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A fundamental organizational principle of the primate motor system is cortical control of contralateral limb movements. Motor areas
also appear to play a role in the control of ipsilateral limb movements. Several studies in monkeys have shown that individual neurons in
primary motor cortex (M1) may represent, on average, the direction of movements of the ipsilateral arm. Given the increasing body of
evidence demonstrating that neural ensembles can reliably represent information with a high temporal resolution, here we characterize
the distributed neural representation of ipsilateral upper limb kinematics in both monkey and man. In two macaque monkeys trained to
perform center-out reaching movements, we found that the ensemble spiking activity in M1 could continuously represent ipsilateral limb
position. Interestingly, this representation was more correlated with joint angles than hand position. Using bilateral electromyography
recordings, we excluded the possibility that postural or mirror movements could exclusively account for these findings. In addition,
linear methods could decode limb position from cortical field potentials in both monkeys. We also found that M1 spiking activity could
control a biomimetic brain–machine interface reflecting ipsilateral kinematics. Finally, we recorded cortical field potentials from three
human subjects and also consistently found evidence of a neural representation for ipsilateral movement parameters. Together, our
results demonstrate the presence of a high-fidelity neural representation for ipsilateral movement and illustrates that it can be success-
fully incorporated into a brain–machine interface.

Introduction
Although the main organizational principle of primate motor
systems is cortical control of contralateral limb movements, mo-
tor areas also appear to play a role in ipsilateral limb movements
(Matsumani and Hamada, 1981; Tanji et al., 1988; Rao et al.,
1993; Donchin et al., 1998; Cisek et al., 2003; Verstynen et al.
2005; Wisneski et al., 2008; Brus-Ramer et al., 2009). Several
studies in monkeys have shown that individual M1 neurons, on
average, are modulated by ipsilateral arm movements (Donchin
et al., 1998; Cisek et al., 2003). Numerous studies have also pre-
sented evidence that, after unilateral damage, the “contrale-
sional” intact hemisphere plays an increased role in ipsilateral
movements (Brinkman and Kuypers, 1973; Dancause, 2006;
Hummel and Cohen, 2006). Indeed, studies have demonstrated
increased activity in homologous regions of the intact hemi-
sphere in stroke patients (Blasi et al., 2002). However, the intact
contralesional hemisphere may also play a maladaptive role un-

der certain conditions (Dancause, 2006; Hummel and Cohen,
2006).

To better understand the bihemispheric control of move-
ments, it remains important to understand the distributed neu-
rophysiological representation of ipsilateral limb control. Recent
advances in recording technology and computational processing
have led to greater characterization of information encoded by si-
multaneously recorded neural ensembles (Wessberg et al., 2000;
Carmena et al., 2003; Mulliken et al., 2008). These efforts have
increasingly highlighted differences in the encoding of informa-
tion at the ensemble level relative to that for single neurons
(Wessberg et al., 2000; Averbeck et al., 2006; Mulliken et al.,
2008). Here we characterize the distributed ensemble represen-
tation of ipsilateral kinematics in both monkey and man using
linear regression methods.

We further tested the generality of such a finding by decoding
ipsilateral kinematics from cortical field potentials [i.e., local field
potential (LFP) in monkeys and subdural electrocorticogram
(ECoG) in human subjects]. Past work has demonstrated that
both LFP (in monkey) and ECoG (in man) can be used to decode
direction of contralateral limb movements (Mehring et al., 2003;
Schalk et al., 2007). Less is known about continuous decoding of
ipsilateral movement parameters from cortical field potentials.
Although two recent studies demonstrated that ipsilateral limb
movements can result in specific patterns of activity (Rickert et
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al., 2005; Wisneski et al., 2008), it remains unclear if cortical
potentials can continuously represent ipsilateral kinematics.

Reliable, continuous decoding of movement parameters rep-
resents an important step toward the creation of fully functional
biomimetic Brain–Machine Interfaces (BMIs) (Wessberg et al.,
2000; Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003;
Schalk et al., 2007; Schalk et al., 2008; Mulliken et al., 2008).
Although the majority of studies supporting the development of
BMIs have incorporated the contralateral neural representation
of movements, there is increasing interest in designing BMIs
compatible with extensive hemispheric injury (Buch et al., 2007;
Wisneski et, 2008). Ipsilateral control would allow a large cadre of
patients with motor cortex damage and contralateral weakness to
eventually benefit from BMIs. In this study, we also demonstrate
that the ipsilateral neural representation can be used in a closed-
loop BMI.

Materials and Methods
Monkeys
Surgery. Two adult male rhesus monkeys (Macaca mulatta) were chron-
ically implanted in the brain with arrays of 64 Teflon-coated tungsten
microelectrodes (35 �m in diameter, 500 �m separation between mi-
crowires) in an 8 � 8 array configuration (CD Neural Engineering).
Monkey P was implanted in the arm area of primary motor cortex (M1)
and the arm area of dorsal premotor cortex (PMd), both in the left
hemisphere, and the arm area of M1 of the right hemisphere, with a total
number of 192 microwires across three implants. Monkey R was im-
planted bilaterally in the arm area of M1 and PMd (256 microwires across
four implants). Localization of target areas was performed using stereo-
tactic coordinates from a neuroanatomical atlas of the rhesus brain
(Paxinos et al., 2000). All procedures were conducted in compliance with
the National Institutes of Health Guide for the Care and Use of Labora-
tory Animals and were approved by the University of California at Berke-
ley Institutional Animal Care and Use Committee.

Electrophysiology. Unit activity was recorded using the MAP (Mul-
tichannel Acquisition Processor) system (Plexon ). For this study, only
units from each primary motor cortex were used. Only units that had a
clearly identified waveform with a signal-to-noise ratio of at least 4:1
were used. Activity was sorted using an on-line sorting application
(Plexon) before recording sessions. Isolation of units was then verified
off-line. Large populations of well-isolated units were recorded during
each daily session in both monkeys.

Electromyography. Surface gold disc electrodes (Grass Technologies)
were mounted on medical adhesive tape and placed on the skin overlying
muscle groups at the beginning of select sessions. Bilateral muscle groups
tested included pectoralis major, biceps, deltoid, triceps, trapezius, latis-
simus dorsi, neck muscles, and forearm muscles. Electromyography
(EMG) signals were amplified by a 10,000 factor with a multichannel
differential amplifier (Grass Technologies) and stored (Plexon). Signals
were then high-pass filtered, rectified, and smoothed by convolution
with a 25 ms triangular kernel and normalized. Directional activation of
each EMG signal was estimated by measuring the activity in a 300 ms
window after the onset of movement to each target. EMG signals were
collected over �10 trials in each direction. The significance of this effect
was assessed using ANOVA.

Experimental setup and behavioral training. Monkeys were trained to
perform a center-out delayed reaching task using a Kinarm (BKIN Tech-
nologies) exoskeleton (see Fig. 1 A). During training and recording, ani-
mals sat in a primate chair that permitted limb movements and postural
adjustments. Head restraint consisted of the animal’s head post fixated to
the chair. Kinematic variables (position, velocity, and acceleration) were
continuously monitored and recorded.

The behavioral task consisted of hand movements from a center target
to one of eight peripheral targets (i.e., “center-out” task) distributed over
an �8 cm diameter circle. The workspace was created to minimize any
requirement for postural changes during task performance. Target ra-
dius was typically 0.75 cm. Trials were initiated by entering the center

target and holding for a variable time period of 500 –1000 ms. The GO
cue (center changed color) was provided after the hold period. A liquid
reward was provided after a successful reach to each target and a periph-
eral hold period (200 –500 ms). Visual feedback of hand position was
provided by a cursor precisely colocated with the center of the hand
(radius, 0.5 cm). During the task, the nontask arm was immobilized in a
padded splint.

Decoding motor parameters from neural ensembles. A linear regression
model was used to predict limb position and velocity (both joint position
and end point position). In this model (Equation 1), the inputs, X(t),
were a matrix with each column corresponding to the discharges of in-
dividual neurons, and each row representing one time bin. The output
Y(t), was a matrix with one column per motor parameter. The linear
relationship between neuronal discharges in X(t), and behavior in Y(t)
was expressed as follows:

Y�t� � b � �
u��m

n

a�u�X�t�u����t�, (1)

in which a and b are constants, calculated to fit the model optimally.
First, a(u) are the impulse response functions required for fitting X(t) to
Y(t)as a function of time lag u between inputs and the outputs. Ten time
lags were used during these experiments. Second, b represents the
Y-intercept in the regression. The final term in the equation, �(t), repre-
sents residual errors.

Brain–machine interface. We used the linear filter described in the
previous section to predict shoulder and elbow joint angles from the
recorded neural activity (only M1-ipsi activity was included). The model
was trained on 10 min of activity and then used to predict position from
subsequent neural activity (Wessberg et al., 2004). Neural activity was
streamed over a local intranet via the PLEXNET client–server application
(Plexon) and converted into 100 ms bins of spiking activity. Each binned
value was used to generate real-time predictions of the shoulder and
elbow joint angles that were streamed to the Kinarm interface as control
signals. The cursor position was updated on the Kinarm projection
screen at 10 Hz.

Filter parameters were not changed during each daily brain control
(BC) experiments (usually 2–3 h per day). For the multiple experiments
reported in Figure 5, the need for daily retraining of the filter (i.e., at the
start of a BC session) was determined by the stability of the units. The
stability of a recorded unit was solely determined by visually comparing
the waveform shape with the previous day’s stored template. When all
units were putatively stable, no retraining of the filter was performed. If
there were any changes in the waveform (e.g., a single waveform change),
then the filter was retrained during a manual control session. The ani-
mals were then allowed a period of time to relearn the decoder properties
(typically �1 h). Task performance in BC was determined after this
period of learning. After this defined period, all subsequent trials and
attempts were included in the analysis of task performance (also see
below).

Data analysis
Task performance analysis. A correct trial was defined as successful move-
ment of the cursor to the target. We minimized the number of false-
positive self-initiations (i.e., the number of trial attempts by adjusting the
required hold period). This threshold was determined by measurements
of false triggers when the BMI was engaged but the screen was turned off
(i.e., in the absence of volitional control of the cursor). The time-to-
target measurement reflected the movement time from the center to
each peripheral target. An error trial consisted of inability to reach the
target in 10 s.

Predictive power of the decoder. The predictive power of each decoder
was determined by comparison (i.e., correlation) of neural predictions of
shoulder and elbow angular position with that of measured values. Esti-
mation of predictive power was performed using 2 min of movements
outside of the 10 min training window.

Preferred direction. The significance of the directional modulation of a
unit’s firing rate was determined using an ANOVA test. Directional tun-
ing was estimated by comparing the mean firing rate as a function of
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target angle during execution of the movement. The tuning curve was
estimated by fitting the firing rate with a sine and a cosine as follows:

f � �B1 B2 B3	 � � const
sin�
cos�

�, (2)

in which � corresponds to reach angle and f corresponds to the firing rate
across the different angles (Georgopoulos et al., 1986). Linear regression
was used to estimate the B coefficients. The preferred direction (PD) was
calculated using the following: PD � tan �1 (B2/B3), resolved to the
correct quadrant.

LFP analysis. Performed similarly to that outlined below for the elec-
trocorticographic analysis.

Human subjects
Three subjects (age range, 18 –35 years) with refractory epilepsy were
recruited from a pool of patients undergoing intracranial monitoring for
the localization of an epileptogenic focus. Each patient had undergone a
craniotomy for chronic (1–2 weeks) implantation of a subdural electrode
array and/or depth electrodes. Electrode placement was solely deter-
mined on clinical grounds and varied between subjects (see Figs. 5 and 6).
Subject 1 was right-handed with a left hemispheric grid, subject 2 was
left-handed with bilateral strips, and subject 3 was left-handed with right
hemispheric grid. None of the subjects had overt cognitive deficits, and
antiepileptic drug therapy was discontinued during ECoG recordings.
Consenting patients participated in the research study during the week of
ECoG monitoring. The study protocol, approved by the University of
California San Francisco and University of California Berkeley Commit-
tees on Human Research, did not interfere with the ECoG recording
made for clinical purposes, and presented minimal risk to the participat-
ing subjects.

Recordings. The electrode grids used to record ECoG signals for this
study were either 64-channel 8 � 8 (patients 1, 2, 4, 5) or four strips of
8 � 1 (patient 3) platinum–iridium electrodes. Electrode diameter was 4
mm (2.3 mm exposed), with 10 mm center-to-center spacing. Signals
from the ECoG grids were split and sent to both the clinical system and a
custom recording system. A broadband (�50 kHz), 256 channels pre-
amplifiers (PZ2-256 256-Channel PreAmp; Tucker-Davis Technologies)
was used to amplify the ECoG signals with the electrode furthest from the
motor cortex used as a reference for all other grid electrodes. The ampli-
fied data were then sent to an ultrahigh performance data acquisition
processor over a fast fiber optic connection (RZ2 Z-Series Base Station;
Tucker-Davis Technologies) that digitized the signal at 3052 Hz with
16-bit resolution.

Subjects used a stylus to perform arm movements on the touch-screen
connected to the designated laptop. The stylus position was registered as
a mouse position and was sampled using custom-made MATLAB soft-
ware. A PC-based, bus-powered USB device (Measurement Comput-
ing’s USB-1208FS) was used to convert the mouse position to an analog
voltage (1– 4 V), and these voltages were sent to the analog input of the
data acquisition processor (RZ2 Z-Series Base Station; Tucker-Davis
Technologies) to be sampled and stored together with the ECoG signals.
During the performance of the task additional event markers (e.g., be-
ginning of a trial, appearance of a target, acquiring of a target, etc.) were
sent to other analog inputs of the data acquisition processor from the
digital ports of the PC-based bus-powered USB analog to digital conver-
tor (Measurement Computing’s USB-1208FS).

Behavioral task. During the recording, subjects were seated in a hospi-
tal bed with a touch-screen (Keytec) placed in front of them in the hor-
izontal plane. They were asked to use a stylus to perform arm movements
on the touch screen using their shoulder and elbow rather than their
wrist. To evaluate the coupling between the ipsi and contra ECoG activity
to arm movements, we asked each subject to perform the task once with
their right hand and one with their left. A trial began with the appearance
of a rectangular target (1 cm side) at the center of the reach field. This cue
indicated to subjects to move their hand while holding a stylus toward the
target; once the center target was obtained, one of several (six or eight)
randomly chosen peripheral targets (1 cm radius) appeared on the touch
screen. After the 400 
 200 ms delay, the center target disappeared. This

was the “GO” signal indicating that the subject should perform a reach
toward the lit target. Once the target was hit, a new trial began by the
appearance of a rectangular target at the center of the reach field. Each
subject made 30 reaches to each target (total of 180 or 240 reaches).

Movement reconstruction. The first step in our analysis included filter-
ing, re-referencing, and down-sampling of the ECoG and movement
signals. Line noise (60 Hz and its harmonics) was removed using a notch
filter and then re-referenced by subtracting the common average refer-
ence (CAR) from the data of each electrode. CAR was calculated by averag-
ing the raw signal of all the electrodes, omitting the ones that visual inspection
suggested poor signal quality. After the re-referencing, the data were
band-passed between 1 and 250 Hz and down-sampled to 500 Hz.

To reconstruct a subject’s movements (X and Y position) from the
ECoG data, we used the ECoG activity as an input to the Wiener filter.
ECoG signals were band-passed into nine frequency bands (1– 8, 9 –15,
16 –30, 31–50, 51–70, 71–90, 91–110, 111–131, and 131–150), followed
by calculating the analytic amplitude of each frequency band using the
Hilbert transform. The resulting nine time series were appended to the
original time series of the ECoG signal (i.e., a total of 64 � 10 � 640
ECoG “channels” in subjects 1 and 2). The time series were down-
sampled to 15 Hz, and 1 s of ECoG data (15 bins) preceding a given point
in time was used to train the model and generate predictions. First, we
tested the contribution of each individual new time series to the predic-
tion of the hand movements and then selected the ones that produced the
best prediction to be used as the inputs to the Wiener filter. Estimation of
predictive power was always performed using 60 s of movements outside
of the training window, and the predictive power of each decoder was
determined by comparison of neural predictions of X and Y position with
that of measured values.

Statistical analysis. To test the statistical significance of our results, we
compared correlation-coefficient (CC) distributions for actual and a
“randomly shifted” version of the same data. To obtain CC distributions
for the actual runs, we circularly shifted (MATLAB function circshift)
both the ECoG and movement data with a random shift (300 times). We
found the best Wiener filter weights for the first 4 min of the shifted data
and then applied them to the remaining portion. This process resulted in
a distribution of CCs for each movement parameter (the means and SDs
for the ipsilateral trials are depicted in Table 1). For the “random-shift”
method, we created a distribution by picking a random lag between the
movement and the ECoG data (300 times). This time, however, while we
shifted the ECoG data, the movement data was held constant. The result
of this procedure was another distribution of CCs.

Results
Monkeys
We trained two macaque monkeys to perform a center-out
reaching task with the right upper limb using the Kinarm
Exoskeleton system. Reaching movements with the proximal
arm and hand were limited to 2 degrees of freedom (flexion/
extension of the elbow and shoulder) in the horizontal plane. A
cursor (r � 0.5 cm) on the horizontal screen was collocated with
hand movements (Fig. 1A). Following chronic implantation of
microelectrode arrays into bilateral M1, we recorded the neural
activity (both spike and LFP) during the performance of a center-
out reaching task (Fig. 1B). We first estimated the percentage of
units that were significantly modulated by the direction of arm
movements. Figure 1C illustrates a single unit from ipsilateral M1
(M1-ipsi) whose firing rate was directionally modulated. For
both animals, the respective fraction of modulated neurons for

Table 1. Prediction of ipsilateral limb positiona

Neural signal Elbow Shoulder Hand (X) Hand (Y)

Spikes (n � 10) 0.81 
 0.03 0.78 
 0.05 0.61 
 0.04 0.75 
 0.04
LFP (n � 8) 0.47 
 0.02 0.42 
 0.02 0.29 
 0.05 0.45 
 0.02
ECoG (n � 3) 0.60 
 0.03 0.61 
 0.03
aValues indicate the correlation coefficient R (mean 
 SEM). The value of n is the number of sessions used in the analysis.
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M1-ipsi were 43 
 5% and 54 
 6%, whereas those for contralat-
eral M1 (M1-contra) were 67 
 6% and 73 
 7% (Fig. 1D).
These estimates (from our chronic recordings) are in-line with
past reports using acute recording methods (Donchin et al., 1998;
Cisek et al., 2003).

We next used linear regression techniques to characterize the
bihemispheric ensemble representation of movement parame-
ters (Humphrey et al., 1970; Ashe and Georgopoulos, 1994;
Wessberg et al., 2000; Carmena et al., 2003). In general, although
regression techniques have found that multiple parameters (e.g.,
target direction, position and velocity) are correlated with activ-
ity at the level of single neurons, correlations with velocity appear
to be the most prominent (Ashe and Georgopoulos, 1994; Reina
et al., 2001; Paninski et al., 2004). This analysis used neural activ-
ity that was closely temporally linked to external movements (i.e.,
temporal lag of �100 ms).

We first performed a similar analysis for units recorded from
both M1-ipsi and M1-contra. Consistent with past results, we
found that individual unit activity in M1-contra was more closely
associated with velocity than position (data not shown). For M1-
ispi, we also found that individual unit activity was significantly
more correlated with velocity than position (position: 0.05 

0.03; velocity: 0.16 
 0.02 mean 
 SEM; p � 0.001 t test). How-
ever, when the same analysis was performed with neural ensem-
bles from each hemisphere (i.e., single bin of 100 ms with at least
50 units per hemisphere), both parameters could be decoded
equally well (M1-ipsi: 0.50 
 0.05 and 0.49 
 0.06 for position and
velocity respectively, p � 0.3 t test). Identical results were obtained
regardless of whether angular joint or hand-based coordinates were
used for comparison of position and velocity predictions. Together,
this further indicates that information not readily apparent at the
single neuron resolution (i.e., velocity more represented than posi-

tion) can be reliably decoded from neural
ensembles (i.e., velocity and position are
equally represented).

We next performed an additional set of
analysis to directly compare with methods
typically used for real-time continuous
prediction of movement parameters (Wess-
berg et al., 2000; Serruya et al., 2002; Car-
mena et al., 2003). One key difference is
the simultaneous inclusion of multiple
temporally lagged bins into the regression
model (e.g., 10 lags are typically used).
While the animals performed center-out
reaching movements with the right upper
limb, the recorded M1 spike activity (the
respective ipsilateral and contralateral
spike activity were grouped separately)
was correlated with limb kinematics to
generate decoders for each variable (Fig.
2A). Hence, we will use the term “de-
coder” to refer to the combined trans-
forms. Figure 2B illustrates the predictive
ability of either the ipsilateral or the con-
tralateral neural ensemble activity during
a single session. For multiple sessions in
both monkeys (n � 5 sessions each, 10
lags with at least 50 units/hemisphere),
ipsilateral ensemble activity could reli-
ably and continuously predict angular
joint positions (Table 1). We subse-
quently generated a “neuron-dropping

curve” (Wessberg et al., 2000; Carmena et al., 2003) for each
movement parameter to estimate the relationship between en-
semble size and the representation of a given parameter. For both
subjects, the fidelity of the representation improved as a function
of the size of the neural ensemble (Fig. 2C).

With the simultaneous inclusion of temporally lagged bins
from M1-ipsi, limb position could be better decoded than veloc-
ity (with 10 lags, r � 0.8 
 0.02 and 0.69 
 0.04 mean 
 SEM for
position and velocity respectively, p � 0.0001 t test). Consistent
with this notion was the observation of a relatively sharper de-
cline in velocity-related information for increasing temporally
lagged bins (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material). It is possible that the inherent auto-
correlation of changes in limb position or velocity during this
task underlies this result (Paninski et al., 2004). We also assessed
the relation between M1-ipsi activity and the coordinate system
for estimating limb position (i.e., joint vs hand position). In our
experimental system, the robotic exoskeleton allows accurate
monitoring of joint angles as well as hand position. In both ani-
mals, we consistently found that both the contralateral and ipsi-
lateral ensemble activities were more correlated with angular
joint kinematics than end-point hand coordinates ( p � 0.001;
ANOVA; Table 1).

What is the temporal evolution of the predictions from each
hemisphere relative to limb movements? We performed high res-
olution (time bins of 10 ms) analysis of the predictive ability of
neural ensembles from each hemisphere. Consistent with past
reports, we observed a delayed peak in the relationship between
M1-contra activity and limb position (�50 ms) (Fig. 3). In con-
trast, the value of this relationship was delayed for M1-ipsi (�110
ms). Thus, it appeared that at least a portion of the M1-ipsi neural
representation is delayed relative to that from M1-contra.

Figure 1. Directional modulation of bihemispheric M1 unit activity. A, Schematic of the experimental setup for recording spike
and LFP activity from both the ipsilateral and contralateral M1 during the performance of a center-out reaching task with the right
upper limb. B, Hand trajectories during performance of the center-out task. C, Directional modulation of the firing rate of a single
neuron. Panels above respectively show 150 randomly selected waveform traces and the interspike-interval distribution. Solid line
is the cosine fit for directional modulation. Error bars are the SEM. D, Fraction of units from each hemisphere that were significantly
modulated. Error bars are the SEM. Circles above show the distribution of preferred directions from Monkey R.
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To exclude the possibility that M1-ipsi activity simply re-
flected spurious activation of the opposite limb (e.g., postural
adjustments or mirror movements with the left hemibody during
reaches with the right arm), we measured bilateral EMG activity
during select sessions (Cisek et al., 2003). Figure 4 illustrates the
directional modulation of the EMG activity for the right biceps
and left pectoralis during reaches with the right arm. For Monkey
P, there was no evidence of significant activation of the left hemi-
body during reaching movements. For Monkey R, only one left
hemibody muscle (left trapezius) demonstrated significant acti-
vation during the task. Together, these results confirmed that
M1-Ipsi activity largely did not reflect spurious activation of the
opposite hemibody.

We next quantified the ability of cortical field potentials to

continuously represent ipsilateral kinematic parameters. We
used spectral decomposition of the LFP signal as an input to the
Wiener filter (Schalk et al., 2007). The M1-ipsi LFP was also
found to be significantly correlated with ipsilateral limb kinemat-
ics (Table 1).

Human subjects
We assessed the generalizability of our results to primate motor
systems by testing this relationship in three human subjects.
ECoG recordings from patients with epilepsy offer a means to
evaluate the ability of cortical field potentials to predict ipsilateral
motor parameters (Schalk et al., 2007; Schalk et al., 2008). ECoG
signals (from either the left or right hemisphere) were recorded
from three subjects during the performance of center-out reaches
with each hand. Traces of hand movements are depicted in Figure
5B. Shown in Figure 5C are representative velocity profiles of the
movement from the center to each of the targets.

We next evaluated whether linear regression methods could
continuously decode ipsilateral upper-arm position. A recon-
struction of hand trajectories from the recorded neural signals is
illustrated in Figure 6A. For three such subjects, cortical field
potentials were found to be significantly correlated with ipsilat-
eral limb kinematics (Table 1). In addition, bilateral surface EMG
measurements during the performance of this task did not reveal
evidence of the opposite hemibody activation.

We also assessed the anatomical distribution of such pre-
dictive information. Although this was observed to be rela-
tively distributed, activation appeared to be most prominent in
sensorimotor regions (Fig. 6B and supplemental Fig. 2, available
at www.jneurosci.org as supplemental material). Shown in Fig-
ure 6C are the bands which contributed the most to the predic-
tion of ipsilateral limb movements (also see supplemental Fig. 3,
available at www.jneurosci.org as supplemental material, for
mean of all subjects). Moreover, we attempted to compare the
temporal evolution of predictions for both hemispheres. For cor-

Figure 2. Real- time decoding of ipsilateral upper limb parameters from M1 spike activity. A, Continuous illustration of shoulder (top) and elbow (bottom) angular position and spiking data from
each hemisphere. Each dot represents a single spike. B, Predictions of elbow and shoulder position from ensembles of ipsilateral and contralateral spike activity. Dark traces show the movements
across time. Whereas the red trace shows the prediction from contralateral M1, the green trace shows that for ipsilateral M1. R is the correlation between the predicted and the actual traces.
C, Neuron-dropping curves to illustrate the relationship between ensemble size and predictive ability for both angular position and velocity for Monkey P and R. Dotted line (shoulder), Solid line
(elbow).

Figure 3. Temporal evolution of upper limb movement parameters. Each curve shows the
temporal evolution of the predictive ability of ensemble of neurons from either the contralateral
or ipsilateral M1 (mean 
 SEM). Ensemble predictions of limb position were performed using a
single bin of data (10 ms bin size) lagged from the onset of movement (step size � 10 ms,
nonoverlapping). The peak of each curve was normalized to 1 before generation of the mean
curves shown.
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tical field potentials at the level of ECoG, no significant differ-
ences could be detected between the two hemispheres.

Closed-loop BMI in monkeys using
the ipsilateral neural representation of movement
The results above indicate that ipsilateral movement parameters
can be reliably represented in both M1 spike activity as well as
cortical field potentials in both monkey and man. We subse-
quently asked whether a decoder trained under such conditions
can be successfully used in a closed loop BMI in monkeys (Fig.
7A). Figure 7B illustrates the typical cursor trajectories under
control BC (in which the neural activity exclusively controlled the
position of the computer cursor). After a period of training, each
monkey could perform the center-out task in BC. For multiple
sessions, both animals could accurately perform the center-out task
in BC (Monkey P: 83 
 6% accuracy with a mean time to reach the
target of 2.4 
 0.5 s; Monkey R: 76 
 9% accuracy with a mean time
to reach the target of 2.9 
 0.3 s; all reported as mean 
 SEM).

Discussion
Our results demonstrate that the distributed activity in primate
motor areas can reliably and continuously represent ipsilateral
upper limb kinematics. We found that such information could be
decoded by applying linear methods to neural signals at a variety
of temporal and spatial scales (ensemble spike activity as well as

the aggregate cortical field potential at two
different resolutions). We further demon-
strate that the spike activity from M1 can
be used in a biomimetic closed-loop BMI
designed to control ipsilateral limb
kinematics.

Role of motor cortex in
ipsilateral movements
Several studies have demonstrated that
the activity of single M1 neurons can be
modulated by ipsilateral arm, hand and
finger movements (Tanji et al., 1988;
Donchin et al., 1998; Cisek et al., 2003).
Studies in monkeys have further shown
that while subsets of M1 neurons are ex-
clusively tuned to the direction of ipsilat-
eral arm movements, another fraction of
neurons are active during bimanual
movements (Donchin et al., 1998). Lesion
and stimulation studies in both monkey
and man provide additional support for a
role of motor regions in ipsilateral limb
control (Brinkman and Kuypers, 1973;
Rao et al., 1993; Chen et al., 1997; Ver-
stynen et al., 2005; Dancause, 2006; Brus-
Ramer et al., 2009).

We demonstrate that ipsilateral limb
kinematics can be reliably decoded, in
real-time, from the population activity at
multiple scales in motor areas. However,
the exact role of motor cortex in the con-
trol of ipsilateral proximal and distal limb
movements remains unclear. The ana-
tomical substrate for the control of ipsilat-
eral movements has been hypothesized to
be mediated through either descending
uncrossed fibers or trancallosal pathways
(Dancause, 2006). Our finding that the

peak of ipsilateral movement prediction is delayed relative to that
for contralateral movements lends some support to the notion of
interhemispheric transfer of this representation.

One focus of this study was to characterize the representation
of arm and hand movement parameters in ipsilateral neural en-
sembles. Our finding that both the ensemble spiking activity and
the population cortical field potentials obtained at two temporal
and spatial resolutions can continuously predict ipsilateral limb
kinematics further demonstrates that distributed neural ensem-
bles can reliably encode information. Coordinated and dexterous
bimanual movements likely require a high-fidelity representa-
tion of ipsilateral kinematics. One possibility is that it is an efference
copy of contralateral motor commands. Another possibility is that it
mediates bimanual coupling (Donchin et al., 1999). Thus, it could
provide a neural substrate for the observed phenomenon of spatial
coupling during bimanual tasks (Oliveira et al., 2001).

An interesting observation was that M1 activity was more in-
dicative of joint position than hand kinematics (Table 1). Past
analysis of the contralateral representation of limb movements
have shown that it is correlated with multiple movement param-
eters (Ashe and Georgopoulos, 1994; Reina et al., 2001; Paninski
et al., 2004). However, because hand position covaries with joint
angles and other aspects of arm movement, it remains difficult to
conclude what is truly encoded in these neurons (Reina et al.,

Figure 4. EMG activity during performance of the center-out task. Representative examples of the directional modulation of the
right (R) biceps and the left (L) pectoralis EMG. Each dot represents the mean activity in a 300 ms window after movement onset.
Traces on the right show the mean (dark line) 
 SEM (thin line) EMG activity to two targets. p � 0.001; ANOVA.

Figure 5. Experimental setup and task characteristics. A, Electrode placement overlain on the brain MRI of subject 1. B, Actual
hand trajectories during performance of the center-out reaching task. The dimensions of the workspace were 20 � 20 cm.
C, Multiple examples of the velocity profiles for movements from the center (i.e., during period marked as “Hold”) to the target.
Profiles for all targets are shown in an overlapping manner.
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2001). Moreover, it remains possible that
a generative model could provide a more
parsimonious explanation for the appar-
ent encoding of multiple parameters
(Todorov, 2000). It is less clear how to
formulate such a model (e.g., direct con-
trol of musculature) for the ipsilateral
neural representation.

It is also important to note that an alter-
nate explanation for the apparent modula-
tion of neural activity by ipsilateral
movements is that the opposite nontask
arm and the axial musculature may be active
(Cisek et al., 2003). There are at least two
lines of evidence suggesting that this does
not exclusively account for all neural activity
putatively related to ipsilateral limb move-
ments. Classical studies demonstrated that
proximal arm movements can be exclu-
sively controlled by ipsilateral motor cortex
(Brinkman and Kuypers, 1973). Moreover,
distal limb movements made in the absence
of proximal movements resulted in ipsilat-
eral neural activity (Tanji et al., 1988). In this
study, we minimized the need for postural
adjustments. The workspace was optimized
such that reciprocal postural movements
were not obviously required. Although one
monkey was found to have limited spurious
nontask arm EMG activity, the other did
not. Moreover, the task performed by the
human subjects did not appear to result in
such spurious activity. Although it re-
mains difficult to completely exclude that
a component of neural activity was related
to nontask arm activity, it seems unlikely
to account for our observations.

Possible role of the ipsilateral
representation in neurorehabilitation
The exact role of ipsilateral motor regions in
the recovery of arm function after brain in-
jury remains unclear. There is a significant
fraction of patients who do not recover
function after a stroke (Dancause, 2006;
Hummel and Cohen, 2006). Large subcor-
tical strokes (i.e., with loss of descending
contralateral corticospinal pathways) are associated with such a lack
of functional recovery (Shelton and Reding, 2001). This further sug-
gests that ipsilateral motor areas and its associated descending con-
nections are not sufficient by themselves to support functional
recovery. In contrast, in patients who experience spontaneous recov-
ery of limb function, the ipsilateral hemisphere may play a greater
role (Gerloff et al., 2006; Lotze et al., 2006). Trancallosal pathways
have been implicated in this process (Dancause, 2006; Gerloff et
al., 2006). Thus, a likely possibility is that in the presence of the
appropriate anatomical substrate, ipsilateral motor areas may as-
sist the process of functional recovery.

Importantly, there is also evidence that the contralesional
hemisphere (i.e., ipsilateral to the affected limb) can play a
maladaptive role in stroke patients (Dancause, 2006; Hummel
and Cohen, 2006). For instance, inhibition of the contralesional
hemisphere through noninvasive methods can transiently im-

prove motor function (Hummel and Cohen, 2006). Thus, the
ipsilateral hemisphere appears to dampen the excitability of the
damaged hemisphere and impede the process of recovery. These
studies indicate that the balance of interhemispheric inhibition is
important. In this context, another interpretation of our findings
is that it represents the transcallosal shaping of ipsilateral motor
areas. In the damaged brain, this may impede recovery. Future
research may help to uncover how the ipsilateral hemisphere can
either facilitate or impede recovery.

A BMI using the neural representation of the ipsilateral arm
Our results demonstrate that the ensemble representation of ip-
silateral arm movements can be used in a closed-loop biomimetic
BMI. Past work has not shown that such a representation can be
exclusively used to create a closed-loop biomimetic BMI. The
decoder used in these experiments predicted the natural relation-

Figure 6. Reconstruction of hand position from ECoG data. A, Prediction of hand position from either the ipsilateral or the
contralateral ECoG activity. Dark traces show the actual movements. Red trace shows the prediction of the contralateral hand
position; green trace shows that for the ipsilateral hand. R is the correlation between the predicted and the actual traces. B, Color
map illustrating the relationship between the anatomical locations of electrodes and its predictive ability. Superimposed on the
brain image is the predictive ability of individual electrodes. CS, Central sulcus; SF, Sylvian Fissure. C, Quantification of the rela-
tionship between the time series or the frequency band and the ability to predict movement parameters. In this analysis, only the
information from a single band was included in the model.

Figure 7. Closed-loop BMI using the ipsilateral neural representation of arm movements. A, Schematic illustrating cursor
control by M1-ipsi. B, Representative traces of the cursor movement from the center to each of the eight targets.
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ship between M1 spike activity and ipsilateral movements. It is
likely that neurons more sensitive to ipsilateral arm movements
than to contralateral arm movements (Donchin et al., 1998)
needed to be actively modulated during BC. As in past studies,
feedback and learning during closed-loop control were impor-
tant for improvements in task performance over the course of a
session (Taylor et al., 2002; Carmena et al., 2003; Hochberg et al.,
2006; Mulliken et al., 2008).

Past work has suggested that the accuracy of movement pa-
rameter decoding (Wessberg et al., 2000) is important for BMI
function (Taylor et al., 2002; Carmena et al., 2003; Schalk et al.,
2007). Linear algorithms have been demonstrated to be reliable in
extracting parameters from simultaneously recorded neural ac-
tivity (Wessberg et al., 2000; Carmena et al., 2003; Mulliken et al.,
2008). There is mixed evidence regarding the magnitude of im-
provements with more sophisticated decoding techniques (Kim
et al., 2006; Wu et al., 2006; Mulliken et al., 2008). Most impor-
tantly, however, our results indicate that even while the ipsilateral
predictions are less than that for the contralateral limb, they can
be successfully incorporated in a BMI.

An important question for future research is to fully under-
stand the role of biomimetic decoders (Radhakrishnan et al.,
2008). Recent work has suggested that a combination of voli-
tional control of neural activity, visual feedback, and plasticity
mechanisms can allow direct neural control of neuroprosthetic
devices independent of any relationship to natural movements
(Mortiz et al., 2008; Ganguly and Carmena, 2009). However,
given that cortical networks in M1 are likely optimized for dex-
terous bimanual limb control, a seemingly likely possibility is that
biomimetic decoders can best capitalize upon existing cortical
architecture. For instance, comparison of both unimanual and
bimanual movements has revealed that both overlapping and
nonoverlapping patterns of activity are present (Donchin et al.,
1998; Wisneski et, 2008). Accordingly, it remains possible that
integration of a biomimetic decoder for ipsilateral movements
will not interfere with existing cortical networks for contralateral
movements. Such interference could occur if neurons were in-
corporated into a BMI without regard for their actual relation-
ship to natural movements.

A BMI for patients with chronic stroke
A recent study demonstrated that volitional control of noninvasively
recorded neural signals (with magnetoencephalography) is possible
even in chronic stroke patients with limb paralysis (Buch et al.,
2007). Although arm function did not improve outside of training
sessions, subjects could control a prosthetic device through modu-
lation of the �-rhythm. Interestingly, they could use �-rhythms
from either ipsilateral or contralateral brain regions.

In general, the resolution of recorded neural signals (e.g., non-
invasive vs invasive intracortical recordings) required for a long-
term, reliable BMI remains unclear. Thus, continued basic and
translational research using a variety of neural signals is impor-
tant. Our study explores the eventual creation of an invasive bio-
mimetic BMI based on the ipsilateral neural representation of
arm movements. We characterized the ipsilateral ensemble rep-
resentation of continuous limb movements in nonparalyzed sub-
jects. Methodological limitations (i.e., recording technique and
size of cortical area monitored) prevent detailed comparison of
the ipsilateral representation in nonhuman and human subjects.
However, it is reassuring that qualitatively similar results were
obtained in both healthy nonhuman primates as well as in pa-
tients with chronic focal epilepsy with unclear long-term effects
on cortical organization. It will be important to demonstrate that

this representation is intact after damage to the opposite brain
hemisphere. In support of this concept are imaging studies dem-
onstrating that even after extensive damage to contralateral mo-
tor areas, contralesional motor areas are active in a similar
manner (Cramer et al., 1999; Dancause, 2006; Buch et al., 2007).

Conclusion
In summary, our results provide evidence that motor areas en-
code ipsilateral limb kinematics with high precision. Moreover,
this representation can be used in a closed-loop BMI. These find-
ings suggest the possibility of eventually creating fully functional
BMIs for patients suffering from extensive unilateral hemisphere
brain injury.
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