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Genetic Adaptation of Fatty-Acid Metabolism: A
Human-Specific Haplotype Increasing the Biosynthesis
of Long-Chain Omega-3 and Omega-6 Fatty Acids

Adam Ameur,1 Stefan Enroth,1 Åsa Johansson,1 Ghazal Zaboli,1 Wilmar Igl,1 Anna C.V. Johansson,1

Manuel A. Rivas,2 Mark J. Daly,2 Gerd Schmitz,3 Andrew A. Hicks,6 Thomas Meitinger,9 Lars Feuk,1

Cornelia van Duijn,4 Ben Oostra,5 Peter P. Pramstaller,6,7,8 Igor Rudan,10,11 Alan F. Wright,12

James F. Wilson,11 Harry Campbell,11 and Ulf Gyllensten1,*

Omega-3 and omega-6 long-chain polyunsaturated fatty acids (LC-PUFAs) are essential for the development and function of the human

brain. They can be obtained directly from food, e.g., fish, or synthesized from precursor molecules found in vegetable oils. To determine

the importance of genetic variability to fatty-acid biosynthesis, we studied FADS1 and FADS2, which encode rate-limiting enzymes for

fatty-acid conversion. We performed genome-wide genotyping (n ¼ 5,652 individuals) and targeted resequencing (n ¼ 960 individuals)

of the FADS region in five European population cohorts. We also analyzed available genomic data from human populations, archaic

hominins, and more distant primates. Our results show that present-day humans have two common FADS haplotypes—defined by

28 closely linked SNPs across 38.9 kb—that differ dramatically in their ability to generate LC-PUFAs. No independent effects on FADS

activity were seen for rare SNPs detected by targeted resequencing. The more efficient, evolutionarily derived haplotype appeared after

the lineage split leading to modern humans and Neanderthals and shows evidence of positive selection. This human-specific haplotype

increases the efficiency of synthesizing essential long-chain fatty acids from precursors and thereby might have provided an advantage

in environments with limited access to dietary LC-PUFAs. In the modern world, this haplotype has been associated with lifestyle-related

diseases, such as coronary artery disease.
Introduction

The proportionally large human brain relative to body size

is unique among primates, and a large portion of the

resting-energy budget is allocated to the brain to support

it.1 In order to maintain the function of our brain and

central nervous system, humans are highly dependent

on high amounts of two long-chain polyunsaturated fatty

acids (LC-PUFAs), the omega-3 docosahexaenoic acid

(DHA) and the omega-6 arachidonic acid (AA).2,3 These

fatty acids are essential to humans in the sense that they

cannot be synthesized de novo but need to be supplied

through dietary intake, either as DHA and AA or as their

18-carbon precursors, alpha-linolenic acid (ALA) and lino-

leic acid (LA). DHA is mainly found in fish, whereas AA is

also present in egg, land-animal fats, and liver. The precur-

sors LA and ALA are found in high quantities in some vege-

table oils.4 The conversion of the 18-carbon precursors to

LC-PUFAs is done through a series of elongations and desa-

turations of the fatty-acid molecules. The d-5 and d-6 fatty-

acid desaturases, which introduce double bonds after the

fifth and sixth carbon atoms, respectively, from the
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carboxyl end of the carbon chain, are rate-limiting

enzymes in the biosynthesis of omega-3 and omega-6

LC-PUFAs.5 These two key enzymes are encoded by

FADS1 (MIM 606148) and FADS2 (MIM 606149), respec-

tively, located in a head-to-head orientation on chromo-

some 11.

SNPs in the FADS region have previously been shown to

have strong association with levels of blood lipids6–10 and

LC-PUFAs.11–14 The variation in the FADS loci has also

been shown to modulate breast-feeding effects on intelli-

gence development15 and modify the transfer of DHA

and AA from the mother to the child,16,17 and it has

been associated with increased risks of inflammation and

coronary artery disease.18

Despite the great interest in the FADS region as a key

locus for LC-PUFA biosynthesis, there are until now no

studies that have investigated the potential role of FADS

mutations in human evolution. The greater encephaliza-

tion of modern humans might have required genetic

adaptations of the fatty-acid metabolism to satisfy the

high demand of LC-PUFAs needed to sustain the larger

brain.19,20 In particular, mutations that increase the
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efficiency of converting the precursors ALA and LA to

longer fatty acids are likely to be favored in environments

with limited dietary access to these LC-PUFAs.

In order to elucidate the effect of genetic variants in the

FADS region on the production of LC-PUFAs, we combined

genotyped and imputed SNPs data with resequencing of

the FADS1 and FADS2 loci and estimates of the synthesis

of LC-PUFAs in local European populations. The popula-

tion-sequencing data allowed us to investigate the inde-

pendent effect of rare variants, an issue that has been the

focus of much interest.21 We also analyzed available

genomic data from contemporary human populations,

archaic hominins, and more distant primates to gain

insight into the evolutionary history of the FADS region.

Our results show that in humans, two common and very

distinct FADS haplotypes are strongly associated with LC-

PUFA-synthesis levels. The haplotype associated with the

enhanced ability to produce AA and DHA from their

precursors is specific to humans and has appeared after

the split of the common ancestor of humans and Neander-

thals. This haplotype shows evidence of positive selection

in African populations, in which it is presently almost

fixed; the haplotype is less frequent outside Africa. We

propose that the haplotype that provides a more efficient

synthesis of LC-PUFAs might act as a thrifty genotype

and represents a risk factor for lifestyle-related diseases,

such as coronary artery disease.
Material and Methods

Population Sample
The cohorts studied are from populations in Sweden, Italy,

Scotland, Croatia, and The Netherlands and are part of the

European Special Population Research Network (EUROSPAN).

The Northern Swedish Population Health Study (NSPHS) is

a cross-sectional study conducted in the community of Kare-

suando, north of the Arctic Circle in Norrbotten County,

Sweden.22 The Orkney Complex Disease Study (ORCADES) is

a longitudinal study in the Scottish archipelago of Orkney.23 The

VIS study is a cross-sectional study in the villages of Vis and

Komiza on the Dalmatian island of Vis, Croatia.24,25 TheMicroiso-

lates in South Tyrol Study (MICROS) is a cross-sectional study

carried out in Venosta Valley, South Tyrol, Italy.26 The Erasmus

Rucphen Family Study (ERF) is a longitudinal study of a population

that has been living in the Rucphen region, The Netherlands since

the 19th century.27 More information on the EUROSPAN popula-

tions has been published previously.22 All participants gave their

written informed consent,28 and the projects were approved by

the institutional review boards in each country.
Lipidomics
As part of the EUROSPAN project, a large number of lipids were

measured by mass spectrometry (ESI-MS/MS) in positive-ion

mode as described previously.29,30 In particular, phospholipids

including phosphatidylcholine (PC) have been quantified in

over 4,000 individuals from the five populations.31 PC 36:4 used

here is a subgroup of phospholipids containing 36 carbons and

four double bonds. Specific fatty acids (e.g., components of the
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omega-3 and omega-6 biosynthesis) were quantified for 700 indi-

viduals from the NSPHS cohort.

SNP Array Genotyping and Imputation
DNA samples were genotyped according to the manufac-

turer’s instructions on Illumina Infinium HumanHap300 or

HumanCNV370 SNP bead microarrays as described previously.7

Analysis of the raw data was performed with BeadStudio software

according to the recommended parameters for the Infinium assay

and with the genotype cluster files provided by Illumina. Samples

with a call rate <97%, identical twins, and genetic outliers (identi-

fied by classical multidimensional scaling) were excluded from the

analysis. Population stratifications were also tested for by multidi-

mensional scaling. In the initial quality control, the primary anal-

ysis included most SNPs except for those deviating strongly form

the Hardy-Weinberg equilibrium (p value < 10�10). MaCH32 and

reference haplotypes from the 1,000 Genomes Database (release

2010-08) were used for performing SNP imputation for a 2.7 Mb

region centered over the FADS region. The EUROSPAN genotype

data were phased with fastPhase.33 The following are the amounts

of individualswithcomplete genotypeand imputationdata in each

cohort: 2,385 from ERF, 795 from VIS, 1,097 from MICROS, 719

from ORCADES, and 656 from NSPHS.

SNP Association Analysis and Haplotype

Reconstruction
Association analyses of the quantitative lipid measurements were

performed with the R package GenABEL.34 This tool was devel-

oped to enable statistic analyses of genetic data in related individ-

uals with the use of a mixed model.35 Meta-analyses of data from

the five populations were carried out with MetABEL.34 We used

Haploview36 to examine the association between high and low

levels of the lipid PC 36:4 and all SNPs with a call rate above

75%. This resulted in a list of 134 SNPs (see Table S1, available on-

line). The associated haplotypes were constructed by the following

procedure. Starting with all 134 SNPs in the region, we iteratively

removed SNPs for which (1) the two alleles were found on

different haplotypes with the same effect on PC 36:4 and (2) the

same allele was found inmultiple haplotypes with different effects

on PC 36:4. For each round of this analysis, we considered only the

haplotypes present in at least 3% of the chromosomes. This re-

sulted in 28 strongly associated SNPs on two common haplotypes

accounting for over 95% of the chromosomes. The calculation of

p values for individual markers was performed in Haploview with

the use of a chi-square test based on allele frequencies between

the case and control groups (highest and lowest levels of PC

36:4). The detected haplotype frequencies (for A, D, and mixed)

did not deviate from the Hardy-Weinberg equilibrium (chi-square

test, p value > 0.9) in any of the five populations or in a combina-

tion of the five.

Enrichment and Resequencing of the FADS Region
From each of the five population cohorts, we selected 90–100

unrelated individuals with the lowest levels of PC 36:4 and the

same number of individuals with the highest levels of PC 36:4.

We pooled equal amounts of genomic DNA from each individual

into a high-lipid and a low-lipid pool for each population at a final

DNA concentration of 10 ng/ml. The procedure for genomic

enrichment and sequencing has been described previously.37

The FADS region (hg18, chr11: 61,311,035–61,390,653) was

covered by 26 amplicons. The average amplicon was about 2 kb
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and had 50–100 nucleotides that overlapped. As a result of repet-

itive sequences, some parts of the 80 kb region could not be

covered by amplicons.

We carried out long-range PCR in the Veriti thermal cycler

(Applied Biosystems) by using 50 ng DNA from the pool in a reac-

tion volume of 100 ml containing 53 HF buffer, 200 mM dNTPs,

12 mM of each primer, and 1 unit of Phusion high fidelity poly-

merase (Finnzymes, Finland). A two-step PCR was performed

with an initial denaturation for 30 s at 98�C; this initial denatur-
ation was followed by 30 cycles of denaturation for 10 s at 98�C,
an extension for 90 s at 72�C, and a final extension at 72�C for

10 min. Amplicons were purified with the QIAGEN Clean-up kit

(QIAquick, QIAGEN Nordic, Sweden), the concentration was

determined with NanoDrop (NanoDrop Technologies), and an

equal copy number of each amplicon was used in an amplicon

pool. We used the amplicon pool from a population to generate

a fragment library, and we sequenced this by using 50 bp reads

on the SOLiD3 system.

Analysis of Sequence Reads
The SOLiD system-analysis pipeline tool (corona lite) was used for

the alignment of the SOLiD reads to a reference consisting of the

DNA sequence in the FADS region; up to four mismatches were

allowed for each 50 bp read. SNP identification and estimation

of allele frequencies in the resequenced pools of individuals were

performed as described earlier.37

Analysis and Validation of Rare Variants in the FADS

Region
The analysis of rare variants was carried out with the C-alpha

statistic as recently described.38 This resulted in 24 rare SNPs

that showed significant differences between the individuals with

high and low levels of PC 36:4 (Table S3). Fourteen of these 24

SNPs were validated with TaqMan genotyping assays on the indi-

vidual DNA samples. The assays included 1,308 individuals from

four of the populations: 459 from VIS, 192 from ERF, 160 from

MICROS, and 497 fromNSPHS. For VIS and NSPHS, a cross-section

of all individuals was selected and included those that were rese-

quenced in the high and low pools. For ERF and MICROS, only

the individuals from the pooled resequencing were included.

Analysis of Effects of Rare Variants with Respect

to Haplotypes A and D
In order to elucidate the independent effects of rare variants, we

stratified the data on the basis of the haplotypes of the 1,308 gen-

otyped individuals (AA or DD). The allele frequencies for the rare

SNPs ranged between 0.04 and 0.50 for the 180 AA individuals.

For the 492 individuals in the DD group, the corresponding allele

frequencies were considerably lower (0–0.004). Thus, the rare vari-

ants are predominantly found on haplotype A. Among individuals

homozygous for haplotype A, no statistically significant effect was

detected for any of the 14 rare variants (p > 0.1, Wilcoxon-rank

sum test, one-sided).

Analysis of the Geographical Distribution of the Two

FADS Haplotypes
We used genotype data from all individuals present in CEPH-

obtained samples from the Human Genome Diversity Panel39

(HGDP; 2008, final release) to study the frequencies of haplotypes

A and D in native populations distributed all over the world. Four

of the 28 SNPs that distinguish between the two haplotypes were
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present in the HGDP data. Each chromosome in the HGDP data

was classed as haplotype A, D, or mixed on the basis of the four

genotyped SNPs. A similar analysis was performed for individuals

of African (ASW [African ancestry in Southwest USA], LWK

[Luhya in Webuye, Kenya], and YRI [Yoruba in Ibadan, Nigeria]),

European (FIN [Finnish in Finland), GBR [British from England

and Scotland, UK], CEU [Utah residents with ancestry from

northern and western Europe from the CEPH collection], and

TSI [Toscans in Italy]), and Asian ancestry (CHS [Han Chinese

South, China], CHB [Han Chinese in Beijing, China], and JPT

[Japanese in Tokyo, Japan]) from HapMap40 and the 1,000

Genomes Project.41 For these population samples, the haplotype

analyses were based on all of the 28 SNP positions.
Haplotype Evolution Analysis
We used data from primates and archaic hominins to examine the

evolutionary history of haplotypes A and D (see Table S2). For

chimpanzees, we obtained sequence variants from in-house

whole-genome sequence data on the SOLiD 3 system. Two indi-

viduals were sequenced at 73 and 133 coverage, respectively,

and the reads were aligned to the chimpanzee reference sequence

(panTro2). The Denisovan sequence originates from high-

coverage Illumina sequencing (303) of a finger bone from one

individual in a recently discovered archaic hominin group.42

The Neanderthal sequence variants were inferred from Illumina

sequencing of bones from three different individuals (Vi33.16,

Vi33.25, and Vi33.26).43
Age Estimate of Haplotype D
Our estimate of the age of haplotype D is based on a 30 kb region

(chr11: 61,324,000–61,354,000) with low heterozygosity in HGDP

populations in Africa and America (see Figure S3). As a proof of

concept, we first aimed at determining the mutation rate in the

FADS region on the basis of a human-chimpanzee comparison.

Therefore, we aligned SOLiD mate-pair reads from two chimpan-

zees to the human reference sequence (hg18) and identified fixed

nucleotide differences. The alignment and variant calling were

done by two different strategies; the first was with Bioscope and

diBayes software, and the second was with Mosaik and

SAMtools.44 We required the variants to be detected by both

methods. This analysis revealed 154 nucleotide differences within

the 30 kb window for one of the chimpanzees and 100 nucleotide

differences for the other. The chimpanzee with the higher number

of nucleotide differences was sequenced at 133 coverage

compared to 73 coverage for the other individual. The correlation

between coverage and number of identified variants indicates that

some of the nucleotide differences in one of the chimpanzees were

not detected because of insufficient coverage. We therefore used

the higher number of variants (154) as a measurement of the

number of fixed nucleotide differences between humans and

chimpanzees. Assuming that 154 mutations have accumulated

on the human and chimpanzee lineages since the time of the

last common ancestor about 5 million years ago and assuming

an average generation time of 20 years, the mutation rate for the

region was estimated at 1.033 10�8 mutations per base per gener-

ation. Our mutation rate is very similar to the estimate from

a recent whole-genome sequencing study of a family quartet; in

this study, the intergeneration mutation rate was estimated at

~1.1 3 10�8 per position.45

SNP information in the 30 kb region was extracted for seven

human individuals that have been sequenced at high coverage;
erican Journal of Human Genetics 90, 809–820, May 4, 2012 811



Figure 1. LD Pattern in the FADS Region
LD display of the five population cohorts from
Sweden (NSPHS), Scotland (ORCADES), The
Netherlands (ERF), Croatia (VIS), and Italy
(MICROS) (left) and of all individuals combined
(bottom right). Color schemes in all LD maps are
based on the standard (D’/LOD) option in the
Haploview software. The genomic coordinates
on chromosome 11 (hg18) are shown at the top
right, and the locations of eight SNPs are drawn
out as positional guides. The vertical black bars
show p values for each individual SNP; p values
range from 1 to 10�75 and represent the associa-
tion with the lipid PC 36:4. See Table S1 for a
complete list of p values for all SNPs in the region.
five of these individuals have a DD genotype, and two have a AA-

genotype. The five DD individuals are all fromAfrica; KB1 and ABT

are from Southern Africa,46 NA19238 and NA19293 are the

parents from a YRI trio sequenced as part of the 1,000 Genomes

Project,41 and NA18507 is a HapMap individual also from YRI.

The two individuals with the AA genotype are one Paleo-Eskimo

(Saqqaq)47 and one Australian Aboriginal.48 We calculated

the pair-wise nucleotide differences between all seven human

samples, the Denisovan sample, and the 133 chimpanzee sample,

and we applied the UPGMA (unweighted pair-group method of

analysis) hierarchical clustering as implemented in the phangorn

R package.49 The phylogenetic analysis revealed two distinct clus-

ters on the human lineages, one with the individuals homozygous

for haplotype A and the other with individuals homozygous for

haplotype D. We then counted the number of mutations—within

each of the DD and AA clusters—that are not present in other

branches in the tree. On average, there were 8.4 nucleotide differ-

ences between individuals within the DD group and 20 nucleotide

differences between individuals within the AA cluster. From

these numbers of mutations, we estimated a divergence time of

255,000 years ago for haplotype D and 606,000 years ago for

haplotype A. We also performed similar calculations on the basis

of the minimum and maximum number of nucleotide differences

within the DD group, and this calculation resulted in a range from

212,000 to 303,000 years ago. In these calculations, we assumed

a mutation rate of 1.03 3 10�8 mutations per base per generation

(as estimated above) and an average generation time of 20 years.

Furthermore, we used the Bayeseanmethod BEAST50 as an alter-

native approach to estimate divergence times, and this resulted

in an age of 433,000 years ago for haplotype D. One plausible

explanation for the discrepancy is that the BEAST program

overestimated the age because of input data. BEAST requires the

two haploid FADS sequences from each individual as input, and

it is impossible to deduce these sequences from the short read

data. As a result, the program cannot distinguish between

homozygous and heterozygous positions. This probably leads to

an overestimate because all variant nucleotides (present in a

heterozygous state as is the case for the individuals carrying the

haplotype D in the study) are assumed to be present on the

same haplotype.
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Results

Two Common FADS Haplotypes

To determine the haplotype structure in the

FADS region, we used SNP-array genotype
data from 5,652 individuals from five European local

population cohorts (EUROSPAN) and data from the 1,000

Genomes Project41 to impute additional SNPs, and we

phased the chromosomes. The combined data for the

five populations showed the presence of twomajor linkage

disequilibrium (LD) blocks, one spanning FADS1 and

the first part of FADS2 (block 1) and another spanning

the second part of FADS2 (from exon 6 to the 50UTR)

(block 2) (Figure 1). The same LD pattern was found in

all five European cohorts.

We studied the association between these blocks and

lipid levels by using a lipid (phosphatidylcholine [PC]

36:4) measured in our five European population cohorts.

A meta-analysis of the individuals with the highest and

lowest levels of this lipid (n ¼ 952) showed that the most

significant SNP associations (p < 10�60) were located in

block 1 (see Figure 1 and Table S1). We used phased chro-

mosome data to identify in block 1 a set of 28 SNPs

(Table S2) that most clearly distinguished the two groups

of individuals with high and low lipid levels. A similar

analysis for block 2 did not produce a strongly associated

set of SNPs (data not shown). Because of this and the fact

that the p values were considerably lower in block 1 than

in block 2 (see Figure 1), we focused our attention on

block 1. The two main haplotypes identified on the basis

of the 28 SNPs in block 1 accounted for over 95% of the

chromosomes in the five populations; the remaining chro-

mosomes could be accounted for by a set of rare haplotypes

that were combinations of the two major ones (Table 1).

The most common haplotype, denoted haplotype D, was

associated with high lipid levels (p ¼ 1 3 10�65), whereas

the less common haplotype (haplotype A) was associated

with low levels (p ¼ 1 3 10�52).

To determine whether there could exist in block 1

other strongly associated haplotype structures that were

obscured by the presence of haplotypes A and D, we

removed the 28 SNPs from the input data and repeated



Table 1. Frequency of FADS Haplotypes in European Populationsa

Haplotype

SNP

Frequency (%) Association (p Value)1234567890123456789012345678

D CCCTCGTTAATCTTAAAAACCACCCTAG 62.1 1 3 10�65

A agtcgaccggctccgggggttgaaaaga 33.0 1 3 10�52

M1 CgtcCGccggTCTTggAggttgaaaaga 2.8 3 3 10�04

M2 agtcgaccggctccgggggttgaCaaga 0.5 9 3 10�02

M3 agtcgaccggTtccgggggttgaaaaga 0.3 2 3 10�01

M4 CCCTCGTTAATCTTAAAAACCgaaaaga 0.2 4 3 10�02

Total frequency 98.9

The haplotypes are defined by 28 SNPs in block 1. The association between FADS haplotypes and lipid levels (PC 36:4) in the five European cohorts is shown in the
far right column. Nucleotides on haplotypes D and A are represented by uppercase and lowercase letters, respectively.
aFrom the European Special Population Research Network (EUROSPAN).
the same analysis procedure for the remaining SNPs in

block 1. This resulted in a haplotype consisting of only

two SNPs (rs174541 and rs174583). These two SNPs were

in very strong LD with the previously identified 28 SNPs.

Our analysis thus revealed that in block 1, there were addi-

tional significant SNPs that would have been included

among the set of 28 if slightlymore relaxed filtering criteria

had been used. However, in block 1, there are no other

independent haplotypes that have strong association

with PC 36:4.

To investigate the effect of SNPs not present on the

genotyping arrays or in the 1,000 Genomes Database, we

designed amplicons for the FADS region and performed

deep sequencing by using the SOLiD system in two

pools of individuals from each of our five populations

(Figure S1). Each pool consisted of a minimum of 90 indi-

viduals with either the highest or lowest levels of PC 36:4.

From the targeted resequencing, we identified a number of

additional variants, but none of these showed as large

a difference in frequency between the extreme lipid groups

as the 28 SNPs previously found to distinguish haplotypes

A and D, described above. However, by applying the

C-alpha test38 for analyses of rare variants in high-

throughput sequencing data, we detected in the FADS

region several low-frequency SNPs that differed signifi-

cantly between the high- and low-lipid pools (Table S3).

Genotyping of 14 of the significant low-frequency SNPs

in 1,308 individuals showed that all of them were predom-

inantly located on haplotype A (Table S4). No association

was seen for any of the 14 SNPs when the analysis was

adjusted for the effects of haplotypes A and D. Our

analyses thus show that the association of SNPs with lipid

levels can be entirely explained by the two common

haplotypes and that there is no independent effect of

rare variants.

Effect of FADS Haplotypes on PUFA Metabolism

We studied the functional difference between the two

haplotypes by measuring the levels of eight PUFAs in the
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omega-3 and omega-6 pathways in blood plasma from

the NSPHS cohort (Table 2). In both the omega-3 and

omega-6 pathways, haplotype D was strongly associated

with lower levels of the precursors in fatty-acid synthesis

(LA and ALA) and higher levels of EPA, GLA, DHA, and

AA (the products), indicating that this haplotype is more

efficient in converting the precursors to LC-PUFAs (Figure 2

and Table 2). Individuals homozygous for haplotype D had

24% higher levels of DHA and 43% higher levels of AA

than those homozygous for haplotype A. Analysis of the

ratios of consecutive products in fatty-acid synthesis (i.e.,

GLA/LA, ETA/ALA, AA/DGLA, and EPA/ETA) showed that

both the d-5 and d-6 desaturase steps are affected by the

FADS haplotype (Table 2).

The conversion of ALA to DHA occurs primarily in the

liver,51 and the examination of gene-expression levels in

liver samples from 195 individuals52 showed that individ-

uals homozygous for haplotype D have significantly

higher expression of FADS1 than those homozygous for

haplotype A (see Figure S2). This finding is further sup-

ported by results from databases, e.g., the eQTL browser,

and other publications,53 in which SNPs within this region

have been shown to affect the transcription levels of both

FADS1 and FADS2. The increase in expression level by

haplotype D in liver agrees with the effect that we esti-

mated for haplotype D on the FADS catalyzed steps in

fatty-acid synthesis and the generation of LC-PUFAs (Table

2). Thus, the two FADS haplotypes differ both in transcrip-

tion levels and in their ability to synthesize AA and DHA

from their precursors.

The 28 SNPs defining haplotypes A and D span a 38.9 kb

region, including the promoter regions of FADS1 and

FADS2. Given that we have performed a comprehensive

genetic analysis of the region, the difference in the haplo-

types’ ability to synthesize LC-PUFAs is probably due to

one or several of the 28 SNPs that define the haplotypes

or, possibly, some nearby genetic variant(s) in LD. Deter-

mining which SNP(s) is causative is difficult because of

the complete LD in the region, but the fact that several
erican Journal of Human Genetics 90, 809–820, May 4, 2012 813



Table 2. Associations between FADS Haplotypes and PUFAs in the
NSHPS Cohort

Common
Name

p Value
(mmscore)a

Effect of
Haplotype D

Omega-6

FA18:2(n-6) LA 0.052 �0.12

FA18:3(n-6) GLA 1.3 3 10�18 0.56

FA20:3(n-6) DGLA 0.26 0.07

FA20:4(n-6) AA 5.2 3 10�18 0.50

Ratio GLA/LAb 1.6 3 10�27 0.68

Ratio AA/DGLAb 1.8 3 10�11 0.40

Omega-3

FA18:3(n-3) ALA 0.024 �0.14

FA20:4(n-3) ETA 2.2 3 10�05 �0.25

FA20:5(n-3) EPA 1.1 3 10�12 0.37

FA22:6(n-3) DHA 8.3 3 10�05 0.20

Ratio ETA/ALAb 0.042 �0.12

Ratio EPA/ETAb 1.0 3 10�24 0.61

The p values represent significance of differences in PUFA levels and have been
corrected for relatedness between individuals. The following abbreviations are
used: LA, linoleic acid; GLA, gamma-linoleic acid; DGLA, dihomo-gamma-lino-
leic acid; AA, arachidonic acid; ALA, alpha-linoleic acid; ETA, eicosatetraenoic
acid; EPA, eicosapentaenoic acid; and DHA, docosahexaenoic acid.
aMixed model to adjust for relatedness among individuals; Bonferroni-adjusted
p values.
bRatios (product/substrate) for the FADS1- or FADS2-catalyzed steps in fatty-
acid synthesis.

Figure 2. Effect of Haplotype on Synthesis of PUFAs in the
Omega-3 and Omega-6 Pathways
Measurements of the omega-3 and 6 fatty-acid levels in the NSPHS
population. The three bars in each of the smaller plots (labeled
DD, DA, and AA) represent levels of fatty acids in individuals
homozygous (AA and DD) and heterozygous (DA) for the A and
D haplotypes. Fatty-acid measurements have been scaled so
that the average levels for the individuals homozygous for haplo-
type A are set to 1. The error bars represent the upper and lower
quartiles for the PUFA measurements. Asterisks (*) indicate
p values < 10�3.
of the SNPs that define the two haplotypes are located at

sites where complexes with regulatory molecules have

been shown to bind (Figure 3) advocates for a functional

significance of one or several of the SNPs in the haplotype

block on the transcription levels.

Population Distribution and Diversity of FADS

Haplotypes

Estimated from the human genome diversity panel

(HGDP-CEPH),39 the geographic distributions of haplo-

types A and D differ dramatically between continents

(Figures 4A and 4B). In African HGDP populations, haplo-

type A is essentially absent (1% of chromosomes), whereas

in Europe, West, South, and East Asia, and Oceania, it

occurs at a frequency of 25%–50%. Among the 126 Native

Americans included in HGDP, haplotype A accounts for

97% of the chromosomes. A complementary analysis of

haplotype frequencies for population samples from

HapMap40 and the 1,000 Genomes Project41 confirmed

that haplotype A occurs at a very low frequency among

individuals of African descent, whereas it is present at

moderate to high frequencies in populations of European

and Asian ancestry (Figure 4C). Among individuals of

African ancestry, 49% carry mixed FADS haplotypes with

a higher resemblance to haplotype D than to haplotype

A, consistent with a decay of haplotype D by recombina-

tion in African populations (Figure 4C).
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Signature of Positive Selection

The very high frequency of haplotype D in Africa and the

high LD in the FADS region indicate that this part of the

genome has been subjected to positive selection, and this

is supported by several lines of evidence from the HGDP

data.39 African and American populations show a large

reduction in heterozygosity in a 30 kb region encompass-

ing the FADS haplotypes (see Figure S3). The cross-popula-

tion extended haplotype homozygosity test (XP-EHH),

which is designed to detect selective sweeps where the

selected allele has approached or achieved fixation in one

population but remains polymorphic in the human

population as a whole,54 shows a distinct peak in the

FADS region in the African Bantu-speaking populations

(Figure S3C). Moreover, in a genome-wide analysis that

used a composite likelihood ratio (CLR) test of the allele-

frequency spectrum,55,56 the FADS region is among the

top five candidate-gene clusters that have been under posi-

tive selection in African populations.57

Evolutionary History of the FADS Region

Comparative-genomics analyses focusing on the 28 SNPs

that distinguish haplotypes D and A showed that rhesus

macaques, African apes (chimpanzees and gorillas), and

Denisovans42 all have haplotypes that are very similar to

haplotype A (Figure 5A and Table S2). The Neanderthal

data are based on incomplete sequences from three indi-

viduals43 and have nucleotide variants found on both

human haplotypes, but overall, they have higher similarity
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Figure 3. Transcriptional Regulation Elements in the FADS Region
The figure shows a UCSC Genome Browser view of the FADS region; the 28 SNPs define the two haplotypes A and D indicated in red (at
the top). The two tracks in the middle show promoter- and enhancer-associated histone marks identified in cell-line studies within the
ENCODE project.65 Below is a track displaying transcription-factor binding in the region as identified by ENCODE ChIP-seq experi-
ments. The track at the bottom shows the binding profile for the transcription factor SREBP1 in HepG2 cells; this protein has been shown
to affect expression of both FADS1 and FADS2 in mice.66 Many of the SNPs that distinguish haplotype A from D are located inside or in
close proximity to the binding sites of regulatory molecules.
to haplotype A. Our results thus indicate that haplotype D

appeared on the lineage leading to modern humans.

Intriguingly, the distance between FADS1 and FADS2 has

been reduced (though a deletion) from over 75 kb in rhesus

macaques and chimpanzees to only 11 kb in humans. This

deletion brought the promoters of FADS1 and FADS2 closer

to each other, and this might have resulted in coordinated

regulation of FADS expression.

In order to further understand the evolutionary history

of haplotypes A and D, we focused on the 30 kb region

of the FADS haplotypes with reduced heterozygosity, and

we made use of the data from high-coverage whole-

genome sequencing of five African individuals that were

all homozygous for haplotype D40,46 and two individuals,

one Palaeo-Eskimo47 and one Australian Aboriginal,48

who were both homozygous for haplotype A. For compar-

ison, we also obtained data from a Denisovan and a chim-

panzee sequenced at high coverage. For the seven humans,

the Denisovan, and the chimpanzee, we then computed all

pair-wise nucleotide differences within the 30 kb window

and performed a hierarchical clustering by using UPGMA.

The results show two clusters in humans, one in which

the five African individuals carry the DD genotype and

another in which the Eskimo and the Aboriginal carry

the AA genotype (Figure 5B). On the basis of the number

of SNPs that have accumulated between the DD genotypes,

we estimated an age of 255,000 years (range: 212–303

years) for haplotype D diversity. Similarly, based on the

variability between AA genotypes, an estimate for haplo-

type A is an age of 606,000 years. Furthermore, we used
The Am
the BEAST software50 to analyze the evolutionary history

of the haplotypes, and this resulted in an estimate

of 433,000 years for the age of haplotype D. Because

we were unable to reconstruct the complete haploid

sequences that are required as input for BEAST (see

Material andMethods), the estimates produced by UPGMA

might be more accurate, and the BEAST results should be

seen as an upper limit. Our results thus show that haplo-

type D appeared after the split from Neanderthals (around

500,000 years ago) but prior to the exodus of modern

humans from Africa (50,000–100,000 years ago).
Discussion

Single genetic variants in the FADS1 and FADS2 region

have previously been associated with lipid-related traits

and phenotypes. Our analysis shows the presence of two

common human haplotypes with dramatic differences

in transcription levels and the ability to synthesize essen-

tial omega-3 and omega-6 LC-PUFAs (e.g., AA and DHA).

These two haplotypes account for all of the genetic

effect seen in FADS activity, and none of the rare SNPs in

the region appear to have any additional effect. Haplotype

D, which is associated with increased FADS activity, is

specific to humans and has appeared on the lineage

leading to modern humans well after the split from the

common ancestor of humans and chimpanzees. Given

that haplotype D has few similarities with the Neanderthal

sequences, it does not appear that this human haplotype
erican Journal of Human Genetics 90, 809–820, May 4, 2012 815



Figure 4. Distribution of FADS Haplotypes in Human Populations
(A) The frequencies of the A (blue) and D (red) haplotypes on different continents are based on four SNPs genotyped in the HGDP pop-
ulations. The remaining fractions represent mixes (gray) of haplotypes A and D. In Europe, data for the same four SNPs are included for
all genotyped individuals in our five local population cohorts (EUROSPAN).
(B) Frequencies of A, D, and mixed haplotypes in HGDP populations in which at least ten individuals have been genotyped.
(C) Frequencies of the 28 SNPs on the FADS haplotypes for tenHapMap and 1,000Genomes populations of African, European, and Asian
ancestry. Phased SNP data for all chromosomes in a population are shown as colored rows. Each row consists of 28 elements, one for each
SNP on the two main haplotypes. A SNP is colored blue if it is located on haplotype A and colored red if it is on haplotype D. Mixed
haplotypes are represented by horizontal lines that contain both red and blue elements.
has been acquired from an archaic species, as proposed for

some HLA alleles,58 but that it has evolved on the lineage

leading to modern humans.

The age of the diversity seen in haplotype D and the

present geographic distribution of this haplotype indicate

that both haplotype A and haplotype D were present in

Africa at the time of the exodus of modern humans

50,000–100,000 years ago; therefore, both haplotypes
(B) Dendrogram—resulting from a hierarchical clustering via the U
region between five DD individuals, two AA individuals, the Denov
branches, and DD genotypes are depicted with red branches.
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were present in European, Asian, and Oceanian popula-

tions. The low frequency of haplotype D in the Native

American populations included in HGDP indicates that

this haplotype might have been lost because of a bottle-

neck effect in the colonization of the American conti-

nent,59,60 possibly in combination with relaxation of the

selective pressure as a result of a diet higher in essential

LC-PUFAs. It is also possible that haplotype D is more
Figure 5. Evolution of FADS Haplotypes
(A) The 28 SNPs distinguishing the two main
haplotypes in modern humans are shown at the
bottom (haplotype A in red letters, D in blue),
and the corresponding nucleotides in primates
and archaic hominins are aligned above. The
nucleotides for rhesus macaques, gorillas, and
chimpanzees are taken from their respective
reference genomes (rheMac2, gorGor3, and pan-
Tro2). Positions marked by hyphens are missing
from the reference assemblies and probably
represent deletions. For the archaic hominins,
all nucleotides identified by at least ten reads
(Denisovan) and two reads (Neanderthal) by
Illumina sequencing are shown (see Table S2 for
detailed data). Empty cells indicate positions
with no sequence-read information as a result
of either insufficient coverage or a deletion.

PGMA method—of pair-wise nucleotide differences in the FADS
isan, and one chimpanzee. AA genotypes are depicted with blue
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common in other populations on the American continent.

In Africa, haplotype D appears to have continued to

increase in frequency after the exodus until it reached

the present dominating position. Consequently, in the

FADS region today, the derived allele (haplotype D) is

more frequent in Africa than in other continents; this

finding contrasts the more common pattern in which the

ancestral allele is more frequent in Africa. Consistent

with our results, it has been shown that FADS genetic vari-

ants have a stronger effect on PUFA metabolism in African

Americans than in Americans of European descent as

a result of differences in genotype frequencies.61

We can only speculate about the mechanisms respon-

sible for the increase in frequency of haplotype D. The

very rapid increase in the brain size of hominoids probably

involved selection on a number of loci and was initiated

prior to the appearance of Homo erectus. Such an increase

must have resulted in a greater need for LC-PUFAs so

that the larger brain volume could be supported. It has

been proposed that a shift in diet, characterized by access

to food sources that are rich in essential LC-PUFAs, was

initiated about 2 million years ago.1,19 This change in the

availability of LC-PUFAs might have been important for

maintaining the proportionally large hominoid brain rela-

tive to body size. Our estimate of the age of haplotype D

predates the earliest known anatomically modern humans

at about 200,000 years old. The appearance of haplotype D

probably did not have any direct effect on brain size per se

but might have been selected for because it was highly

advantageous under certain circumstances. Humans use

a very large portion of dietary fats, predominantly AA

and DHA, to feed the brain.1 Consequently, humans’

ability to more efficiently synthesize LC-PUFAs from their

precursors might have played an important role their

ability to survive in periods during which AA- and DHA-

rich diets were not available. Haplotype D is likely to

have been advantageous to humans living in environ-

ments with a limited access to these fatty acids, and this

could explain the signature of positive selection seen for

this haplotype in African populations.

Regarding the present diet in the Western world, the

advantage of having a faster biosynthesis of LC-PUFAs

for carriers of haplotype D might have turned into a

disadvantage. Because haplotype D increases the biosyn-

thesis of both omega-3 and omega-6 LC-PUFAs, high

intake of omega-6 LC-PUFAs augments the amount of

AA and thereby the synthesis of arachidonic-acid-derived

proinflammatory eicosanoids, which are associated with

increased risk of atherosclerotic vascular damage.62 Thus,

we hypothesize that the acquisition of a FADS haplo-

type—which might have been beneficial when food sour-

ces rich in the essential LC-PUFAs were in limited supply

and when humans had to rely on vegetable oils containing

precursors of these fatty acids—would now act as a thrifty

genotype and represent a risk factor for lifestyle-related

diseases, such as coronary artery disease.18 Consistent

with this hypothesis, it has been suggested that differences
The Am
in the capacity to synthesize LC-PUFA might contribute to

health disparities between populations of African and

European descent63 and that FADS genotyping should be

included as a diagnostic for dietary recommendations.64

Supplemental Data

Supplemental Data include three figures and four tables and can

be found with this article online at http://www.cell.com/AJHG.
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14. Zietemann, V., Kröger, J., Enzenbach, C., Jansen, E., Fritsche,

A., Weikert, C., Boeing, H., and Schulze, M.B. (2010). Genetic

variation of the FADS1 FADS2 gene cluster and n-6 PUFA

composition in erythrocyte membranes in the European

Prospective Investigation into Cancer and Nutrition-Potsdam

study. Br. J. Nutr. 104, 1748–1759.

15. Caspi, A., Williams, B., Kim-Cohen, J., Craig, I.W., Milne, B.J.,

Poulton, R., Schalkwyk, L.C., Taylor, A.,Werts, H., andMoffitt,

T.E. (2007). Moderation of breastfeeding effects on the IQ by

genetic variation in fatty acid metabolism. Proc. Natl. Acad.

Sci. USA 104, 18860–18865.
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geras, T.R., Margulies, E.H., Weng, Z., Snyder, M., Dermitzakis,

E.T., Thurman, R.E., et al; ENCODE Project Consortium; NISC

Comparative Sequencing Program; Baylor College ofMedicine

Human Genome Sequencing Center; Washington University

Genome Sequencing Center; Broad Institute; Children’s

Hospital Oakland Research Institute. (2007). Identification

and analysis of functional elements in 1% of the human

genome by the ENCODE pilot project. Nature 447, 799–816.

66. Matsuzaka, T., Shimano, H., Yahagi, N., Amemiya-Kudo, M.,

Yoshikawa, T., Hasty, A.H., Tamura, Y., Osuga, J., Okazaki,

H., Iizuka, Y., et al. (2002). Dual regulation of mouse Delta(5)-

and Delta(6)-desaturase gene expression by SREBP-1 and

PPARalpha. J. Lipid Res. 43, 107–114.
012


	Genetic Adaptation of Fatty-Acid Metabolism: A Human-Specific Haplotype Increasing the Biosynthesis of Long-Chain Omega-3 a ...
	Introduction
	Material and Methods
	Population Sample
	Lipidomics
	SNP Array Genotyping and Imputation
	SNP Association Analysis and Haplotype Reconstruction
	Enrichment and Resequencing of the FADS Region
	Analysis of Sequence Reads
	Analysis and Validation of Rare Variants in the FADS Region
	Analysis of Effects of Rare Variants with Respect to Haplotypes A and D
	Analysis of the Geographical Distribution of the Two FADS Haplotypes
	Haplotype Evolution Analysis
	Age Estimate of Haplotype D

	Results
	Two Common FADS Haplotypes
	Effect of FADS Haplotypes on PUFA Metabolism
	Population Distribution and Diversity of FADS Haplotypes
	Signature of Positive Selection
	Evolutionary History of the FADS Region

	Discussion
	Supplemental Data
	Acknowledgments
	Web resources
	References


