage

analysis, we perform power calculations for a case-control study

by using reference allele frequencies. For this section, let

b0 ¼ logitðp0Þ and b1 ¼ logitðp1Þ. Although b�0 is fixed in the anal-

ysis, we assume that it is estimated from an external sample of n�
0

subjects, and we calculate the expected power over all markers if

there are fixed allele frequencies in cases and controls.

The mean of bb1 � bb0 þ sðbb0 � b�0Þ is

m1 ¼ b1 �
n0

n1

b0 þ
�
1þ n0

n1

�
b�
0;

and its variance is

s2
1 ¼ 1

n1p1ð1� p1Þ þ
1

n1p0
�
1� p0

�þ �
1þ n0

n1

�2
1

n�
0p

�
0

�
1� p�0

�:
The asymptotic probability that the marker will pass stage 1 is
erican Journal of Human Genetics 90, 760–773, May 4, 2012 763



1�F

�
F�1

�
1� a1

2

	
� m1

s1

�
þF

�
F�1

�a1

2

	
� m1

s1

�
;

where a1 is a p value threshold for the Wald test of bb1 � bb0þ
sðbb0 � b�0Þ. Similarly, the mean and variance of the second stage

statistic are

m2 ¼ b1 � b0

and

s2
2 ¼ 1

n1p1ð1� p1Þ þ
1

n0p0
�
1� p0

�:
If the external sample is from the same population as the sample

at hand, we can assume that stage 1 has the specified type-1 error

rate, and asymptotically the number of markers passing stage 1 is

a1 times the number of null markers. Then the asymptotic proba-

bility of the marker’s passing stage 2 is

1�F

�
F�1

�
1� a

2a1

�
� m2

s2

�
þF

�
F�1

�
a

2a1

�
� m2

s2

�
; (6)

where a is the per-marker significance level used in the second

stage.

Because the two test statistics are independent, the overall prob-

ability that a marker will pass both stages is the product of the

probabilities of that marker’s passing each of the two stages. For

given allele frequencies in cases and controls, we can optimize

this power over a1 to determine the optimal stage 1 threshold

for that scenario.

The asymptotic power of detecting the association by a standard

one-stage analysis is

1�F

�
F�1

�
1� a

2

	
� m2

s2

�
þF

�
F�1

�a
2

	
� m2

s2

�
:

We compared the power of one- and two-stage analysis for

minor allele frequencies (MAFs) in the range 0–0.5 and odds ratios

in the range 1.0–1.5. We also varied the size of the external refer-

ence sample from 1,000–20,000 subjects to study its effect on the

overall power.

We first performed these comparisons under the assumptions

that the external reference sample is from the same population

as the sample at hand and that the disease is rare. Under these

assumptions, the postulated allele frequencies in controls are accu-

rate, ie. b0 ¼ b�0.
To consider a mismatch between reference and sample popula-

tions, we then used Wright’s separation statistic FST as a measure

of distance between populations. The Balding-Nichols model is

often used for modeling the MAFs in two or more populations

when FST > 0.23 This model assumes a background allele

frequency p. Then the MAFs in different populations are modeled

as independent Beta ðpð1� FST Þ=FST ; ð1� pÞð1� FST Þ=FST Þ random
variables.

To determine the probability of rejecting the null hypothesis for

a SNP with background allele frequency p in the presence of pop-

ulation separation FST , we integrated over the distribution of refer-

ence and sample population frequencies:

Prðreject H0 j p; p1Þ ¼
ZZ

Pr
�
reject H0 j p0; p�0; p1

�
f
�
p0
�
f
�
p�0
�
dp0dp

�
0;

(7)

where f is the probability density function for a Beta

ðpð1� FST Þ=FST ; ð1� pÞð1� FST Þ=FST Þ random variable. The rejec-
764 The American Journal of Human Genetics 90, 760–773, May 4, 2
tion probability in stage 1 is as given in Equation 7, and this is esti-

mated for all null SNPs to obtain the actual type-1 error rate which

is substituted for a1 in Equation (6). We consider the effect on

power of using reference populations with separation ranging up

to FST ¼ 0:1, the order of magnitude separating populations on

different continents.24

We finally considered the effect on power when the disease is

not rare, the controls are screened, and the reference individuals

are unscreened, so that the control allele frequencies depart

from the population frequencies. Assuming a well-matched refer-

ence population ðFST ¼ 0Þ, we have

p0 ¼ ð1� expitðgþ b1 � b0ÞÞp�0
ð1� expitðgþ b1 � b0ÞÞp�0 þ ð1� expitðgÞÞ�1� p�0

�;
where g is chosen so that the denominator is 1 minus the popula-

tion prevalence of disease. We considered the full range of preva-

lence and again substituted the estimated type-1 error rate from

stage 1 for a1 in Equation 6.
Analysis of WTCCC Data
We applied the analysis described above to data from the Well-

come Trust Case-Control Consortium.14 Although this dataset

has been well studied, it serves our illustrative purposes well

because several diseases were studied under a common design

and because follow-up studies have identified further loci that

were missed by the initial scan. Furthermore, there is a natural

reference panel from which to draw postulated allele frequencies

for eachmarker, but some these frequenciesmight not be accurate.

In the WTCCC study, about 2,000 cases from seven common

diseases were each compared to a common control sample of

about 1,500 UK blood donors and 1,500 members of the 1958

British Birth Cohort. For each disease, we combined the cases of

the six other diseases to form a reference panel from which the

population allele frequencies were then postulated. We expect

these frequencies to be accurate for most markers, but not for

those that have true disease associations; however, the two-stage

analysis is robust to such deviations. Therefore, for each disease

there are about 2,000 cases and 3,000 controls on which the stage

2 analysis is performed, and there is a reference panel of about

12,000 cases, which is used for obtaining the postulated frequen-

cies used in stage 1.

In addition to the quality-control filters applied in the original

study, for each disease we removed SNPs with a MAF < 1% or

a genotype missing rate > 1% in any of the case, control, or refer-

ence samples. This led to an average over the seven diseases of

344,087 autosomal SNPs analyzed. In line with the original study,

we applied an overall significance level per SNP of p < 5 3 10�7.

We set the first-stage threshold at c2 ¼ 5 (p ¼ 0.025), which corre-

sponds to values giving optimal power over realistic effect sizes

(see Results). For SNPs that pass the first stage, this gives an ex-

pected stage 2 threshold of about 2 3 10�5, considerably more

lenient than the standard analysis threshold.
Selection of Markers from Stage 1
We conclude this section with some remarks on the principled

selection of markers from the first stage. We have discussed

a scheme based on thresholding a statistic in the standard fre-

quentist approach. This is the method employed by Murcray

et al. for gene-environment interaction,10 and those authors

proved that it maintains the family-wise type-1 error rate over

the two stages. Other authors have suggested schemes based on
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selecting a fixed number of top-ranking markers7 or based on se-

lecting all markers into stage 2 but weighting them according to

their ranks in stage 1.8

It is helpful to view the two-stage analysis from a Bayesian

perspective, in which the prior odds of a marker association are

modified by the first stage to become the prior odds in the second

stage. When one is inferring significance from frequentist tests,

the posterior and prior odds of association are related by

PrðH1 jT > tÞ
PrðH0 jT > tÞ ¼

PrðT > t jH1Þ
PrðT > t jH0Þ

PrðH1Þ
PrðH0Þ;

where T > t denotes a significant test statistic. The first term in the

right-hand side is the ratio of the power to the type-1 error rate.

The low significance thresholds applied to markers in GWASs

reflect low prior odds of association: if we assume a reasonable

power to detect an effect, a low type-1 error rate is needed to

ensure reasonable posterior odds.25

We can use obvious notation to indicate that, in a two-stage

design,

PrðH1 jT1 > t1;T2 > t2Þ
PrðH0 jT1 > t1;T2 > t2Þ ¼

PrðT1 > t1 jH1Þ
PrðT1 > t1 jH0Þ

PrðT2 > t2 jH1Þ
PrðT2 > t2 jH0Þ

PrðH1Þ
PrðH0Þ

because the two stages are independent. Because the second-stage

threshold is defined by PrðT2 > t2jH0Þ ¼ Ma=m0, it follows from

Slutsky’s theorem that PrðT1 > t1jH0ÞPrðT2 > t2jH0Þ%a, with

equality when H0 holds for all markers. That is, each individual

marker has the same type-1 error rate in both one- and two-stage

analyses. Any differences in power between one- and two-stage

analyses therefore translate directly to differences in posterior

odds, and we can directly compare the power of the two

approaches.

This observation deals with a possible objection that stage 2

does not comprise a reduced number of hypothesis tests because

stage 1 does not formally reject any hypotheses. We see here

that, as long as the actual type 1 error rate in stage 1 (i.e.,

PrðT1 > t1jH0Þ) is consistently estimated by m0=M, the proportion

of markers carried forward, the prior odds are modified appropri-

ately by what amounts to an empirical Bayes adjustment. Thus,

there is no fundamental problem with the two-stage analysis

from a Bayesian perspective.

The rank-based schemes7,8 need further consideration. Fixing

the number of markers carried forward can be viewed as a crude

way of controlling the type 1 error rate in stage 1; it is useful

when there is no distributional theory for the stage 1 statistic, as

in the method of Van Steen et al. However, this approach seems

unnecessary under the (semi-) parametric models we have

described. Using all markers in a stage 2 weighted analysis encodes

a belief that the weights correspond to the odds of association. In

particular, the exponential weighting developed by Ionita-Laza

et al.8 reflects belief in a specific model in which a small number

of markers have strong effects and a greater number of markers

have weak effects. It is notable that the simulations reported by

those authors considered only the situation in which there is

exactly one associated SNP. Because the same set of weights would

be derived for any dataset, this approach seems untenable for ob-

taining inferences that are well calibrated against fixed prior odds.

Another scheme that uses stage 1 ranks in a joint analysis of the

two stages26 is potentially sensitive to the stage 1 assumption,

although the authors of that study showed that it is acceptably

robust in family-based studies. We wish to consider the merits of

the two-stage design per se separately from those available from
The Am
exploiting prior beliefs, and for this reason we focus on selection

based on p value thresholding in stage 1.

Ionita-Laza et al.8 also propose using the estimated second-stage

power as the first-stage statistic. This approach effectively substi-

tutes the standard error of the stage 2 estimator into the stage 1

statistic and is particularly useful for family-based designs because

the standard errors of the between- and within-family parameters

could differ considerably. In general, however, the standard errors

of the stage 1 and 2 statistics could be highly correlated, as could

be their estimators. There might therefore be little gain in power,

or a possible loss of independence between the two stages. Again,

this approach has merit in some applications, but we caution

against its adoption as a general strategy.
Results

Family-Based Association

We report a brief comparison between the approach

proposed by Murphy et al.9 for discrete traits (this

approach is henceforth denoted MWL on the basis of the

authors’ initials) and the one we propose in which the first

stage is based on bbb in Equation 2. We simulated 1,000

case-parent trios under a disease model consisting of

a single risk SNP with a multiplicative allelic relative risk

of 2 and a risk allele frequency of 0.3 in a randomly mating

population. Under this model, the only informative esti-

mator of MWL is the one derived from R2 in Murphy

et al.’s Equation 6. Across 10,000 simulated datasets, the

mean of the relative risk estimated from R2 was 2.31, and

the empirical 95% confidence interval was (1.22, 3.89).

The exponentiated mean of bbb was 1.88, and the empirical

95% confidence interval was (1.00, 3.10), showing that our

estimator has greater precision.

We also performed 10,000 simulations under the null

hypothesis with a relative risk of 1. The mean of the rela-

tive risk estimated from R2 was 2.06, and the empirical

95% confidence interval was (1.16, 3.51). This suggests

that R2 confers a finite-sample bias in the estimator. The

exponentiated mean of bbb was 1.29, and the empirical

95% confidence interval was (0.99, 2.55). This also

suggests a bias, but it is more likely a result of numerical

difficulties in estimating bbb around the null hypothesis

(we used the Nelder-Mead algorithm), also noted in

MWL. Both methods therefore have limitations, but our

approach achieves greater separation between the null

and alternative distributions of the stage 1 statistics, and

this greater separation implies greater power.
Gene-Environment Interaction

We compared the approach of Murcray et al.10 (this

approach is henceforth denoted MLG), which is based on

the marginal model (Equation 3) in stage 1, with the

approach we suggest in which both stages condition on

the case-control status (Equation 4). In Table 1 we show

power estimates under some of the same conditions as in

Table 1 of Murcray et al. The two-stage methods have

similar power in most situations, except when there is
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Table 1. Power Comparison of Gene-Environment Testing
Procedures

Disease
Model

One-Stage
Power

Two-Stage
Power

MLG
Power Correlation

Base 0.322 0.5664 0.5764 0.0007

qa ¼ 0:1 0.1579 0.3654 0.373 �0.011

qa ¼ 0:3 0.3023 0.5306 0.5572 0.004

pe ¼ 0:1 0.0379 0.1194 0.1193 �6 3 10�6

pe ¼ 0:25 0.2235 0.4548 0.4567 0.012

Re ¼ 2 0.2181 0.3938 0.4554 0.008

Rg ¼ 2 0.2812 0.519 0.5433 0.0009

Rg ¼ Re ¼ 2 0.1449 0.3224 0.4001 0.0027

pge ¼ 0:01 0.3159 0.5568 0.5563 0.0007

pge ¼ 0:05 0.3175 0.511 0.5215 0.0009

pge ¼ 0:3 0.3138 0.3969 0.4043 0.0017

pge ¼ 0:95 0.2986 0.2956 0.3015 0.0038

Comparison of the standard test of gene-environment interaction (one-stage
power) with proposed two-stage tests (two-stage power) and the two-stage
method of Murcray et al. (MLG power). qa: frequency of risk allele. pe:
frequency of risk environment. Rg : main effect of genetic exposure, dominant
model. Re: main effect of environmental exposure. Rge: gene-environment
interaction. pge: proportion of null markers with a population gene-environ-
ment odds ratio of 2. Base: baseline model with qa ¼ 0:2, pe ¼ 0:5, Rg ¼ 1,
Re ¼ 1, Rge ¼ 3, and pge ¼ 0. There were 500 cases, 500 controls, and
10,000 null markers; a1 ¼ 0:05. Power was estimated from 10,000 replicates
(SE < 0.005). Correlation: correlation between stage 1 and 2 statistics of our
method when Rge ¼ 1.

Table 2. Power Comparison of Gene-Environment Testing
Procedures When There Are Marginal Genetic Effects

Re m
One-Stage
Power

Two-Stage
Power

MLG
Power

Type-1 Error Rate
of MLG Stage 1

2 0 0.1697 0.3266 0.3918 0.05

5,000 0.1697 0.3266 0.3407 0.0925

10,000 0.1697 0.3266 0.3105 0.135

0.5 0 0.2907 0.5269 0.5339 0.05

5,000 0.2907 0.5269 0.4724 0.1013

10,000 0.2907 0.5269 0.428 0.1525

Comparison of one-stage, proposed two-stage, and MLG methods when
Rg ¼ 2 for m of the 10,000 null markers and Rg ¼ 1 for the rest. Other param-
eters are as in the ‘‘base’’ in Table 1. Power was estimated from 10,000 repli-
cates (SE < 0.005).
a main environmental effect, in which case the MLG

method has greater power than our method. When the

null hypothesis is true, the two stages of our method are

uncorrelated, as expected, from which it follows that the

family-wise type-1 error is controlled at the specified

rate.10

We compared the methods under some further condi-

tions. First, we give an example in which our method has

greater power than MLG. The model is the same as the

baseline in Table 1, except that the environmental main

effect is 1/6. The one-stage analysis has an estimated power

of 0.2187, our two-stage analysis 0.4068 and the MLG

method 0.3359. This result arises from the opposite direc-

tions of the main and interaction effects, which are

confounded in the MLG method.

We then considered the type 1 error rate in the first stage

when there are both genetic and environmental main

effects. When both gene and environment had a main

effect of 2 but there was no gene-environment interaction,

then stage 1 of MLG had an estimated type 1 error rate of

0.135 at p ¼ 0.05. When the environmental main effect

was changed to 1/2, the estimated type 1 error rate was

0.1525. We therefore expect MLG to carry more markers

into stage 2 than our method, which maintained the

nominal type-1 error rate in stage 1. In Table 2 we show

power comparisons when there is a main environmental

effect and when none, half, or all of the null markers
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have a genetic main effect. We see that the power of

MLG is reduced as more null markers have a main genetic

effect, and the relative power of MLG to our method

depends both on the number of such markers and on the

size and direction of the main environmental and interac-

tion effects.

These results suggest that MLG has slightly higher power

than our approach when there are no main effects. It can

have significantly greater power when there is a main envi-

ronmental effect in the same direction as the interaction,

but it will have lower power if the main and interaction

effects are in opposite directions. Its power is further

reduced if there are many SNPs with genetic main effects

but no interaction effects. Because the true set of

genome-wide main and interaction effects is unknown

a priori, it is impossible to know which method would be

more powerful on a given dataset. Our approach can be

recommended because it targets the interaction effect

more directly and has consistent power over a range of

scenarios. A hybrid approach might be a useful direction

for further development.12

Case-Control Analysis

We consider the power of a two-stage analysis in which

external estimates of allele frequencies are available for

use in stage 1. We followed the set-up of our analysis of

the WTCCC data and assumed 2,000 cases, 3,000 controls,

and an external reference of 12,000 individuals and

344,087 SNPs. For comparison with the WTCCC study,

we required an overall significance level per SNP of a ¼
5 3 10�7.

Figure 1 compares the power of the two-stage approach

with that of the one-stage approach as the odds ratio at

the associated SNP changes. The MAF of the causal SNP

in controls is set to 0.25, and the first-stage significance

level a1 is set to 0.025. We chose this value to maximize

the power over a range of possible MAFs and odds ratios

of the causal SNP (Table 3). The two-stage procedure has

80% power to detect association for causal SNPs with

odds ratios of 1.287 or more. For the same power, the
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Figure 1. Effect of Odds Ratio on the Power of One-Stage and
Two-Stage Procedures
Power of one-stage (dashed) and two-stage (solid) tests as a func-
tion of the odds ratio of the causal SNP. MAF of causal SNP:
0.25. There were 2,000 cases, 3,000 controls, a reference panel of
12,000 individuals, and 344,087 null markers. a1 ¼ 0:025.

Table 3. Optimal Values of a1 for Different Sizes of the Causal
Effect

Odds Ratio
Minor Allele Frequency

0.05 0.1 0.25 0.5

1.1 0.0271 0.0178 0.0152 0.0145

1.2 0.0216 0.0192 0.0199 0.0207

1.3 0.0244 0.0239 0.032 0.0389

1.5 0.0353 0.0479 0.0114 0.0114

There were 2,000 cases, 3,000 controls, a reference panel of 12,000 individ-
uals, and 344,087 null markers.
one-stage procedure requires an odds ratio of 1.317 or

more.

Figure 2 shows the power of the two procedures as the

MAF of the causal SNP changes. The odds ratio is fixed at

1.3. Both Figures 1 and 2 show that a substantial increase

in power is possible with the two-stage procedure.

However, the size of the reference panel is larger than

might be feasible in some applications. We therefore inves-

tigated how the power changes as the size of the reference

panel changes for a fixed value of a1. Figure 3 shows that

the power of the two-stage procedure is lowwhen the refer-

ence set is small. The size of the reference set determines

the precision of b�0 and, thus, the variance of the first-stage
test statistic. Because the mean of the first-stage test

statistic remains unchanged, an increased variance gives

lower power for the first-stage test. For a1 ¼ 0.025, at least

4,000 individuals are needed for the power of the two-stage

procedure to be higher than that of the one-stage proce-

dure. This is larger than the sizes of the HapMap and

1000 Genomes databases, which are natural choices for ob-

taining reference allele frequencies. Instead, the most

useful sources are other GWASs using the same markers,

which is not a strong restriction given the industry stan-

dardization of marker panels.

On the other hand, diminishing returns means there is

little advantage to going beyond 15,000 individuals in

the reference set. For smaller or larger reference sets, one

can vary the value of a1 to maximize the power of the

two-stage approach. Table 4 shows the optimal value of

a1 for different reference set sizes if the power to detect

a variant with frequency 0.25 and odds ratio 1.3 is to be

maximized. Note that a1 ¼ 1 will reduce the two-stage

procedure to the traditional one-stage test but give the

same power.

In Figure 4 we show how the power of the two-stage

approach depends on the significance level used in the first

stage. The power increases sharply to amaximum and then
The Am
decreases gradually. For this particular set of parameters,

the optimal significance level is 0.0143, but this will differ

according to the odds ratio, MAF, and number of SNPs

being tested. It is interesting to note that the power

decreases gradually as a1 increases, so the two-stage

approach is quite robust to the choice of a1 so long as it

is sufficiently high.
Power when Reference and Test Populations Differ

When the reference population is different from the test

population, the postulated allele frequencies will no longer

match the frequencies in the controls. This will affect both

the number of null markers being tested at the second

stage and the probability that an associated marker will

get through stage 1. We consider a uniform distribution

of background allele frequencies between 0.05 and 0.5, as

well as control and reference frequencies that follow the

Balding-Nichols model described in the Material and

Methods. Table 5 shows the expected number of null

markers at the second stage, as well as the power of the

one- and two-stage tests, for a series of values of the popu-

lation separation FST .

Table 5 shows that as FST increases, the expected number

of null SNPs getting through to the second stage increases

rapidly. As a result, the multiple test correction applied at

the second stage increases and the second-stage power

decreasesmonotonically. On the other hand, the first-stage

power decreases monotonically and then increases again.

This seems surprising, but it occurs because the power

function of the first stage is not symmetric in the MAF

around the background value. This result also assumes

that the odds ratio does not vary with the control MAF.

The two-stage analysis remains more powerful than the

one-stage analysis for values of FST less than 10�3, which

is the order of magnitude of separation between popula-

tions within Europe. It is clearly important that the refer-

ence population be a close match to the sample at hand.
Power when Reference Sample Is Unscreened

for Disease

Another scenario that leads to different MAFs between the

control and the reference samples is when the controls are

screened to be free of disease but the reference set is
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Figure 2. Effect of the MAF of the Causal SNP on the Power of
One-Stage and Two-Stage Procedures
Power of one-stage (dashed) and two-stage (solid) tests as a func-
tion of the MAF of the causal SNP. Odds ratio of the causal SNP:
1.3. There were 2,000 cases, 3,000 controls, a reference panel of
12,000 individuals, and 344,087 null markers. a1 ¼ 0:025.

Table 4. OptimalValuesofa1 forDifferentSizesof theReferenceSet

Size of
Reference Set Optimal a1

Power of
Two-Stage Approach

1,000 1 0.714

2,500 0.304 0.747

5,000 0.1 0.803

10,000 0.036 0.852

15,000 0.022 0.873

20,000 0.018 0.885

MAF of the causal SNP: 0.25. Odds ratio of the causal SNP: 1.3. There were
2,000 cases, 3,000 controls, and 344,087 null markers.
unscreened. The result of this will be that the frequency in

the reference set is a weighted sum of the frequency in

screened controls and the frequency in cases; the weight

will depend on the disease prevalence. Again, the differ-

ence between the postulated and actual allele frequencies

will increase the number of null markers tested in the

second stage and affect the power but not the type 1 error

rate.

The degree to which this factor affects the power will

depend on the prevalence of the disease. If the phenotype

is rare, then the reference set will consist mostly of

unaffected individuals, and the MAF will be close to that

of the controls. If the phenotype is more common, the

power of the first stage can be severely affected. Figure 5

shows the power of the two-stage test procedure as the

prevalence of the disease changes for a1 ¼ 0.025, popula-
Figure 3. Effect of the Size of the Reference Set on the Power of
the Two-Stage Procedure
Power of one-stage (dashed) and two-stage (solid) tests as the size
of the reference set varies. MAF of the causal SNP: 0.25. Odds ratio
of causal SNP, 1.3. 2000 cases, 3000 controls, 344087 null markers,
a1 ¼ 0:025.
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tion MAF ¼ 0.25, odds ratio ¼ 1.3, and other parameters

as before. Note that the prevalence does not change the

MAF of the screened controls, so the power of the one-

stage test procedure is constant.

Figure 5 shows that this factor can lead to a disastrous

loss of power when the disease prevalence is high. The

power is at its lowest when the prevalence is close to 0.4,

which is also the proportion of cases in the sample. In

fact, for the above parameters, the formula in Equation 5

gives the minimum power at a prevalence of 0.386. We

see that, similar to the exact result we obtained for linear

regression, the first stage has no power when the case

sampling fraction is close to (although not exactly equal

to) that achieved under random ascertainment.
Analysis of WTCCC Data

We analyzed each of the seven diseases in theWTCCC data

by using the other six sets of cases as an external reference

panel. Table 6 shows the total number of significant SNPs

in each disease. There is variation in the relative
Figure 4. Effect of the First-Stage Significance Level on the
Power of the Two-Stage Procedure
Power of one-stage (dashed) and two-stage (solid) procedure as the
first-stage significance level varies. MAF of the causal SNP: 0.25.
Odds ratio of the causal SNP: 1.3. There were 2,000 cases, 3,000
controls, a reference panel of 12,000 individuals, and 344,087
null markers.
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Table 5. Power Comparison when Reference and Control
Populations Are Different

FST E (m0)
First-Stage
Power

Second-Stage
Power

Overall
Two-Stage
Power

One-Stage
Power

0 10,141 0.951 0.906 0.861 0.712

10�5 14,345 0.949 0.895 0.849 0.626

10�4 56,263 0.900 0.828 0.746 0.625

10�3 203,358 0.727 0.748 0.554 0.623

10�2 303,153 0.794 0.701 0.564 0.606

10�1 338,330 0.932 0.571 0.527 0.506

Power of one- and two-stage test procedures as a function of separation FST
between sample and reference populations. Eðm0Þ: expected number of
markers carried forward from stage 1.

Table 6. Numbers of Genome-wide Significant SNPs in One- and
Two-Stage Analysis of the WTCCC Data

Disease One-Stage Two-Stage
Size
Stage 1

Size
Stage 2 Correlation

BD 2 1 341,890 11,824 0.0065

CAD 20 10 345,460 10,477 �0.0009

CD 68 72 345,628 11,199 0.008

HT 3 2 343,615 10,085 �0.0045

RA 174 165 343,672 11,087 0.0021

T1D 471 500 344,684 11,372 0.0024

T2D 18 34 343,658 11,065 0.0011

Total 756 784

Abbreviations are as follows: BD, bipolar disorder (BPAD; [MIM 125480]); CAD,
coronary artery disease; CD, Crohn disease (CD; [MIM 266600]); HT, hyper-
tension (HTN; [MIM 145500]); RA, rheumatoid arthritis (RA; [MIM 180300]);
T1D, type-1 diabetes (T1DM; [MIM 222100]); and T2D, type-2 diabetes
(NIDDM; [MIM 125853]). Numbers include SNPs that passed initial quality
control but were later discarded after inspection of cluster plots. Size stage 1:
the number of SNPs included in the first stage. Size stage 2: the number of
SNPs carried forward into the second stage. Correlation: correlation between
stage 1 and stage 2 statistics for SNPs with p > 0.05 in stage 2.
performance of one- and two-stage analyses, but over all

seven diseases there is a higher total of significant associa-

tions from the two-stage analysis. Among SNPs that were

not nominally significant in stage 2, the stage 1 and 2

statistics were uncorrelated, as expected.

There were eight regions that were significant in the two-

stage but not the one-stage analysis; they are summarized

in Table 7. Each of the regions has been subsequently

validated in an independent GWAS or a meta-analysis.

The regions were slightly short of significance in the one-

stage analysis, but all bar one had been marked as sugges-

tive in the WTCCC paper. Because of the reduced multi-

plicity in the second stage (equivalently, the increased

prior odds), these markers became genome-wide signifi-

cant under our approach. We computed an adjusted

p value for each of these markers by multiplying the stage

2 p value by the ratio of the number ofmarkers in stage 2 to

the number in stage 1. This gives a p value that is calibrated
Figure 5. Effect of Disease Prevalence on the Power of the Two-
Stage Procedure
Power of one-stage (dashed) and two-stage (solid) test statistics
when controls are screened and reference-set individuals are not
and as the prevalence of the disease varies. MAF of the causal
SNP: 0.25. Odds ratio of the causal SNP: 1.3. There were 2,000
cases, 3,000 controls, a reference panel of 12,000 individuals,
and 344,087 null markers. a1 ¼ 0:025.
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against the initial prior odds, and as such it can be directly

compared to the p value from a one-stage analysis. Table 7

shows that the adjusted p values are genome-wide sig-

nificant when the one-stage p values are not.

There were three regions that were significant in the

one-stage but not the two-stage analysis; they are summa-

rized in Table 8. Here, the regions were eliminated in the

first stage, even though the second-stage analysis was

genome-wide significant. These regions, too, have been

subsequently validated, so that they represent false nega-

tives of the two-stage analysis. Two of these might be due

to a shared genetic basis between inflammatory bowel

disease (IBD; [MIM 266600]) and type-1 diabetes (T1DM;

[MIM 222100]); rs2542151 has been independently

associated with T1DM,27 and rs17388568 has been inde-

pendently associated with ulcerative colitis (UC; [MIM

191390]).28 In all three cases the reference frequencies

are closer to the case frequency than to the control

frequency, reducing the significance of the stage 1 test.
Discussion

We have given a general description of two-stage analysis

of GWAS data; this analysis includes previously developed

applications to family-based association and gene-environ-

ment interaction testing. With regard to the former, we

recover previous work exactly, whereas for the latter we

obtain an alternative approach. In both cases our formula-

tion offers new insights and potential advantages over

previous methods. Our general description opens up

a range of possible further applications. It can be applied

to any analysis that both involves testing a normally

distributed parameter estimator and depends on a nuisance
erican Journal of Human Genetics 90, 760–773, May 4, 2012 769



Table 7. Regions that Were Genome-wide Significant in Two-Stage Analysis but Not in One-Stage Analysis

Disease
Chromo-
some Lead SNP Mb Stage 2

Adjusted
Stage 2 WTCCC

Case
Frequency

Control
Frequency

Reference
Frequency

Other
WTCCC Replication

CD 3 rs9858542 49.68 7.23 3 10�7 2.19 3 10�8 7.71 3 10�7 0.330 0.282 0.285 Genotypic
test,
expanded
controls

Franke31

CD 6 rs7768538 32.84 1.76 3 10�6 5.34 3 10�8 8.65 3 10-7 a 0.412 0.463 0.468 Franke

CD 21 rs2836754 39.21 1.04 3 10�5 3.15 3 10�8 n/a 0.399 0.353 0.352 Expanded
controls

Frankeb

RA 6 rs5029939 138.24 8.48 3 10�6 2.74 3 10�7 4.99 3 10-6 [a] 0.055 0.036 0.035 Stahl32

T1D 10 rs10795791 6.15 1.16 3 10�5 3.81 3 10�7 7.96 3 10�6 0.456 0.411 0.414 Expanded
controls

Barrett33

T2D 2 rs6718526 161.04 3.06 3 10�6 9.85 3 10�8 2.4 3 10�6 0.171 0.209 0.205 Expanded
controls

Qi34

T2D 6 rs9465871 20.83 5.69 3 10�6 1.83 3 10�7 1.00 3 10-6 a 0.218 0.178 0.182 Genotypic
test

Zeggini35

T2D 12 rs1495377 69.86 1.47 3 10�6 4.73 3 10�8 1.31 3 10�6 0.547 0.497 0.502 Expanded
controls

Zeggini

Disease abbreviations are as in Table 6. Stage 2: p value from allelic Wald test in the second stage. Adjusted stage 2: p value from stage 2 multiplied by the ratio of
the number of SNPs in stage 2 to the number in stage 1. WTCCC: p value from trend test reported in WTCCC paper. Case frequency: allele frequency in the cases.
Control frequency: allele frequency in the controls. Reference frequency: allele frequency in the combined cases of the other six diseases. Other WTCCC: other
tests performed in the WTCCC study in which the SNP had genome-wide significance. Replication: source of subsequent validation of this association.
ap value for a different SNP in the same region.
bReplication was 5 Mb from this SNP.
parameter for which a reasonable value can be postulated.

This includes many common parametric and semipara-

metric models.We have considered semiparametric formu-

lations of linear and logistic regression and have shown

that if the population mean is used as a postulated value

of the intercept, then two-stage analysis can offer increased

power if there is selection on the independent variables.

This approach might therefore hold promise for studies

such as recall-by-genotype phenome scans, comparisons

of disease-selected and -unselected subjects, and case-

control studies of rare disease. It could also be applicable

to analysis of secondary quantitative traits in case-control

samples, although the appropriate specification of a postu-

lated nuisance parameter is not obvious and is left to future

work.

Focusing on standard case-control studies, we propose

a first-stage statistic that incorporates an external estimate

of the allele frequency. We have shown that if MAFs in the

external reference set have the same underlying mean as

those in the controls, then there is scope for a significant
Table 8. Regions that Had Genome-wide Significance in the WTCCC S

Disease Chromosome Lead SNP Mb Stage 1 Case Frequ

CD 5 rs1000113 150.22 0.74 0.098

CD 18 rs2542151 12.77 0.22 0.209

T1D 4 rs17388568 123.69 0.44 0.307

Stage 1: p value from first stage analysis. Case frequency: allele frequency in the c
allele frequency in the combined cases of the other six diseases. Replication: sour
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gain in power via the two-stage approach. This condition

requires that the reference set and controls be from the

same population and that either the disease is rare or

both sets be unscreened (or both be screened) for the

disease. As the separation between the populations

increases, the power gain rapidly diminishes and becomes

a power loss when the separation is greater than that typi-

cally found between European populations. Furthermore,

if the controls are screened for disease and the reference

individuals are unscreened, then the power can be severely

diminished for certain values of the disease prevalence.

The size of the reference set and the sample at hand also

need to be of similar sizes, so resources such as the

HapMap and 1000 Genomes databases may not be suffi-

cient. Although these factors might seem like significant

drawbacks, the sheer number of datasets becoming avail-

able makes it likely that several suitable reference sets

will be possible for each case-control study.

In principle, our approach can be applied with summary

data only and does not require individual subject data.
tudy but Not in the Two-Stage Analysis

ency Control Frequency Reference Frequency Replication

0.067 0.076 Franke31

0.163 0.173 Franke

0.260 0.283 Barrett33

ases. Control frequency: allele frequency in the controls. Reference frequency:
ce of subsequent validation of this association.
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However, if covariates are included in themodel, as is often

done as a means of controlling for population stratifica-

tion, then individual data will be needed. There is no

problem in principle with applying our approach with co-

variates because we can simply test our parameters after

including covariates in the model. It might be necessary

to rescale or recode covariates so that the external reference

value corresponds to a parameter in the model, for

example the MAF in a particular sub-population. The

allowance for covariates is another advance on previous

methods.

Of course, greater improvements in power are possible

from a joint analysis of the two stages when the assump-

tion in the first stage is explicitly controlled for.4,29 This

was done in the WTCCC study, when cases from clinically

distinct diseases were pooled with the controls so that the

total sample size increased. These ‘‘expanded controls’’

analyses detected some, but not all, of the additional asso-

ciations we found via two-stage analysis. However, our aim

is to show the utility of external summary data, when

available, while retaining robustness to a mismatch

between the external data and the sample at hand. We

expect that reference databases of allele frequencies will

become available without the individual genotypes that

would allow statistical methods to adjust for population

differences between reference and sample data. We aim

to show how these data can improve standard GWAS anal-

ysis without incurring bias.

Our WTCCC analysis is the first application of two-stage

analysis to multiple datasets and confirms the higher

power of this approach. We detected eight true positives

that were missed by standard analysis. Although our

two-stage analysis missed three associations that were

detected by standard methods, two of these can be attrib-

uted to the choice of reference panel, which includes cases

from related diseases, a situation that need not occur in

general.

Two-stage approaches have been described as

‘‘screening’’ followed by ‘‘replication.’’4,7,9 We discourage

this usage because, in our view, replication involves con-

firming a specific hypothesis that has already been firmly

established. In contrast, the first of our two stages merely

selects a subset of markers and does not formally generate

hypotheses for testing. However, we have noted that the

evidence for association is modified to a degree by the first

stage, to which the second is adaptive in its adjustment for

multiplicity.

Bayesian methods offer an alternative approach to

including assumed values of model parameters but still al-

lowing for uncertainty in the assumptions.30 At one

extreme, an uninformative prior distribution on the

nuisance parameter corresponds to a one-stage analysis,

whereas at the other, a highly informative prior distribu-

tion corresponds to a joint analysis of the two stages. In

the situations we have considered, we can expect the stage

1 assumptions to hold for somemarkers and not for others.

A prior distribution that reflects this property and correctly
The Am
models departures from the assumption should lead to

a more powerful analysis than our two-stage approaches.

Our methods are a compromise that improves power by

including prior information on nuisance parameters while

retaining robustness to mis-specification of that informa-

tion. In this respect, two-stage and Bayesian analyses

are alternative approaches that offer different advantages

according to context.

In practice, standard one-stage analyses are unlikely to

be discarded even if more powerful alternatives are avail-

able. However, we think that two-stage analysis should

join the array of complementary methods that can be

applied after initial simple analyses are completed. We

have given a general account of this approach, as well as

its advantages and limitations, and hope that this will

stimulate its further study and use in a wider range of

applications.
Appendix A

Effect of Prevalence on Power in Case-Control Studies

In terms of the allele frequencies p0 and p1, the number of

controls and cases n0 and n1, and the prevalence q0, the

expectation of the stage 1 statistic is

log

�
p1
�
1� p0

�
ð1� p1Þp0

�

þ
�
1þ n0

n1

�
log

�
p0
�
1� q0p1 �

�
1� q0

�
p0
��

1� p0
��
q0p1 þ

�
1� q0

�
p0
��:

Therefore, the value of q0 that gives mean 0 solves the

following equation:

log

�
q0p1 þ

�
1� q0

�
p0

1� q0p1 �
�
1� q0

�
p0

�
¼ n log

�
p1
�
1� p0

�
ð1� p1Þp0

�

þ log

�
p0�

1� p0
��;

where v ¼ ð1þ n0=n1Þ�1. Then

�
q0p1 þ

�
1� q0

�
p0

1� q0p1 �
�
1� q0

�
p0

�
¼

�
p1

1� p1

�v�
p0

1� p0

�1�v

h~p;

and therefore ~p=1þ ~p ¼ q0p1 þ ð1� q0Þp0, giving q0 ¼
~pð1þ ~pÞ�1 � p0=p1 � p0.
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Web Resources

The URL for data presented herein is as follows:

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org
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