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Abstract
During pregnancy, it is evolutionary advantageous for inflammatory immune responses that might
lead to fetal rejection to be reduced and anti-inflammatory responses that promote transfer of
maternal antibodies to the fetus to be increased. Hormones modulate the immunological shift that
occurs during pregnancy. Estrogens, including estradiol and estriol, progesterone, and
glucocorticoids increase over the course of pregnancy and affect transcriptional signaling of
inflammatory immune responses at the maternal-fetal interface and systemically. During
pregnancy, the reduced activity of natural killer cells, inflammatory macrophages, and helper T
cell type 1 (Th1) cells and production of inflammatory cytokines, combined with the higher
activity of regulatory T cells and production of anti-inflammatory cytokines, affects disease
pathogenesis. The severity of diseases caused by inflammatory responses (e.g., multiple sclerosis)
is reduced and the severity of diseases that are mitigated by inflammatory responses (e.g.,
influenza and malaria) is increased during pregnancy. For some infectious diseases, elevated
inflammatory responses that are necessary to control and clear a pathogen have a negative
consequence on the outcome of pregnancy. The bidirectional interactions between hormones and
the immune system contribute to both the outcome of pregnancy and female susceptibility to
disease.
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Introduction
The state of pregnancy represents an extreme challenge for the immune system. From the
perspective of the pregnant female's immune system, the fetus is an allograft that contains
foreign antigens from the father. To support a successful pregnancy, it is evolutionarily
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advantageous for a pregnant female's immune responses to shift away from inflammatory
responses that contribute to fetal rejection and toward anti-inflammatory immune responses
that aid in passive transfer of antibodies to the developing fetus (Raghupathy, 1997).
Hormones contribute significantly to the shift in immune function that occurs over the three
trimesters of pregnancy (Figure 1). Importantly, pregnant females are not
immunosuppressed, but rather their immune responses are biased toward an anti-
inflammatory phenotype that influences not only the outcome of pregnancy but disease
pathogenesis as well.

The hormonal and immunological changes that occur over the course of pregnancy are
necessary to support a healthy pregnancy, but also dramatically affect female susceptibility
to autoimmune and infectious diseases. While many studies of autoimmune and infectious
disease pathogenesis report changes in immunological factors over the course of pregnancy,
few studies consider the role that hormones play in orchestrating these immunological
changes. The goals of this review are to: (1) evaluate the immunological shifts that occur
during pregnancy; (2) determine the effects of pregnancy-associated hormones, in particular
estrogens and progesterone (P4), on innate and adaptive immune responses; (3) provide
relevant examples of pregnancy and pregnancy-associated hormones affecting the outcome
of diseases caused by pathogens as well as recognition of self-antigens; and (4) identify
general principles across diseases that might improve interpretation and treatment for
immune-related diseases during pregnancy.

Inflammatory immune responses are skewed during pregnancy
Concentrations of steroid hormones, including estrogens and P4, are considerably higher
during pregnancy than during other times in the female reproductive cycle and increase over
the course of pregnancy, with highest levels achieved during the third trimester (Figure 1).
Hormonal changes that occur during pregnancy underlie some of the distinct immunological
changes associated with pregnancy. Elevated levels of P4 stimulate the synthesis of
progesterone-induced binding factor (PIBF) by lymphocytes (Szekeres-Bartho and Polgar,
2010). In humans, PIBF increases over the course of pregnancy and drops significantly after
birth, but in pathological pregnancies that result in preterm labor, abortion, or hypertension,
concentrations of PIBF are low (Polgar et al., 2004). High concentrations of PIBF promote
differentiation of CD4+ T cells into helper T cell type 2 (Th2) cells that secrete high
concentrations of anti-inflammatory cytokines, including IL-4, IL-5, and IL-10 (Szekeres-
Bartho et al., 1996). The Th2 bias that occurs during pregnancy corresponds with a
reduction in inflammatory Th1 responses (e.g., production of IFN-γ), both at the maternal-
fetal interface and systemically in humans and animal models (Krishnan et al., 1996a; Lin et
al., 1993; Marzi et al., 1996; Ostensen, 1999; Sacks et al., 2001; Veenstra van
Nieuwenhoven et al., 2002). In vitro, splenocytes from pregnant female mice produce less
Th1 cytokines and more Th2 cytokines than do cells isolated from non-pregnant females
following stimulation (Dudley et al., 1993; Krishnan et al., 1996a). Successful pregnancies
in humans are associated with elevated IL-4 and IL-10 and reduced IL-2 and IFN-γ
production by peripheral blood mononuclear cells (PBMCs), with differences in cytokine
production being greatest during the third trimester of pregnancy (Marzi et al., 1996).
Inflammatory cytokines, like IFN-γ and TNF-α, can damage the placenta and developing
fetus either directly or by activating cytotoxic cells, including natural killer (NK) or T cells
(Raghupathy, 1997).

In addition to T cells, the anti-inflammatory polarization of immune cells during pregnancy
is observed for macrophages. In an inflammatory environment (i.e., caused by the presence
of inflammatory cytokines or exposure to inflammatory stimuli), uterine decidual
macrophages develop an inflammatory phenotype (often referred to as M1 macrophages)
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that is characterized by elevated secretion of the inflammatory cytokines, IL-12 and TNF-α
(Nagamatsu and Schust, 2010). Macrophages that differentiate in an environment that is
dominated by Th2-biased cytokines, such as IL-4, IL-10, or IL-13, or high glucocorticoid
concentrations, develop an anti-inflammatory phenotype (referred to as M2 macrophages),
which is characterized by arginase activity, scavenger receptor expression, and secretion of
IL-1 receptor antagonist (Nagamatsu and Schust, 2010). In women with healthy, full-term
pregnancies, there is increased M2 polarization of decidual macrophages as compared with
women with preterm pregnancies (Nagamatsu and Schust, 2010).

The immunological shift away from inflammatory responses is necessary for a successful,
full-term pregnancy. If the anti-inflammatory bias during pregnancy is altered, by infection
for example, this can result in preterm labor or abortion in humans as well as mice (Hill et
al., 1995; Krishnan et al., 1996b; Marzi et al., 1996). Elevated Th2 responses also correlate
with increased antibody responses during pregnancy (Wegmann et al., 1993). Elevated
concentrations of anti-inflammatory factors, such as IL-10, can prevent spontaneous
abortions, at least in mice (Chaouat et al., 1995). Concurrent with the increase in Th2
responses during normal pregnancy is an increase in the activity of regulatory T cells at the
maternal-fetal interface in mice (Kallikourdis and Betz, 2007). In women, migration of
regulatory T cells to the pregnant uterus is mediated by human chorionic gonadotropin,
which is a chemoattractant protein secreted by the blastocyst after fertilization (Schumacher
et al., 2009). Regulatory T cells are hypothesized to orchestrate immune tolerance of the
fetus during pregnancy in mammals.

Pregnancy-associated hormones alter immune function
Pregnancy is associated with changes in concentrations of several hormones, including
estradiol (E2), estriol (E3), P4, corticosteroids, and prolactin. These hormonal changes
contribute to the immunological shifts during pregnancy (Figure 1). Importantly, the effects
of pregnancy-associated hormones on immune function extend beyond what has been
examined in the context of pregnancy and may inform future studies. Altered activity of
innate immune cells contributes to the differential induction of cell-mediated and humoral
responses during pregnancy. Consideration of the diverse effects of sex steroids, in
particular, on the functioning of the immune system may provide insight into why the
pathogenesis of infectious and autoimmune diseases changes dramatically during pregnancy.

Estradiol
Estradiol (E2) occurs in high concentrations in non-pregnant as well as pregnant females and
is responsible for a majority of the `classic' estrogenic effects in reproductive and non-
reproductive tissues. Estrogen receptors (ERs) are expressed in various lymphoid tissue cells
as well as in lymphocytes, macrophages, and dendritic cells (DCs) (Kovats et al., 2010).
There are two subtypes of the receptor for estrogens, ERα and ERβ, that exhibit differential
expression in subsets of immune cells, with ERα being highly expressed in T cells and ERβ
being upregulated in B cells (Phiel et al., 2005). The differential effects of estrogens on
parameters of immune function may reflect not only the concentration of estrogen (i.e.,
whether physiological or pregnancy doses are used), but the density, distribution, and type
of ERs in immune cells.

Estradiol affects several aspects of innate immunity, including the functional activity of
innate immune cells that influence downstream adaptive immune responses. Exposure to E2
in vitro enhances NK cytotoxicity and production of IFN-γ (Nakaya et al., 2006; Sorachi et
al., 1993), but can also downregulate the expression of NK cell surface activation markers
and secretion of granzyme B and FasL (Hao et al., 2007). Estradiol enhances the expression
of pattern recognition receptors, like toll-like receptor (TLR) 4, on the surface of peritoneal
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macrophages as well as production of TNF-α (Rettew et al., 2009). Estradiol can have
bipotential effects on monocytes and macrophages, with low doses enhancing
proinflammatory cytokine production (e.g., IL-1, IL-6, and TNF-α) and high concentrations
reducing production of these cytokines (Bouman et al., 2005). In vitro exposure to E2
facilitates differentiation of bone marrow precursor cells into functional CD11c+ DCs
(Paharkova-Vatchkova et al., 2004) and increases the synthesis of chemokines, including
CXCL8 and CCL2, by immature DCs (Bengtsson et al., 2004), but downregulates antiviral
responses, including production of IFN-α and CXCL10, following viral infection (Escribese
et al., 2008). Treatment of ovariectomized mice with physiological doses of E2 increases
production of IFN-γ by CD11c+ DCs and synthesis of proinflammatory cytokines, including
IL-1, IL-6, and TNF-α (Miller and Hunt, 1996; Siracusa et al., 2008). Estradiol acts
primarily though ERα, not ERβ, to regulate differentiation of DCs (Carreras et al., 2008;
Douin-Echinard et al., 2008; Paharkova-Vatchkova et al., 2004).

Estradiol can enhance both cell-mediated and humoral immune responses (Straub, 2007).
Generally, low E2 concentrations promote Th1 responses and cell-mediated immunity and
high concentrations of E2 augment Th2 responses and humoral immunity (Straub, 2007).
The binding of E2 to the ER increases Ifnγ transcription by interacting with estrogen
response elements in the promoter region of the Ifnγ gene (Fox et al., 1991). Low dose E2
also upregulates mitogen activated protein kinase (MAPK), T-bet, and select microRNAs to
increase production of IFN-γ by T cells, which can be reversed by treatment of cells with
the ER antagonist ICI 182,780 (Dai et al., 2008; Karpuzoglu et al., 2007; Suzuki et al.,
2008). Estradiol regulates proinflammatory responses that are transcriptionally mediated by
NF-κB (Dai et al., 2007).

Estradiol enhances the expansion of CD4+CD25+ T cells (regulatory T cells) in mice
(Polanczyk et al., 2004). The number of regulatory T cells increases during proestrus and
estrus in mice and during the follicular stage of the menstrual cycle in women (i.e., when E2
concentrations are highest) (Arruvito et al., 2007; Kallikourdis and Betz, 2007). Treatment
of mice with high doses of E2 also decreases production of IL-17 by Th17 cells (Wang et
al., 2009). Estradiol at physiological concentrations can stimulate antibody production by B
cells (Lu et al., 2002). Levels of immunoglobulin (Ig) and numbers of Ig-secreting cells are
highest prior to ovulation in females (Franklin and Kutteh, 1999; Lu et al., 2002).

Estriol
Estriol (E3) is produced in high concentrations by the fetoplacental unit during pregnancy
and accounts for almost 90% of all estrogens produced during pregnancy (Soldan et al.,
2003; Tulchinsky et al., 1972). Estriol is not present in non-pregnant females. The
immunological effects of E3 have not been well characterized and it is assumed that the
effects of E3 are broadly the same as E2 because both estrogens signal through the same
ERs (Voskuhl, 2011). Much of the research on the immunological effects of E3 has been
based on studies of multiple sclerosis (MS) in patients and animal models of MS, such as
experimental autoimmune encephalomyelitis (EAE). Treatment of female MS patients or
male EAE mice with doses of E3 that produce pregnancy levels in circulation significantly
lowers proinflammatory cytokine production (e.g., TNF-α and IFN-γ), increases anti-
inflammatory cytokines (e.g., IL-5), reduces numbers of CD4+ and CD8+ T cells, increases
autoantibody responses, and increases proportions of CD19+ B cells in circulation (Kim et
al., 1999; Liu et al., 2003; Palaszynski et al., 2004b; Sicotte et al., 2002; Soldan et al., 2003).
In female mice, induction of EAE causes DCs from E3-treated mice to develop a tolerogenic
phenotype, in which there is upregulation of activation and costimulatory surface markers,
including inhibitory PD-L1, reduction of proinflammatory transcripts (i.e., IL-12 and IL-6
mRNA), and increased expression of anti-inflammatory transcripts (i.e., TGF-β and IL-10
mRNA) (Papenfuss et al., 2011). Adoptive transfer of DCs from E3-treated females prior to
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induction of EAE provides protection against development of disease by causing Th2-biased
immune responses (Papenfuss et al., 2011). Stimulation of T cells from E3-treated EAE
mice with myelin basic protein induces elevated production of the anti-inflammatory
cytokine, IL-10 (Kim et al., 1999). The effects of E3 on T cell function are mediated by
reduced degradation of IκB leading to inhibition of NF-κB activity and reduced
concentrations of proinflammatory cytokines (Zang et al., 2002). Estriol treatment also
reduces concentrations of matrix metalloproteinase 9 in EAE mice, which likely contributes
to reduced infiltration of monocytes and inflammatory T cells into the central nervous
system (CNS) (Gold et al., 2009). Estriol, like E2, stimulates antibody production against
innocuous antigens (Ding and Zhu, 2008), which is likely one factor contributing to
heightened humoral immunity during pregnancy.

Progesterone
Progesterone is produced by the corpus lutea in the ovaries in non-pregnant females and by
the placenta during pregnancy, playing a critical role in reproduction and immune function.
Progesterone is typically regarded as anti-inflammatory. Progesterone receptors (PRs) have
been identified in epithelial cells as well as in mast cells, eosinophils, macrophages, DCs,
and lymphocytes (Kovats et al., 2010). There are sex differences in PR expression. For
example, the expression of PRs is higher in DCs from females, which may explain why P4
is better able to suppress the activity (e.g., secretion of TNF-α) of DCs from female than
male rats (Butts et al., 2008). Progesterone can bind to glucocorticoid receptors (GRs),
which are more abundant in the immune system than are PRs, and may represent an
alternative mechanism for progesterone-induced changes in immune function (Jones et al.,
2010). Progesterone inhibits TLR-induced cytokine production as well as surface receptor
expression via PRs and GRs in DCs (Jones et al., 2010).

Progesterone suppresses innate immune responses, including macrophage and NK cell
activity as well as NF-κB signal transduction (Baley and Schacter, 1985; Furukawa et al.,
1984; McKay and Cidlowski, 1999; Miller and Hunt, 1996; Savita and Rai, 1998; Toder et
al., 1984). Progesterone can inhibit nitrite and nitric oxide production as well as Tnfα
mRNA expression by murine macrophages (Miller et al., 1996; Miller and Hunt, 1998;
Savita and Rai, 1998). Elevated concentrations of progesterone during pregnancy inhibit the
development of Th1 immune responses and promote production of Th2 immune responses,
including IL-4 and IL-5 production (Piccinni et al., 1995; Piccinni et al., 2000). In humans,
elevated concentrations of progesterone during the second trimester of pregnancy is
correlated with reduced activity of regulatory T cells (Mjosberg et al., 2009). In contrast, in
mice, the activity of regulatory T cells is increased at the maternal-fetal interface and in
lymphoid tissues in pregnant females and in non-pregnant females exposed to P4
(Kallikourdis and Betz, 2007; Mao et al., 2010). Progesterone also suppresses antibody
production (Lu et al., 2002).

Pregnancy and pregnancy-associated hormones affect disease
pathogenesis

The hormonal and immunological changes that occur during pregnancy affect susceptibly to
and the outcome of autoimmune and infectious diseases (Figure 2). Generally, the severity
of diseases that are exacerbated by inflammatory immune responses, like MS, rheumatoid
arthritis, and psoriasis, is reduced during pregnancy (Confavreux et al., 1998; Ostensen and
Villiger, 2002; Raychaudhuri et al., 2003). In contrast, the severity of many infectious
diseases, which require inflammatory responses for the initial control and clearance of
pathogens, is increased during pregnancy (Jamieson et al., 2009; Krishnan et al., 1996a; Luft
and Remington, 1982; Menendez, 1995). Hormones contribute significantly to the outcome
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of immune-related diseases during pregnancy by altering the functioning of immune cells.
Hormones can have additional effects on the outcome of infection during pregnancy. For
example, hormonal changes, including increased concentrations of P4, are hypothesized to
alter not only local immune responses, but also genital tract mucosa, to increase the risk of
HIV infection during pregnancy (Gray et al., 2005). For this review, the diseases selected
are intended to provide examples of how pregnancy, pregnancy-associated hormones, or
both affect the pathogenesis of disease, primarily by altering immune function.

Multiple sclerosis
Multiple sclerosis is caused by inflammatory immune responses, including Th1 and Th17
responses, that target the myelin sheath of axons within the CNS to promote axon
demyelination, axonal damage, and neurological dysfunction. Clinically, MS is
characterized by two courses of disease including relapsing-remitting MS (RRMS), the more
prevalent form of the disease defined by an acute phase of CNS inflammation and
neurological dysfunction, and the chronic secondary progressive (SPMS) phase associated
with more severe neurological damage (Tsui and Lee, 2011; Voskuhl, 2011). Although MS
occurs more frequently in females than males, the frequency of MS relapses is reduced
during pregnancy (Confavreux et al., 1998; Whitacre et al., 1999; Whitaker, 1998). A study
of female MS patients monitored before, during, and post-pregnancy revealed that compared
with pre-pregnancy relapse rates, pregnant MS patients suffer fewer relapses, an effect most
pronounced during the third trimester, during which pregnancy-associated hormones reach
their highest level (Confavreux et al., 1998). During the post-partum period, when
pregnancy-associated hormones rapidly decline, relapse rates return to comparable levels
observed prior to pregnancy (Confavreux et al., 1998).

There are several mechanisms by which pregnancy-associated hormones are hypothesized to
alter MS disease pathogenesis, including modulation of the immune response. Elevated
concentrations of E3 can reduce MS disease pathogenesis by significantly reducing CNS
lesion size, circulating inflammatory cytokines (e.g., IFN-γ), and delayed type
hypersensitivity responses (Sicotte et al., 2002). PBMCs isolated from female MS patients
treated with pregnancy-level E3 show decreased numbers of CD4+ and CD8+ T cells and
increased B cells in both RRMS and SPMS patients (Soldan et al., 2003). PBMC stimulation
ex vivo with mitogens and autoantigens also display increased production of IL-5 from
CD4+ and CD8+ T cells, IL-10 from CD64+ monocytes and macrophages, and decreased
TNF-α production from CD8+ T cells (Soldan et al., 2003). One mechanism by which
pregnancy-associated hormones modulate immune function is through inflammatory gene
regulation (Soldan et al., 2003). Genome-wide microarray analysis of PBMC mRNA
isolated from healthy age-matched females and MS patients before, during, and after
pregnancy reveals a distinct pattern of several differentially expressed inflammation-related
genes, including TNF-α induced protein 3 (Tnfaip3), suppressor of cytokine signaling 2
(Socs2), nuclear receptor subfamily-4 member 2 (Nr4a2), and CXC chemokine receptor-4
(Cxcr4) in MS patients prior to pregnancy; by the third trimester of pregnancy, however,
these genes are expressed at levels that are similar to healthy females an effect that is lost
post-partum (Gilli et al., 2010). Estrogens regulate several of the immune-related genes
characterized in this study and may partially account for the distinct expression patterns
observed during pregnancy and the rapid deregulation that occurs post-partum (Gilli et al.,
2010).

In the EAE mouse model of MS, disease induced by autoantigen immunization during mid
to late gestation is less severe than disease induced in virgin aged-matched females or
following parturition (Langer-Gould et al., 2002; McClain et al., 2007). Despite reduced
disease severity and decreased production of proinflammatory cytokines (e.g., TNF-α and
IL-17) in pregnant EAE mice, cellular infiltrates in the CNS are not reduced in pregnant
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compared with non-pregnant females (Langer-Gould et al., 2002; McClain et al., 2007).
Estriol or ERα agonist treatment prior to EAE induction in non-pregnant female mice
reduces disease severity and TNF-α, IFN-γ, IL-2, and IL-6 production by splenocytes
stimulated ex vivo with recall autoantigen (Palaszynski et al., 2004a; Tiwari-Woodruff et al.,
2007; Tiwari-Woodruff and Voskuhl, 2009). Estriol treatment during the effector phase of
EAE also mitigates the disease severity and increases circulating autoantigen-specific IgG1
and production of IL-10 from antigen-specific CD4+ T cells (Kim et al., 1999).
Progesterone-treated EAE mice also have reduced disease severity and inflammatory
cytokine concentrations (e.g., IL-2 and IL-17) and increased numbers of B cells and anti-
inflammatory cytokine concentrations (e.g., IL-10) (Yates et al., 2010). Progesterone
treatment also reduced the expression or several chemokines and related receptors, including
chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) receptor 2 (CCR2), and
CCR7 in the CNS during EAE induction, which may influence cellular infiltration into the
CNS (Yates et al., 2010). Additionally, P4 promotes axon remyelination and repair through
oligodendrocyte progenitor cell activation, maturation, and recruitment to foci of damaged
myelin sheaths (Garay et al., 2009; Hussain et al., 2011).

Influenza
Pregnancy is a risk factor for severe disease outcome during both seasonal epidemics and
pandemics of influenza viruses, with pregnant women experiencing greater complications
than either non-pregnant women of the same age or the general population (Harris, 1919;
Jamieson et al., 2009; Klein et al., 2010b; Klein et al., 2010c; Van Kerkhove et al., 2011).
During the 1918 H1N1 pandemic, for example, a study of 1350 cases of influenza virus
infection in pregnant women revealed that half of the pregnant women developed severe
complications, including pneumonia, and almost a third of the women died as a result
(Harris, 1919). Hospitalization with severe disease and mortality rates for pregnant women
are consistently higher when compared with the general population during the 1918 H1N1
pandemic (Harris, 1919; Rothberg and Haessler, 2010), the 1957 H2N2 pandemic
(Lapinsky, 2010; Mosby et al., 2011), and the 2009 H1N1 pandemic (Ellington et al., 2011;
Jamieson et al., 2009; Klein et al., 2010b; Lapinsky, 2010; Mosby et al., 2011). In addition
to increased hospitalization and death rates during pregnancy, severe influenza can affect the
outcome of pregnancy, including preterm delivery, low birth weight, and fetal loss (Creanga
et al., 2011a; Creanga et al., 2011b; Harris, 1919; Schwandt et al., 2011).

The risk of severe influenza is greatest during the second and third trimester of pregnancy
(Harris, 1919; Neuzil et al., 1998; Van Kerkhove et al., 2011). Women in their third
trimester of pregnancy account for over half of the deaths from secondary pneumonia during
the 1918 H1N1 pandemic (Harris, 1919). Seasonal influenza cases monitored between 1974
and 1993 revealed that pregnant women are 3–4 times more likely to die from influenza-
related illness during the third trimester than are non-pregnant women (Neuzil et al., 1998).
Pregnancy-associated changes in cardiovascular and pulmonary function are hypothesized to
underlie severe influenza (Louie et al., 2009; Mosby et al., 2011). Although physical
changes may contribute to influenza severity in some cases, there is no cluster of
physiologic changes that is consistently correlated with increased risk of severe outcome
from influenza in pregnant women (Dodds et al., 2007). Even in the absence of co-morbid
medical conditions, including asthma, diabetes, and cardiovascular disease, pregnant women
still have an increased risk of influenza-related hospitalization and death (Neuzil et al.,
1998).

Dysregulated cytokine and chemokine production, excessive immune cell influx, and
damage to the lungs are hypothesized underlie influenza pathology (Hennet et al., 1992;
Kash et al., 2004; Kash et al., 2006; Kobasa et al., 2007; Perrone et al., 2008; Tumpey et al.,
2005). There is a paucity of data on immune responses to influenza virus infection during
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pregnancy. During the 2009 H1N1 pandemic, compared to post-partum and non-pregnant
women, pregnant women had lower circulating levels of IgG2 antibody, which at high levels
is hypothesized to protect against secondary bacterial infections following influenza
infection (Chan et al., 2011). Reduced IgG2 is associated with severe influenza outcome and
dysregulated cytokine production (Chan et al., 2011; Gordon et al., 2010). Small animal
models have been instrumental for understanding the pathogenesis of 2009 H1N1 in
pregnant females. Pregnant mice exposed to pandemic 2009 H1N1 have greater mortality
than non-pregnant age-matched females (Chan et al., 2011; Marcelin et al., 2011). There are
some reports that pregnant females have greater virus replication in their lungs than non-
pregnant females, but other reports suggest that virus replication is not affected by
pregnancy (Chan et al., 2011; Marcelin et al., 2011). The increased mortality in pregnant
female mice correlates with greater induction of proinflammatory cytokines and
chemokines, including TNF-α, CCL2, CCL3, and CXCL1, in the lungs following infection
(Chan et al., 2011; Marcelin et al., 2011). Pregnant female mice also have greater numbers
of pulmonary macrophages and regulatory T cells, but similar numbers of CD8+ T cells and
levels of neutralizing antibodies, compared with non-pregnant females (Marcelin et al.,
2011). The underlying hormonal mechanisms that might contribute to differential immune
responses to and outcome of influenza virus infection during pregnancy remain to be
elucidated. Elevation of E2 in non-pregnant female mice reduces, rather than increases, the
severity of influenza A virus infection (Robinson et al., 2011), suggesting that this is not the
hormonal mechanism mediating increased severity of influenza during pregnancy. Whether
other estrogens, P4, or even glucocorticoids alter immune responses to influenza virus
infection to result in more severe disease in pregnant females requires consideration.

Toxoplasmosis
Infection with the parasite Toxoplasma gondii typically results in mild or asymptomatic
disease in adults, but can become severe in pregnant females (Pfaff et al., 2007; Roberts et
al., 2001). Congenital transmission is documented in humans and rodent models (Pfaff et al.,
2007). There are, however, reports that chronic T. gondii infection, in either humans or
mice, does not result in transmission of parasites to offspring (Roberts et al., 2001), even if
re-infected during pregnancy (Roberts and Alexander, 1992), suggesting that maternal
immunity, probably transmission of antibodies, is sufficient to protect offspring. If pregnant
females are infected early during pregnancy, prior to the anti-inflammatory skewing of the
immune response, then transmission of parasites to offspring is low. Infection during early
pregnancy, however, can result in excessive IFN-γ production, apoptosis of placental cells,
and fetal resorption (Senegas et al., 2009). If pregnant females are infected during later
stages of pregnancy, when inflammatory responses are low, then congenital transmission is
likely to occur (Pfaff et al., 2007; Roberts et al., 2001).

Pregnant female mice are more susceptible to infection with T. gondii and experience worse
disease outcome than non-pregnant females (Luft and Remington, 1982; Shirahata et al.,
1992). The activity of NK and T cells as well as production of IL-12, IFN-γ, and TNF-α
during the early stages of infection are necessary for induction of adaptive immune
responses and clearance of parasites (Roberts et al., 2001). Pregnant females produce
significantly less IFN-γ than non-pregnant females during T. gondii infection (Luft and
Remington, 1982; Shirahata et al., 1992). Administration of recombinant IFN-γ to pregnant
female mice improves the outcome of T. gondii infection and can reduce congenital
transmission of parasites (Abou-Bacar et al., 2004a; Abou-Bacar et al., 2004b; Shirahata et
al., 1992) but can also directly harm the developing fetus (Pfaff et al., 2007). There is
growing evidence that hormones underlie increased susceptibility of pregnant females to
toxoplasmosis. In female mice, E2 exacerbates, whereas gonadectomy reduces, parasite
burden and disease pathogenesis (Kittas and Henry, 1979, 1980). High concentrations of P4
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also increase susceptibility to T. gondii during pregnancy by suppressing production of
IL-12 and IFN-γ (Jones et al., 2008).

Malaria
In malaria endemic areas, susceptibility to malarial infections is increased during pregnancy
and is higher among primiparous (i.e., females that are in their first pregnancy) than
multiparous (i.e., females that have had multiple pregnancies) females. Females are more
susceptible to infection during the first pregnancy because they are immunologically naïve
to the parasite adhesion proteins (i.e., they do not possess anti-adhesion antibodies) that are
expressed in the placenta during pregnancy (Fried et al., 1998; Hviid et al., 2010; Rogerson
et al., 2007). Increased susceptibility to infection among pregnant females is attributed to
both increased parasites sequestered in the placenta and pregnancy-associated suppression of
inflammatory responses caused by hormonal changes during pregnancy (Rogerson et al.,
2007). In primiparous women infected with Plasmodium falciparum during pregnancy,
elevated proinflammatory responses (e.g., IFN-γ and TNF-α) combined with low anti-
inflammatory responses (e.g., IL-10) in the placenta are related to low birth weights (Fried et
al., 1998). Following stimulation with parasite antigen, NK cells from infected primiparous
women produce more IFN-γ that those from infected multiparous women suggesting that
these innate immune cells play a role in the immunological profile of infected females
during pregnancy (Bouyou-Akotet and Mavoungou, 2009).

Maternal infection is often associated with negative fetal outcomes. For example, offspring
of women infected with P. falciparum, nonhuman primates infected with P. coatneyi, and
rodents inoculated with P. berghei during pregnancy have lower birth weights and slower
growth rates than offspring from uninfected females (Akingbade, 1992; Davison et al., 1998;
Menendez, 1995). Although Plasmodium parasites sequester in the placenta of humans and
rodents, infected females do not transmit parasites to offspring in utero (Rogerson et al.,
2007). In rodent malaria models, negative pregnancy outcome, including an inability to
maintain a viable pregnancy, is associated with elevated inflammatory responses, including
IL-1β and IFN-γ production, both systemically and in the placenta (Poovassery and Moore,
2009; Poovassery et al., 2009).

Pregnancy-associated changes in cell-mediated immune responses and increased
susceptibility to Plasmodium infections have been attributed to hormonal changes that occur
during pregnancy (Rogerson et al., 2007). Studies of women in malaria endemic regions, as
well as mouse models of P. berghei, reveal that concentrations of glucocorticoids (i.e.,
cortisol in human and nonhuman primates and corticosterone in rodents) are higher in
pregnant females infected with malaria parasites than in uninfected pregnant females
(Bayoumi et al., 2009; Van Zon et al., 1983; Van Zon et al., 1986; Vleugels et al., 1989;
Vleugels et al., 1987). Elevated glucocorticoids increase, while adrenalectomy decreases,
parasitemia in pregnant female mice which may be caused by glucocorticoid-induced
suppression of inflammatory responses (van Zon et al., 1982). Prolactin concentrations are
either reported to not change with malaria infection during pregnancy (Bouyou-Akotet et al.,
2005) or to be lower in P. falciparum infected than uninfected pregnant females (Bayoumi et
al., 2009). Malaria infection also reduces E2 concentrations in late pregnancy (Watkinson et
al., 1985). The bi-directional interactions between hormones and malaria infection
contribute both to female susceptible to infection as well as the outcome of pregnancy.

Conclusions and future directions
The immunological shifts that occur during pregnancy are necessary for reproductive
success and, thus, are favored by natural selection. Hormones are the driving factors behind
changes in immune function and disease susceptibility during pregnancy. This provides
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insight into how to therapeutically manipulate the hormonal milieu in non-pregnant
individuals to reduce the pathogenesis of infectious and autoimmune diseases (Klein et al.,
2010b; Voskuhl, 2011). The observation that the impact of malaria infection is less
detrimental among multiparous than primiparous females should be expanded to other
infectious as well as autoimmune diseases as this might provide novel insights into disease
pathogenesis among pregnant females. Is the severity of disease, in general, reduced with an
increased number of pregnancies? Whether the memory responses mounted are an evolved
host-mediated response to infectious diseases during pregnancy requires consideration.

Congenital transmission of pathogens from an infected female to her offspring, although not
extensively discussed in this review, is of significant consideration during pregnancy.
Several pathogens, ranging from T. gondii, P. falciparum, and L. major to HIV and
influenza can be transmitted from mother to offspring in utero (Andiman, 2002; Pfaff et al.,
2007; Rogerson et al., 2007; Yawn et al., 1971). The mechanisms mediating why some
pathogens (e.g., T. gondii and P. falciparum) but not others (e.g., seasonal influenza viruses)
harm the fetus when vertically transmitted are diverse (Henriquez et al., 2010; Klein et al.,
2010c). The factors that appear to be most significant determinants of the impact of infection
on pregnancy outcome include the timing of infection (i.e., whether exposure occurs during
early or late pregnancy), the magnitude of the host inflammatory responses mounted, and
whether the pathogen is sequestered in the placenta and causes physical damage (Henriquez
et al., 2010). Future studies should systematically evaluate the role of endocrine-immune
interactions in the context of congenital transmission of pathogens.

Mechanistically, several proteins and pathways emerge as being most consistently altered
during pregnancy. The activity of sex steroids signaling through intracellular steroid
receptors generally suppresses transcriptional regulation of inflammatory cytokines.
Hormonal-suppression of IFN-γ, which has critical anti-viral and anti-parasitic properties,
contributes significantly to the worse outcome from infectious diseases and improved
outcome of inflammatory autoimmune diseases during pregnancy. Studies of mice in which
recombinant IFN-γ is administered to pregnant females and improves outcome of infection
(Abou-Bacar et al., 2004a; Abou-Bacar et al., 2004b; Shirahata et al., 1992) should be
explored further. Because global increases in IFN-γ can compromise the outcome of
pregnancy, greater attention should be paid to designing prophylaxis and therapeutic
treatments that boost pathogen-specific immunity or select arms of the immune system. The
concurrent upregulation of regulatory T cell activity and anti-inflammatory cytokines also
consistently contributes to altered disease outcome among pregnant females and should be
explored further.

Host immunity is typically not therapeutically manipulated in pregnant females and this
population is often not enrolled in drug or vaccine efficacy trials. Use of animal models and
primary cell cultures (e.g., placental cell or umbilical vein cultures) will continue to
elucidate the direct effects of hormones on immune cell function and disease pathogenesis
and may provide insight into the aspects of immunity that could be safely manipulated in
pregnant females. From a public health perspective, knowledge that protective immunity
against pathogens is reduced during pregnancy provides grounds for evaluating
interventions, like vaccinations, that could improve protection of pregnant females and their
fetuses. Because the hormonal and immunological environment of a pregnant females is
vastly different from that of non-pregnant females, these females must be considered
separately when analyzing the efficacy of treatments for disease (Klein et al., 2010a).
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Abbreviations

DC dendritic cell

E2 estradiol

E3 estriol

IFN interferon

IL interleukin

NK natural killer

PBMCs peripheral blood mononuclear cells

P4 progesterone

PIBF progesterone-induced binding factor

Th1 helper T cell type 1

Th2 helper T cell type 2

TNF tumor necrosis factor
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Highlights

• Inflammatory responses are lower and anti-inflammatory responses are higher
during pregnancy

• The immunological shift during pregnancy promotes healthy fetal development

• the severity of diseases that are caused by inflammation is reduced during
pregnancy

• the severity of diseases mitigated by inflammatory responses is increased during
pregnancy

• sex steroids mediate the immunological shift and altered disease pathogenesis
during pregnancy
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Figure 1.
During the three trimesters of pregnancy, there is a shift in the balance of proinflammatory
and anti-inflammatory responses. By the third trimester, anti-inflammatory responses,
including the activity of M2 macrophages, Th2 cells, and regulatory T cells, are elevated and
inflammatory responses, including the activity of NK cells, M1 macrophages, and Th1 cells,
are reduced. Changes in the concentrations of sex steroids, including estradiol, estriol, and
progesterone, lead to the immunological shifts during pregnancy.
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Figure 2.
Hormonal changes and exposure to fetal antigens during pregnancy skew the maternal
immune system toward higher anti-inflammatory responses and away from proinflammatory
responses, especially during the third trimester. These immunological changes are necessary
for successful pregnancy, but also affect the outcome of disease.
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