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The rational design of protein structure and function is rapidly
emerging as a powerful approach to test general theories in
protein chemistry (1). De novo creation of a protein or an
active site requires that all the necessary interactions are
provided. The design approach is therefore a way to test the
limits of completeness of understanding experimentally. Fur-
thermore, if the experiments are devised in a progressive
fashion, such that the simplest possible designs are tried first,
followed by iterative additions of more complex interactions
until the desired result is achieved, then it may be possible to
identify a minimally sufficient set of components. At the center
of the design approach is the ‘‘design cycle,’’ in which theory
and experiment alternate. The starting point is the develop-
ment of a molecular model, based on rules of protein structure
and function, combined with an algorithm for applying these.
This is followed by experimental construction and analysis of
the properties of the designed protein. If the experimental
outcome is failure or partial success, then a next iteration of the
design cycle is started in which additional complexity is
introduced, rules and parameters are refined, or the algorithms
for applying them are modified. The paper by Dahiyat and
Mayo (2) in the current issue of these Proceedings describes
such a design cycle. Sequences predicted to repack the interior
of a small protein were generated by a computer design
algorithm using different sets of parameters describing the
packing interactions, thereby establishing a direct experimen-
tal correlation between the design parameters and the prop-
erties of the resulting proteins. This work is the latest addition
to a series of efforts in which objective computational tech-
niques developed to create protein structure (3–8) or function
(9, 10) are being tested directly by experiment. The ultimate
goal of such procedures is to develop a fully automated protein
design method (6).

Design of a protein requires that both a structure and a
sequence are specified. The basic forces that determine the
noncovalent interactions within the polypeptide chain, with
the surrounding solvent, and with ligands are relatively well
understood: van der Waals and electrostatic interactions,
hydrogen bonds, the hydrophobic effect, and the favorable
packing interactions associated with the condensed state of
protein interiors (11). However, the number of conformations
a particular polypeptide can potentially adopt as well as the
number of different sequences that can be built into even a
small protein is vast.† Furthermore, many of these sequences
and their conformations are distinguished only by relatively
small energy differences. The combination of the immense
combinatorial complexity and subtle energetic differences
turns the seemingly simple basic interactions into a dauntingly
complex landscape of virtually infinite possibilities. The ability
of an algorithm to explore this vast landscape and seek out
preferred solutions that have to be distinguished from closely
related inferior possibilities is therefore a crucial component
of any rational design approach. All design methods use the
same general approach to reduce the immense complexity of
the search problem. The structure of a protein backbone is

chosen a priori, kept fixed, and redecorated with different
amino acid sequences that are predicted to be structurally
compatible with that fold. This ‘‘inverse folding’’ approach (12)
therefore removes the backbone conformational degrees of
freedom from the design problem.

The first rational design approaches used qualitative rules of
protein structure applied by inspection (13). These experi-
ments established that it is possible to create sequences de novo
that adopt defined structures (1, 14). Furthermore, they dem-
onstrated that, by following a progressive design strategy [or
‘‘hierachic design’’ (1)] in which increasing levels of complexity
are iteratively introduced, new insights into the fundamentals
of protein structure and function can be gained. One of the
remarkable observations of these experiments was that it is
surprisingly easy to obtain globally correct folds. However, the
local details were found to be difficult to get correct. The
interiors of these designed proteins show a high degree of
disorder, which does not resemble the tightly packed, unique
arrangement of natural systems. Global correctness in these
designs apparently resulted from incorporation of the correct
‘‘binary pattern’’ of hydrophobic and hydrophilic residues,
which sets up the geometric specification of the protein interior
and exterior for the hydrophobic effect to act on (15, 16). The
difficulty in designing well-ordered cores can be viewed as a
problem in specificity. The side chains in a disordered core
adopt many alternative conformations of approximately equal
energy, instead of assuming a single, specific arrangement.

To achieve specificity, the desired state (well-ordered core)
has to have the lowest free energy of all possible states (ground
state), and there has to be a large free energy difference
between the next available state: the free energy of specificity,
DGspec (Fig. 1). There are two ways to achieve such a free
energy gap: raising the free energy of competing states, or
lowering that of the desired state. One approach is to introduce
specific features that prevent the formation of alternative
conformations, thereby raising their energy [‘‘negative design’’
(14)]. Constructing protein interiors out of sequences that
increase the degree of geometric irregularity, making it less
likely for alternative isoenergetic conformations to exist, re-
sults in better-ordered cores (1, 17). Another approach is to
lower the free energy of the desired state by searching for a
core-forming sequence with the lowest possible free energy
that can be located in the entire space of sequences and their
conformations (‘‘target state optimization’’). This is difficult to
achieve by inspection, because of the combinatorial vastness of
the search space. Here the computational approaches come
into their own. Dahiyat and Mayo (2) use their version of the
Dead-End Elimination algorithm (18) to identify the sequence
with the lowest free energy minimum that repacks the core of
the B1 domain of protein G. By varying the sizes of the atomic
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radii in their calculations, they are able to artificially tune the
packing density, or degree of precision with which the jig-saw
puzzle of the core is put together. The experimental behavior
of their B1 variants convincingly shows that to get well-ordered
cores and folded proteins, it is necessary to predict sequences
that fit exquisitely. The strategy of achieving ordered cores by
target state optimization therefore works remarkably well.
Other algorithms (3, 4), applied to other proteins (19), have
also successfully predicted hydrophobic core sequences, dem-
onstrating that precise packing details matter.

The inverse folding concept of redecorating a fixed protein
backbone with amino acids can also be used for the design of
function in proteins. Algorithms have been developed and
tested to rebuild the surface of existing binding sites to change
their specificity (20), or to introduce active sites de novo (9, 10).
Such algorithms, as well as qualitative designs by inspection,
have resulted in the construction of a number of metal-
loproteins (21) where the interplay between the protein fold
and the reactivity of the metal center can be studied. Several
primitive but functional enzymes have also been constructed
(22, 23). Progressive designs and iterative cycles are beginning
to elucidate a number of global features that are necessary to
create controlled activity.

Most of the computational approaches developed so far
have focused on well defined regions of a protein frame, or an
area where an active site can be (re)constructed. Furthermore,
the backbone is typically left untouched, in strict interpretation
of the inverse folding concept. To move toward the ultimate
goal of fully automated design, entire protein chains have to be
redecorated, and it is also necessary to start considering
relaxation of the backbone without altering the overall topol-
ogy to better explore fitting of allowed sequences. Algorithms
for redesigning surface positions have been developed (7).
Systematic backbone deformation is much more problematic,
but can be done if the geometry of the backbone can be
described by parametric equations, as has been proven by
experiment in some cases (5, 8).

So far the automated design algorithms work by optimizing
the compatibility of the sequence with the structure of the
desired state (folded protein, or proteinyligand complex),
without explicit consideration of other potential states and
maximizing of DGspec. This strategy of considering only target

state optimization has worked surprisingly well for the suc-
cessful design of hydrophobic cores. It actually does not work
so well for the design of metal centers, if a metal can readily
adopt different coordination numbers, geometries, or activities
(24). Similar considerations come into play in automated
redesign of ligand-binding sites, where it is difficult to discrim-
inate between closely related ligands (20). In both cases it is
clear that other states need to be considered explicitly, and that
negative design as well as target state optimization plays an
important role. All the important states have to be taken into
consideration in these more challenging situations. In the
terminology of statistical mechanics, a proper partition func-
tion has to be integrated over all possible states.

Theoretical studies with lattice models of proteins (25) and
experiments have demonstrated that explicit consideration of
alternative folds will be necessary in the design process of
entire protein sequences. For instance, core mutations can
change the oligomerization state of a coiled coil (26). Even
more dramatic is a qualitative design experiment in which the
B1 domain of protein G (one a-helix, four b-strands) was
transformed into Rop (a four-helix bundle), by changing no
more than 50% of the sequence (27). Both experiments show
that similar sequences can adopt dramatically different folds.
To reliably calculate entire sequences de novo for such struc-
tures it is necessary to consider many more states than just the
target.

It is, of course, impossible to construct a partition function
over all the possible folds that a sequence of a reasonable
length can adopt, using the type of high-resolution model
necessary for calculating the final packing details in an auto-
mated design program. However, it is probably not necessary
to go to such extremes. Binary patterns composed of hydro-
phobic and hydrophilic residues are likely to play a dominant
role in the selection of the overall geometry of many protein
folds (16). It may therefore be possible to develop a hierarchic
design algorithm in which the first step is to calculate binary
patterns that uniquely specify the desired topology (28) by
explicitly considering and destabilizing alternative topologies,
followed by the detailed calculations necessary for core pack-
ing and surface decoration. Such a strategy has worked well in
an empirical design experiment in which combinatorial librar-
ies of a four-helix bundle were constructed (29).

The natural interplay of theory and experiment in rational
design makes this approach a powerful method for testing
general theories of structure and function. As the questions
that are being asked become increasingly sophisticated, use of
automated design algorithms to solve the tremendous combi-
natorial challenges inherent in conformational and sequence
spaces will become a standard approach. It is clear that one of
the main challenges is the development of algorithms that can
deal directly with structural and functional specificity. The
statistical mechanical concepts developed in the simple exact
lattice models (30) will have to be applied to the high-
resolution modeling needed for calculating sequences used in
experiments.
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