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1. Summary
Accurate identification of sparse heterozygous single-nucleotide variants (SNVs)

is a critical challenge for identifying the causative mutations in mouse genetic

screens, human genetic diseases and cancer. When seeking to identify causal

DNA variants that occur at such low rates, they are overwhelmed by false-

positive calls that arise from a range of technical and biological sources. We

describe a strategy using whole-exome capture, massively parallel DNA sequen-

cing and computational analysis, which identifies with a low false-positive rate

the majority of heterozygous and homozygous SNVs arising de novo with a

frequency of one nucleotide substitution per megabase in progeny of N-ethyl-

N-nitrosourea (ENU)-mutated C57BL/6j mice. We found that by applying a

strategy of filtering raw SNV calls against known and platform-specific variants

we could call true SNVs with a false-positive rate of 19.4 per cent and an esti-

mated false-negative rate of 21.3 per cent. These error rates are small enough

to enable calling a causative mutation from both homozygous and heterozygous

candidate mutation lists with little or no further experimental validation. The effi-

cacy of this approach is demonstrated by identifying the causative mutation in

the Ptprc gene in a lymphocyte-deficient strain and in 11 other strains with

immune disorders or obesity, without the need for meiotic mapping. Exome

sequencing of first-generation mutant mice revealed hundreds of unphenotyped
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protein-changing mutations, 52 per cent of which are predicted

to be deleterious, which now become available for breeding

and experimental analysis. We show that exome sequencing

data alone are sufficient to identify induced mutations. This

approach transforms genetic screens in mice, establishes a gen-

eral strategy for analysing rare DNA variants and opens up a

large new source for experimental models of human disease.
blishing.org
Open

Biol2:120061
2. Introduction
Genetic traits in mammals have long posed a great challenge

in connecting them to their causal DNA variant. This is

especially true when that variant is a single-nucleotide substi-

tution and is present on only one of the two copies of a

chromosome. Finding such a single-nucleotide substitution

in a genome as large as humans or mice without huge num-

bers of false positives and without reducing the search to a

sub-chromosomal region by meiotic mapping has been an

unattainable goal. Single-nucleotide variants (SNVs) rep-

resent a major source of de novo and inherited genomic

variation in humans, mice and other mammals, and, as

such, new strategies are needed to identify and analyse

these variants accurately on a genome-wide scale.

Genetic analyses of mammalian traits are often performed

in inbred C57BL/6 laboratory mice. These mice have a

known homogeneous reference genome sequence and have

a uniform genetic background that allows experimental

reproducibility and transplantation experiments. In these

mice, treatment with the chemical mutagen N-ethyl-N-

nitrosourea (ENU) efficiently generates random single-base

mutations in the germline DNA (reviewed in [1]). Diseases

and traits resulting from these ENU-induced mutations can

be detected by phenotypic screening procedures relevant to

an area of biological investigation.

The bottleneck of the ENU mutagenesis approach has long

been in identifying a single disease-causing mutation in an

entire genome of possibilities. Until recently, the approach

employed has been arduous: to out-cross affected mice to

another inbred strain and then use a panel of common

strain-specific variants to meiotically map the causal mutation

to a sub-region of an individual chromosome of less than 20

megabases (Mb). Once limited to a relatively short list of pos-

itional candidate genes, PCR amplification of all exons in the

mapped interval followed by Sanger sequencing could then

be performed and variants identified by a combination of

automated and manual review of the sequence traces. This

has proven to be an effective strategy, although it can take

several years and is labour-intensive, expensive and often

confounded by modifier genes introduced during the cross

to another inbred strain.

To date, all but the smallest minority of causative ENU-

induced mutations have been shown to reside in the exonic por-

tion of the genome. Approximately 75 per cent are caused by

SNVs in protein-coding exons that result in missense or non-

sense mutations and the remaining approximately 25 per cent

are SNVs in splice donor–acceptor sites that disrupt correct

mRNA splicing to cause protein truncations, deletions or non-

sense-mediated decay [2]. Hence, sequencing of the exome

rather than the whole genome should identify almost all inter-

esting ENU-induced variants. Array- and solution-based DNA

capture technologies [3,4] can now reliably enrich a DNA

sample for coding regions, enabling massively parallel
sequencing to be undertaken on a greatly reduced proportion

of the genome. Exome capture followed by sequencing has

already become an established technique in human genetics

and an early vanguard of reports has identified the genetic

cause of a number of monogenic diseases (reviewed in [5]). In

most of these studies, prior information regarding a general

chromosomal location of the genetic lesion was known,

heritability information was available or a candidate gene

approach was used. One feature of all of these studies was

the difficulty in discerning causative, deleterious mutations

from normal genetic variation and sequencing errors.

In the mouse, early studies [6–8] using slightly different

approaches have identified ENU-induced mutations using

massively parallel sequencing information. Zhang et al. [8]

identified a previously known ENU-induced mutant by

sequencing cloned bacterial artificial chromosomes from a

2.2 Mb genomic region that had first been defined by meiotic

mapping. Arnold et al. [6] applied shallow sequencing of the

entire mouse genome to detect putative mutations and, fol-

lowing this, they performed extensive validation by Sanger

sequencing and meiotic mapping. Yabas et al. [7] mapped a

novel ENU mutation to a region of the X-chromosome, and

identified the mutation by oligonucleotide bait-mediated cap-

ture and deep sequencing of exonic DNA fragments within

this region. Fairfield et al. [9] provided an extensive demon-

stration of the utility of exome capture technology for

identifying both homozygous and heterozygous ENU-

induced and spontaneous mutations in nine mouse strains.

However, in all cases these studies relied on at least coarse

meiotic mapping information or considerable validation of

SNV calls to identify the causative mutation. Fairfield et al.
[9] suggest that an exome sequence as a sole source of infor-

mation may not be enough to identify disease-causing

induced mutations without extensive SNV validation.

In this study, we have investigated whether exome capture

followed by sequencing provides sufficient information alone

to reliably identify the rare, ENU-induced, de novo mutations

in C57BL/6j mice. We generated exome datasets for 12 mutant

mouse strains, including a matched technical and biological

replicate dataset for one strain. We present methodology

developed to identify both homozygous and heterozygous

ENU-induced mutations and use this to identify 12 primary

causative mutations and two disease-causing incidental

mutations. We also reveal hundreds of potentially deleterious

ENU mutations in first-generation (G1) mice that are immedi-

ately available for phenotypic and experimental analysis in

their progeny. Our results demonstrate that exome sequencing

provides highly reliable information which by itself is suffi-

cient to identify ENU-induced mutations selected either by

phenotype or by the nature of the gene that is mutated.

These results provide an immediate source for thousands of

new experimental models for understanding human diseases

and establish a strategy that can be extended for identifying

rare SNVs in outbred mice, humans and other species.
3. Results
3.1. Generation and detection of induced, de novo

single-nucleotide variants
Many parallel mouse pedigrees, each segregating a different

set of random, de novo mutations induced in the C57BL/6j
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Figure 1. Summary of the structure of ENU-mutated mouse pedigrees. Each pedigree is initiated by two unrelated G1 founders. Each of these founders inherits a
random set of de novo point mutations (coloured circles) on the paternal chromosomes, induced by ENU treatment of their male parent. These G1 founders will carry
on average one to two DNA variants per Mb and 90 exonic ENU-induced mutations. Second-generation (G2) progeny of these mice inherit a theoretical 45 ENU-
induced exonic mutations, all of which are carried in the heterozygous state. Two productive sibling – sibling matings of the G2 mice result in third-generation (G3)
progeny that carry approximately 94% of the founding ENU-induced, protein-coding mutations, of which on average five are homozygous in any given mouse.
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genome by ENU were established using the breeding strategy

shown in figure 1. Each pedigree was founded by two unre-

lated G1 mice conceived from male C57BL/6j mice that had

been treated with three doses of ENU administered at

90 mg kg21 to induce random point mutations in spermato-

gonial stem cells [2,10,11]. Based on published mutation

rates [12–14], we estimated that each of these G1 animals

would carry approximately one de novo SNV per Mb of

the paternal genome, of which around 45 would result in a

non-synonymous exonic mutation. Intercrossing of the G1

animals transmitted half of these mutations in heterozygous

state to each of their second-generation (G2) offspring.

Intercrossing the G2 animals subsequently transmitted

approximately 94 per cent of the mutations to offspring, a

subset of which was inherited in homozygous state in

third-generation (G3) animals (figure 1).

We developed a workflow (figure 2a) to use massively

parallel sequencing reads as a sole data source to identify

exonic ENU-induced mutations in 15 DNA samples taken

from mutated mice (see electronic supplementary material,

table S1). These samples were prepared and enriched for

exonic sequences using either Agilent or Nimblegen sol-

ution-based capture technologies. Each exome sample was

then sequenced as paired-end reads in a full lane of an

Illumina GAIIx sequencer or as a multiplexed, bar-coded

sample in an Illumina HiSeq sequencer, and the resultant
reads aligned to the C57BL/6 mouse reference genome

using the BWA aligner [16]. Table S1 in the electronic sup-

plementary material shows the numbers of reads sequenced

and the number of reads aligned to exonic target regions

per sample. The exome capture efficiency was uniformly

high with approximately 40 to 55 per cent of all DNA

sequenced being exonic. Based on a mouse genome size of

2493 Mb [15] and 37 Mb of exonic sequence, using consensus

coding sequence (CCDS) exons [18], this represents on aver-

age a 30.6-fold (s ¼ 3.3) sequence enrichment. Across the

coding portion of the genome sequence, coverage was gener-

ally better than 85 per cent at 5 times depth and better than 70

per cent at 20 times depth, although coverage was distinctly

less for the sex chromosomes (see electronic supplementary

material, figure S1).

Raw SNVs relative to the C57BL/6 reference sequence

were called using SAMTOOLS [17]. In the inbred C57BL/6j

mice we analysed, we would expect the number of true var-

iant calls to be low (approx. 50 exonic SNVs) and almost

entirely due to ENU treatment of the G0 male mouse that

founded their line. However, in each animal, of the order of

10 000 raw SNVs were called across the entire genome, of

which 500–750 SNV calls were located in exons and/or

near exon splice sites (see electronic supplementary material,

table S2). Multiple sources can be attributed to these variant

calls, potentially being due to genetic drift of the C57BL/6j
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Figure 2. Workflow and filtering strategy used to identify de novo protein-changing mutations. (a) Following DNA extraction, exome enrichment and sequencing,
reads were aligned to the mouse reference genome [15] using BWA [16] and variation between the two genomes identified using SAMTOOLS [17]. The set of raw
SNVs was subsequently filtered to annotate known variation and other apparent SNVs known not to be ENU-induced. SNVs were further filtered to annotate those
that fell within coding regions (or adjacent splice donor/acceptor sites) and were non-synonymous changes. Finally, as ENU treatment is known to introduce a
uniform genomic distribution of mutations, genes that contained multiple SNVs were filtered from the final set of variants. (b) Using this cumulative filtering
strategy against a single replicate exome sequence of the nimbus mouse, the initial 8723 variant calls reduced to a final set of three homozygous and 39
heterozygous putative mutations. Circles representing homozygous and heterozygous SNV numbers are coloured orange and blue, respectively.
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mouse strain versus the reference genome and the frequency

of sequencing errors in massively parallel sequencing. How-

ever, many of the variants appear to be called because of

technical issues associated with aligning large numbers of

short reads to a large genome containing repeated or highly

similar sequence regions. To reduce these raw variant calls

to a smaller number highly enriched for ENU-induced

mutations, we applied a series of filters to remove known

variants (present in dbSNP) and/or recurrent false-positive

variants (figure 2a). We assert that between multiple, unre-

lated mouse exome sequences, de novo ENU-induced

nucleotide changes should be unique to individual pedigrees,
whereas other sources of variants should recur. Based on this

reasoning, we collated a list of SNVs that recurred in more

than one unrelated mouse and found this list to be a very

effective filter for false-positive and potentially sequencer-

and enrichment-specific variants. A further filter was applied

to remove variants where they originate from a gene with

multiple SNV calls, assuming that in any single ENU-

mutated mouse it is highly unlikely that the same gene will

have multiple mutations and that the calls are due to incor-

rect alignment of sequence reads between members of gene

families. Figure 2b shows the efficacy of each individual filter-

ing step applied and the outcome of the filters applied in a
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cumulative manner. Overall, from a set of several thousands

of raw variant calls, the cumulative filtering reduced this

number mostly to less than 10 homozygous and 50 heterozy-

gous exonic variants per mouse (see electronic supplementary

material, table S2), closely approximating the expected rate

(figure 1).
3.2. Sensitivity and specificity of single-nucleotide
variant detection

To assess the reliability of SNV calls made from a single

exome dataset, we performed a technical and biological repli-

cation experiment on G2 and G3 animals from a pedigree
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(nimbus) that had shown mild lymphopaenia in the blood of

some G3 offspring. These nimbus mutant animals displayed a

fourfold reduction in the percentage of CD3þ T cells and

represented 8 of a total of 30 phenotyped individuals,

suggesting that nimbus was a recessive trait. We sequenced

the exome of one proband G3 affected nimbus mouse in tripli-

cate (technical replicates) and also sequenced the exome of

both G2 parents and an unaffected G3 sibling (loosely

termed biological replicates). Figure 3a,b shows that the

SNVs called in each of the technical replicates of the pro-

band’s exome were highly replicable. The total number of

coding changes called in each replicate was 47, 42 and 42,

of which 34 were called in all three replicates, representing

72, 81 and 81 per cent of the SNVs called in each individual

exome analysis. The triplicated SNV calls comprised three

homozygous and 31 heterozygous mutations. We successfully

established custom, SNV-specific PCR assays (Amplifluor

assays; see §5.4) for 50 of the SNVs called in one or more of

these replicates. From 50 successful assays, 100 per cent (28

of 28) of the triplicated SNV calls were validated as true

mutations in this pedigree, whereas of the SNV calls that

were present in only one or two of the replicate analyses

only 14 per cent (3 of 22) were validated and the remainder

were established to be false positives (figure 3a,b and

table 1). From these technical replicate data the false-positive

call rate among our filtered variants can be estimated as

19.4 per cent, calculated from an average of six false-positive

calls per replicate exome as a proportion of the 31

true-positive SNVs.

In mouse spermatogonial stem cells and the mice con-

ceived from the resulting sperm, ENU has been found to

induce a biased set of nucleotide substitutions. Several pre-

vious studies have shown an abundance of TA–CG

transitions and TA–AT transversions (ranging between

36–43% and 22–44% of changes, respectively [2,12,14,19])

and GC–CG transversions very rarely or never occur

[14]. Of the validated 31 true-positive SNVs shown in

table 1, 35.5, 38.7 and 0 per cent were TA–CG, TA–AT

and GC–CG changes, respectively. Of the remaining 19

non-replicated, false-positive SNV calls, 26.3, 0 and 15.8

per cent were TA–CG, TA–AT and GC–CG changes,

respectively.

Exome analysis of the G2 parents of our G3 nimbus pro-

band mouse would be expected to reveal all the true ENU

variants present in the proband mouse. Likewise, approxi-

mately half of the true variants should have also been

inherited by the G3 sibling of the proband. Figure 3c shows

a Venn diagram detailing the overlap between the SNVs

called in the exome sequence of the two parents and sibling

compared with those in the pooled technical replicate

exome sequence of the proband. As expected, all of the

seven homozygous mutations called in the proband or its sib-

ling (three in proband þ four in G3 sibling) were also called

in heterozygous state in both parents. Of the total of 31 vali-

dated mutations present in the G3 proband, 28 were called in

one or both parents (table 1). Inspection of the sequence data

for the two parent G2 exomes revealed that the false-negative

mutations were present, but the number of variant reads fell

below the required coverage and/or read ratio thresholds

used for SNV calling. That three of the 31 true mutations

were not identified in one or more of the replicate analyses

indicates a technical false-negative rate of 9.7 per cent per

exome analysis. However, this estimate does not accommodate
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the percentage of true mutations that might be missed consist-

ently because they lie in exons that are inefficiently captured

and exhibit low sequence coverage.

The false-negative rate of SNV detection can also be esti-

mated from the distribution of sequence read depths

generated at random across a whole genome. The depth of

reads obtained from random short-read sequencing approxi-

mates a Poisson distribution and the probability of observing

both alleles at a single site in a diploid genome is a binomial

function of read depth [20,21]. A combination of these two

distributions can be used to estimate the false-negative SNV

call rate based simply on the mean read depth [20–22].

While the distribution of read depths obtained from exome

capture appears to be mostly Poisson distributed, this

approximation does not hold for sites that are poorly

enriched by hybridization to exomic baits (see electronic sup-

plementary material, figure S2), which are also the sites

where low coverage is likely to result in the greatest incidence

of false-negative calls. In order to estimate an accurate false-

negative SNV call rate we used the observed distribution of

sequence read depths rather than that derived from a Poisson

function. In this manner, we calculated the false-negative

SNV call rate in the nimbus G3 proband mouse as 21.3 per
cent. The average read depth from this dataset was 39.5,

but 14.6 per cent of CCDS exomic bases were not covered

at all, this being the major source of missing SNV calls.

Increasing the amount of sequence data does reduce the

false-negative rate slightly, but still a large number of geno-

mic sites will remain poorly covered, either owing to it

being difficult to design capture baits to these regions or

owing to extreme GC content reducing the efficiency of

hybridization of some areas of the genome (data not shown).

Taking the SNV calls from a single replicate exome from

the nimbus proband G3 mouse, we investigated whether or

not validated true- and false-positive SNVs differed in

sequence coverage or quality. Figure 4a shows that false-posi-

tive SNVs had unusually high or low read depth, or had

lower quality scores, relative to the depth and quality of

reads across all exonic nucleotides. However, in these data

the read depths and quality scores of false-positive variants

overlap with those of true-positive calls. While we have

chosen to minimize the false-negative rate as much as

possible, if it were desirable to reduce the false-positive call

rate at the expense of the false-negative rate, this could

potentially be achieved with more stringent filtering against

read depth and quality score.
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To evaluate how deeply an exome should be sequenced,

we simulated an exome sequencing experiment where incre-

mental proportions of one lane of exome sequence reads were

randomly sampled from a full lane of G3 nimbus exome data

(figure 4b). While reliable homozygous variant calls (blue

dots in figure 4b) were made at even shallow read depths, a

substantially greater depth was required for reliable hetero-

zygous variant calls. True-positive heterozygous variant

calls (green dots in figure 4b) increased significantly with

increasing depth up to a total of 30 million reads. Ninety-

three per cent of true-positive mutations were detected with

35–40 million reads (22–26 times median depth). With

increasing the read depth beyond this value, relatively few

additional true positives were called but the number of

false-positive heterozygous SNV calls doubled.

3.3. Functional validation of causative mutation in
nimbus strain

To identify the mutation causing the recessive lymphopaenia

phenotype in the nimbus strain, we performed Amplifluor

assays on each of the three homozygous mutations identified

in the proband exome sequence to trace their inheritance in

the pedigree. Homozygosity for a C-to-T mutation identified

at Chr1 : 139 986 182 bp was found to co-segregate with the

lymphopaenia phenotype (table 2). This change lies 1 bp

upstream of exon 18 of the Ptprc gene and disrupts the intro-

nic-1 G nucleotide of the consensus splice acceptor sequence

[34], which is otherwise absolutely conserved across ver-

tebrates. PCR amplification of the mutant Ptprcnim mRNA

showed the first 14 bp of exon 18 were deleted compared

with the spliced wild-type mRNA and putatively the AG

nucleotides at þ13 to 14 of exon 18 from an alternative splice

acceptor site. This altered splicing leads to a frameshift in the

mutant transcript from the truncated start of exon 18 onwards.

Ptprc encodes the CD45 protein, which is a tyrosine phospha-

tase receptor type C. CD45 is an abundant protein in the

plasma membrane of leukocytes and plays critical roles in lym-

phocyte development in mice and humans (reviewed in [35]).

Mice homozygous for the Ptprcnim mutation indeed had almost

no CD45 protein on the surface of their B-lymphocytes (2% of

wild-type controls) as measured by flow cytometric staining

with antibodies to CD45 (figure 5b), while heterozygous

mice showed an approximately 50 per cent reduction in the

expression of CD45. The lymphopaenia in nimbus homozy-

gotes matches that in mice and humans with other null or

severe loss-of-function mutations in Ptprc [29,36,37].

3.4. Identification of causal mutations in
11 additional strains

The successful use of exome analysis to identify causative

mutations without meiotic mapping was repeated for 11

other ENU pedigrees with immune disorders or obesity, apply-

ing the same analysis to individual exome sequences from

proband G3, G4 or G5 mice (table 2). In each of these pedigrees,

the causative mutation was revealed solely using exome

sequence data followed by SNV-specific Amplifluor PCR

typing to correlate the SNV genotypes with the phenotype in

the pedigree, without the need for meiotic mapping. The

mutations found in each of these strains variously included pre-

mature stop codons, disrupted splice donor or acceptor sites
and missense changes. The correlation between genotype and

phenotype, together with the similar phenotype of independent

mutant alleles of the same genes, provided strong corroboration

that the mutations identified by exome sequencing were indeed

responsible for the phenotypes observed in these mice.

A mean of 6 homozygous and 36 heterozygous mutations

were called in the exome sequence of each of the proband

individuals from the strains analysed in table 2. These num-

bers are small enough to contemplate exhaustive validation

of each SNV and typing of siblings by Amplifluor PCR

assays to test phenotype–genotype concordance, although

in many cases a knowledge of the function of the mutant

genes allowed candidate mutations to be prioritized. Of the

nine strains for which a recessive mutant was sought, the cau-

sative variant needed to be selected from on average only 6.4

(s ¼ 3.8) candidate mutations. Two of the strains required the

causative variant to be identified in a heterozygous form. In

these two strains the heterozygous candidate mutation lists

were tractably just 40 and 13 variants long.

The incidental mutations revealed by exome sequencing

of proband mice in each pedigree represent a remarkable

resource for gene-driven testing for other phenotypes.

On average, 35.5 (s ¼ 13.7) heterozygous exonic mutations

were identified in the G3, G4 and G5 mice presented in

table 2. Applying the false-positive rate of 19.4 per cent

deduced above, on average each G3, G4 or G5 mutant

mouse will carry around 29 incidental heterozygous

mutations. This gene-driven strategy was successfully

reduced to practice in the strain ENU16NI3b, where the orig-

inal phenotype of low KLRG1 protein on the surface of NK

cells occasionally co-occurred with ashen coat colour or

stunted growth, neither of which could be explained by a

mutation in the KLRG1 gene. With reference to the mutation

list obtained from exome sequencing of the G3 proband

mouse in this strain, two additional incidental mutations

were found by Amplifluor PCR to segregate with each inci-

dental phenotype. A homozygous missense mutation in

Rab27a co-segregated with ashen coat colour in this pedigree,

and an independent Rab27a mutation has previously been

shown to cause the same trait through a defect in melano-

some transport [31]. A homozygous nonsense mutation in

the thyroglobulin gene, TgR1471X, was found to co-segregate

in the same pedigree with stunted growth, and this comp-

lements an independent study that showed that a

spontaneous missense mutation in the Tg gene caused

stunted growth, hypothyroidism and goiter in an AKR

mouse substrain [32]. The new TgR1471X strain provides a

C57BL/6j mouse model for human thyroid dyshormono-

genesis 3 syndrome (OMIM: 274700), which was first

shown to result from a similar R1510X nonsense mutation

in thyroglobulin [38].

3.5. Mutant first-generation mouse resource
The sensitivity and specificity of detecting heterozygous

de novo mutations established above opened up a broader

strategy to develop mouse experimental models based on

tracking specific mutations in gene-driven phenotypic

screens, as had been done for the Tg and Rab27a mutations.

To make it possible to do this in a systematic way, we

extended the exome sequencing approach to identify novel

protein-changing mutations arising in the G1 founders of

ENU mutagenized pedigrees, prior to any phenotypic
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screening or selection of their G2 and G3 progeny, and when

all the mutations are heterozygous (figure 1). We sequenced

the enriched exomes of eight different G1 mice as a bar-

coded, pooled sample on an Illumina HiSeq sequencing

run. This provided a greater number of reads per exome

than the datasets generated on the GAIIx sequencers, and

yielded better than 20 times sequence depth over 80.7 per

cent (s ¼ 1.8%) CCDS exons. As expected, very few homozy-

gous variants were identified in the filtered variant lists,

presumably being rare variants previously unobserved in

the parental C57BL/6j stock. The numbers of heterozygous

variants in the G1 mice (m ¼ 59.6, s ¼ 13.1) were higher

than those found in G3, G4 or G5 mice (m ¼ 36.5, s ¼ 13.7;

table 2), which was as expected since a fraction of ENU-

induced alleles will be lost in each subsequent generation

owing to random drift and purifying selection. Hence,

given the information presented in figure 4b, we would

expect that the majority of true ENU-induced mutations

have been detected from these datasets.

Of the 454 unique mutations detected across these eight

G1 mice, 18 (4%) created a premature stop codon, 65 (14%)

putatively disrupted an mRNA splice donor/acceptor site

and 370 (81%) caused an amino acid substitution (see elec-

tronic supplementary material, table S4). We altered

PolyPhen2 [39] to use mouse sequence databases (rather

than the default human inputs) and calculated scores for mis-

sense G1 mutations. Figure 6 shows a comparison of these

scores with those calculated for a set of previously character-

ized ENU-induced mutations known to cause immunological

traits. For the causal missense mutations, PolyPhen2 correctly

assigned a very high score (greater than 0.95) of ‘probably

damaging’ to 75 per cent and an intermediate to high score

(0.44–0.95) of ‘possibly damaging’ to a further 15 per cent.

This result validates the predictive accuracy of PolyPhen2

when applied to novel mouse mutations. Of the 370 de

novo missense mutations identified in G1 mice, 134 (36%)

were assigned a ‘probably damaging’ score of greater than

0.95 and 59 (16%) were classified as ‘possibly damaging’

with a score of 0.505–0.897. The genes affected by these

272 potentially damaging mutations include those known

to cause human disease through to entirely unexplored

genes with intriguing expression patterns and protein

domains (see electronic supplementary material, table S3).

By identifying de novo ENU mutations in G1 founders in

this way and then breeding, genotyping and phenotyping

their G2 and G3 offspring, this approach provides an

immediate source for new experimental models for

understanding human diseases and traits.
4. Discussion
The pursuit of gene function that starts with the identification

of medically important phenotypes displayed by individual

mammals (the so-called forward-genetics) has until now

been constrained by the time-consuming and expensive bot-

tleneck of mapping these traits to their underlying genetic

cause. Conversely, reverse genetics approaches based on

knocking out individual genes in embryonic stem cells

remain constrained by a comparably time-consuming and

expensive bottleneck of converting the embryonic stem cells

into a pedigree of mice that can be phenotypically evaluated.

Here we have shown that exome capture followed by
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massively parallel DNA sequence analysis reliably identifies

the majority of homozygous and heterozygous ENU-induced

mutations. Not only does this eliminate the bottleneck to for-

ward genetics by identifying causal mutations without the

need for meiotic mapping, but also it bypasses a key restric-

tion for reverse genetics by revealing thousands of possibly

damaging mutations in live-breeding C57BL/6j mouse pedi-

grees that are immediately available for experimental analysis

of gene function.

By technical and biological replication of exome analyses

and confirmation of individual SNV calls by PCR, we have

shown that both homozygous and heterozygous protein-

changing mutations induced by ENU de novo in live-breed-

ing pedigrees of C57BL/6j mice can be called reliably with

an estimated sensitivity of 78.7 per cent and a specificity of

80.6 per cent. In 11 separate C57BL/6j mutant strains from

forward genetics screens for immune system disorders or

obesity, we were able to bypass the need for meiotic mapping

and identify short lists of protein-changing ENU-induced

mutations that were heterozygous or homozygous in
proband individuals from these pedigrees, among which

we were able to identify a causative mutation that explained

the immunological or obesity phenotype. In identifying

ENU-induced mutations, we found massively parallel

sequencing data to be highly reliable and sources of error

were predictable, such that by filtering commonly called var-

iants (along with previously observed genetic variation) we

were able to restrict the false-positive call rate to less than

20 per cent while not incurring a disproportionate false-nega-

tive call rate. In terms of the read depth required to reliably

identify heterozygous mutations, we found that around 35

million paired-end sequence reads are sufficient to identify

more than 90 per cent of these changes.

Fairfield et al. [9] have also produced an extensive demon-

stration of exome capture and sequencing in mice to identify

causative mutations. In their study, exome sequence data

were used in combination with meiotic mapping information

to identify causal mutations without a large validation

burden. Our results both confirm and extend this study.

Laudably, the Fairfield et al. [9] study describes three
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mutant strains where they did not identify a causal mutation,

even with the aid of meiotic mapping information. They

speculated that, in those strains where the causal mutation

could not be identified, it probably lay outside the chromo-

somal regions enriched by exome capture. Our analysis

provides further insight into this problem and shows that,

in approximately one of five mouse strains, we can expect a

causal mutation to remain undetected owing to it not being

efficiently captured prior to sequencing and/or subsequently

detected. We found that solution capture methods commer-

cialized by Agilent and Nimblegen are both effective at

specifically concentrating the coding part of the mouse

genome, but that a consistent approximately 15 per cent por-

tion of exonic regions is absent from subsequently sequenced

reads, regardless of how deeply the captured DNA is

sequenced. This may be a fundamental limitation of exome

enrichment technologies, perhaps indicating that some geno-

mic regions may be resistant to efficient hybridization with

capture baits and/or the PCR amplification steps in the cap-

ture and library preparation protocols. From analysis of

exome datasets from related mice, in a small number of

cases known heterozygous variants were only poorly

detected owing to a very few reads supporting the mutant

genotype. This effect may indicate that in some local

sequence contexts the mutant genotype is out-competed by

the reference genotype during sequence capture.

Mutated C57BL/6j inbred mice provide an ideal system

for tackling the challenges of identifying rare, de novo

mutations from a background of normal genetic variation.

While the laboratory mouse is an inbred organism with very

little genetic variation, we found that it was necessary to con-

trol for even this small amount of variation through a series of

data filtering strategies employing catalogues of known strain

variants and other sources or recurring false positives in order

to identify true mutations with high specificity. Given
sufficient data for a specific mouse strain (10–20 individual

exome sequences), this strategy of cataloguing recurrent var-

iants has also proven effective in identifying ENU-induced

mutations in mice out-crossed to strains other than C57BL/6j

(data not shown). We found that detection of ENU-induced

mutations can be further enhanced by technical replication of

exome analysis and by biological replication taking advantage

of heritability information in closely related individuals. Taken

together, this information makes pathogenic mutation detec-

tion in outbreeding mammals (such as humans) a more

tractable possibility.

We have shown that it is feasible to also perform these

exome analyses in multiplexed, bar-coded samples from

many separate G1 founder mice. This makes it straightfor-

ward to analyse the exomes of hundreds of G1 founder

mice per year and propagate the mutations they carry in

live-breeding pedigree structures such as the ones employed

here (figure 1). Given the number of protein-changing

mutations we identified in each G1 mouse (table 3), a live-

breeding resource of 350 pedigrees bred for two generations

from 700 G1 mice each year would reveal 42 000 new

protein-changing mutations per year, of which around half

are expected to be deleterious. Hence, reliable identification

of induced mutations has the potential to transform genetic

screens of genes of unknown function and produce mouse

models of hundreds of human diseases.
5. Material and methods
5.1. Mutant mouse generation
The nimbus mouse strain was generated by treating pure

C57BL/6j male mice with the mutagen ENU at the Australian

Phenomics Facility of the Australian National University as pre-

viously described [10]. Briefly, adult male animals received

90 mg of ENU per kilogram of body weight by three weekly

intraperitoneal injections. Once fertility was regained after a

further eight weeks, the animals were mated with C57BL/6j

females to generate G1 offspring carrying a unique cohort

of heterozygous SNVs. A subset of SNVs was brought to

homozygosity through unrelated G1 crosses followed by inter-

crossing to G3 (as shown in figure 1). A peripheral blood screen

for lymphocyte subsets identified the nimbus strain at G3 as dis-

playing a mild lymphopaenia. All other mutated mouse strains

sequenced were generated via this protocol.

5.2. Exome enrichment and sequencing
DNA was extracted from ear tissue of affected mice and 3.5 mg

prepared as paired-end genomic libraries (PE-102-1001: Illu-

mina, San Diego, CA). Technical replicates were produced

from the same DNA sample. Exome enrichment was per-

formed using either the SureSelect Mouse Exome kit

(G7550A-001: Agilent, CA) or the SeqCap Mouse Exome kit

(early access: Nimblegen, Madison, WI) following the

manufacturer protocols. Four amplification cycles were used

in the library pre-capture PCR using Herculase II fusion

polymerase (600677, Stratagene) and eight cycles in the post-

enrichment amplification for both capture technologies.

Enriched libraries were diluted to 10 nM concentrations

before further dilution to 7–8 pM for cluster generation and

sequencing-by-synthesis on either the Illumina Genome
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Analyser IIx as 75 bp PE reads or the Illumina HiSeq as 100 bp

reads. Each library sequenced on an Illumina GAIIx was

sequenced on a single lane of an eight-lane flow-cell, whereas

libraries sequenced on the Illumina HiSeq were multiplexed

in a pool of 10 samples and sequenced together, and disambig-

uated using sample bar-coding.
ypublishing.org
Open

Biol2:120061
5.3. Single-nucleotide variant detection workflow
A custom workflow was developed to process sequence

reads to detect ENU-induced mutations. This workflow

holds together a number of open-source analysis tools and

employs a Perl code-base to perform custom filtering, report-

ing and job process control (figure 2a). BWA (v. 0.5.9-rc16;

[16]) with default settings was chosen to align paired-end

reads to the reference mouse genome (mm9/NCBIM37).

Reads aligning to multiple genomic locations were removed

and raw SNV calls were made using SAMTOOLS (v. 0.1.15;

[17]) with parameters set to allow a less conservative calling

rate than the default settings, which significantly involved

disabling the base alignment quality filtering function. Raw

SNV calls were classified as homozygous or heterozygous on

the basis of the ratio of alleles (hom . 0.8 variant allele; het

two alleles . 0.3) and then annotated as to whether they

were also present in dbSNP (v. 128; http://www.ncbi.nlm.

nih.gov/snp/), whether they commonly occurred in our

exome data and, where appropriate, whether they were

strain-specific variants identified from the Sanger Institute

mouse genomes sequencing project (http://www.sanger.ac.

uk/resources/mouse/genomes/). Commonly occurring var-

iants were collated from all exome data collected by our

laboratory. Further annotation of variants was performed to

determine overlap with CCDS exons [18] and denote non-

synonymous changes (using ANNOVAR [40]). Changes that

lay in potential splice donor–acceptor sites immediately adja-

cent to exon boundaries (out to 10 intronic bases) were also

annotated. Using these annotations, we filtered the variant

list to only include non-synonymous or splice donor–accep-

tor site changes that were novel to a particular sample.

From this filtered list of variants, for each exome a list of

genes containing more than one variant was compiled for

each sample and then used to further filter variants across

all samples that were found in these multi-SNV genes.
5.4. Variant validation
SNVs were validated using Amplifluor assays (Chemicon,

Temecula, CA). Primers were designed using the Assay

architect online tool (http://apps.serologicals.com/AAA/

mainmenu.aspx). Fluorescent intensities were detected

using a Fluostar optima (BMG). The individual affected

mice used in the study and a C57BL/6j control were analysed

for each SNV assay.
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