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Pregnancy is a unique immunological state in which a balance of immune tolerance and suppression is needed to protect the fetus
without compromising the mother. It has long been established that a bias from the T helper 1 cytokine profile towards the T helper
2 profile contributes towards successful pregnancy maintenance. The majority of publications that report on aberrant Th1:Th2
balance focus on early pregnancy loss and preeclampsia. Over the last few decades, there has been an increased awareness of the
role of infection and inflammation in preterm labour, and the search for new biomarkers to predict preterm labour continues. In
this paper, we explore the evidence for an aberrant Th1:Th2 profile associated with preterm labour. We also consider the potential
for its use in screening women at high risk of preterm labour and for prophylactic therapeutic measures for the prevention of

preterm labour and associated neonatal adverse outcomes.

1. Introduction

Preterm labour occurs in some 10% of pregnancies [1]. In
many developed countries, the rates are rising. Birth before
37 weeks of gestation is thought to account for up to 70% of
neonatal deaths, and the extremely high neonatal intensive
care costs required to support those who do survive make
preterm birth both a social and economic burden. It is now
widely acknowledged that the aetiology of preterm labour is
multifactorial, and, as such, the underlying cause of preterm
labour is often unknown. There is a strong association
between preterm labour and infection and inflammation,
and research in this field has dramatically increased over
the last few decades [2]. However, we still have made little
significant progress in the prevention of preterm labour.
Evidence of the detrimental direct impact of maternal
infection/inflammation on neonatal outcome is emerging,
yet we do not fully understand if anti-inflammatory thera-
peutic agents would provide benefit or harm to the neonate
born under conditions of infection/inflammation-induced
preterm labour.

The immunology of pregnancy is complex, in that the
mother must tolerate the “foreign” fetus, and thus requires
a degree of immunosuppression whilst on the other hand

needs to maintain immune function to fight off infection.
One mechanism which is involved in successful pregnancy
maintenance is the proposed switch from the T helper 1
(Thl) cytokine profile to the T helper 2 (Th2) profile. This
paper explores the evidence for an imbalance in the Th1:Th2
profile in women at risk of and who are in established
preterm labour.

2. The Immunology of Pregnancy

The fetus can be described as a semiallogeneic graft, being
a product of two histoincompatible individuals [3, 4]. This
poses a challenge to the mother, to both tolerate and
accommodate the fetus, which will express paternal antigens,
and maintain an ability to reject in case of overwhelming
infection [5]. This challenge is undertaken in part by
the immune system. The immune system has two main
defence systems: the innate and the adaptive. The innate
immune response is a nonspecific reaction towards foreign
antigens, whereas the adaptive response forms a very specific
reaction towards antigens [6]. Although different immune
components are involved in these systems, much overlap and
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FIGURE 1: Summary of the adaptive and innate immune system in pregnancy. Mediators of the adaptive and innate immune system work
in parallel to facilitate a balance between immune tolerance of the fetus whilst maintaining the ability to mount a response against invading

pathogens. PWBC: peripheral white blood cells.

cross-talk exist between the two. Figure 1 summarises the key
elements of these systems during pregnancy.

The immune cells that make up the adaptive immune
response include B and T lymphocytes. Activation by antigen
presenting cells and cytokines leads to cytokine release by
T cells in a cell-mediated response, or antibody release
by B cells in a humoral response [7]. Although Medawar
originally hypothesised that pregnancy represents a time
of immune suppression [8], a more complex picture has
recently emerged where a change in the ratio and function—
rather than a complete suppression—of the maternal leuko-
cytes occurs during pregnancy. For example, there is an
increase in the total peripheral white cell count from the
early stages of pregnancy with no change in the CD4 and
CD8 counts [9]. Within the CD4 positive population, an
increase in T regulatory cells is seen in pregnancy [10]. The
function of the T cells adapts in pregnancy to favour the T
helper 2 cytokine profile, which is more pronounced at the
maternal fetal interface [11]. Nonimmune cells, for example,
placental trophoblasts also contribute to the Th2 cytokine
predominance in pregnancy [12].

The innate immune system provides a less specific
response nevertheless is critical for the prevention of
microbial invasion. Cellular components include neutro-
phils, monocytes, and macrophages, which protect against
pathogens by phagocytosis. The Toll-like receptors (TLRs)
TLR2 and TLR4 are pattern recognition receptors stimulated
by Gram-positive and Gram-negative bacteria, respectively
[1]. TLRs are expressed on nonimmune cells in the placenta

and fetal membranes, which mediate part of the innate
immune system at the maternal fetal interface [13]. TLR2
and 4 mutations are associated with an increased risk of
preterm birth [14, 15]. During pregnancy, there is tight
regulation and considerable cross-talk between the adaptive
and the innate adaptive immune system that is responsible
for preventing or activating rejection of the conceptus.

3. Th1:Th2 Cytokines

T helper 1 and 2 cell subsets originate from undifferentiated
ThO cells under the influence of interferon-gamma (IFN-y)
and interleukin-4 (IL-4), respectively. Pregnancy hormones
such as progesterone [16], leukaemic inhibitory factor [17],
estradiol [18], and prostaglandin D, (PGD,) [19] promote
the T helper 2 cell profile and are likely to be in part
responsible for the Th2 bias associated with pregnancy.

Type 1 CD4" T cells (Thl) produce an array of
inflammatory cytokines including IFN-y [20], IL-2 [21], and
Tumor necrosis factor-alpha (TNF-«) [22] and are the major
effectors of phagocyte-mediated host defence, protective
against intracellular pathogens [21, 23, 24]. Type 2 CD4"
T cells (Th2) produce IL-4, IL-5, IL-13, IL-10 [20], and
IL-6. Whilst IL-4 and IL-10 are considered to be anti-
inflammatory cytokines [25], IL-6 has proinflammatory
properties [26]. Although IL-10 and IL-6 are frequently
referred to as Th2 cytokines [27-32], they are both produced
by other cell types including Th1 cells, macrophages, and B
cells for IL-10 [33, 34], and macrophages, fibroblasts, and B
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cells for IL-6 [35]. The T helper 2 cytokines are commonly
associated with strong antibody responses [36], for example,
IL-4 stimulates IgE and IgG; antibody production [37].
However, the Th2 cytokines also serve other functions, for
example; IL-5 promotes the growth and differentiation of
eosinophils, whereas IL-13 and IL-10 inhibit the activity
of macrophages [37]. T helper 2 cell responses are also
associated with protection against parasites, since IL-4
mediates IgE production, and IL-5 mediates an eosinophilia,
both of which are hallmarks of parasitic infection [38]. It is
important to note that, although the Th1 and Th2 responses
can be seen as discrete responses, there is considerable cross-
talk and overlap between the functions of the T helper cells.
For example, the Thl cytokines can promote the produc-
tion of complement-fixing antibodies involved in antibody-
dependent cell cytotoxicity [39], and thus the dichotomy
described may be an oversimplified representation of the
complex immune system. Transcriptional regulation of the
predominant Th2 cytokine IL-4 is by STAT-6, c-maf, GATA-
3, and NFAT [40], whereas Th1 cell cytokine production is
transcriptionally regulated by T-bet and STAT-4 [11].

4.Th1:Th2 and Pregnancy Maintenance

The hypothesis of Th2 predominance and downregulation of
the Thl response originated from Wegmann and colleagues
[41] and was reinforced by evidence from both murine
studies and the clinical course of Th2 and Thl based
conditions in pregnancy. IL-2, IFN-y, and TNF-« induce
miscarriage in mice, which can be reversed by inhibitors of
the Th1 cytokines or by administering the anti-inflammatory
Th2 cytokine IL-10 [42, 43]. Autoimmune conditions where
Thl is involved in the pathophysiology generally improve in
pregnancy (e.g., theumatoid arthritis [44]), whereas the Th2
autoimmune spectrum tends to worsen (e.g., systemic lupus
erythematosus [45]). With a Th2:Th1 bias, the diminished
cell-mediated immunity may be responsible for the increased
susceptibility in pregnancy of conditions caused by intra-
cellular pathogenesis (e.g., influenza, leprosy, and Listeria
monocytogenes [46]).

4.1. Peripheral Blood. Several techniques are available to
establish the function of Th1 and Th2 cells in pregnancy; en-
zyme-linked immunosorbent assay (ELISA) can be used to
measure maternal serum interleukins; peripheral T cells can
be isolated and stimulated with a mitogen such as phorbol
myristate acetate (PMA) or phytohaemagglutinin (PHA) to
measure the cytokine production either by ELISA or flow
cytometry during pregnancy compared with nonpregnant
controls.

Marzi and colleagues isolated PBMCs, stimulated them
with PHA, and measured interleukin secretion by ELISA
showing a reduction in IFN-y and IL-2 and an increase in
IL-4 and IL-10 in pregnancy compared with nonpregnant
controls [47]. In support of this study, Reinhard et al. stim-
ulated cells with PMA and demonstrated by flow cytometry
a reduction in intracellular IFN-y and IL-2, and an increase
in intracellular IL-4 production in pregnancy compared

with nonpregnant controls [48]. In vivo confirmation of
this bias has since been demonstrated by polymerase chain
reaction (PCR) reflecting decreasing messenger ribonucleic
acid (mRNA) of IEN-y through pregnancy and a concurrent
increase in IL-4 mRNA which peaks in the 7th month
compared with nonpregnant controls [49]. However, not all
studies support the Th1 to Th2 bias. Shimaoka et al. reported
a reduction in PMA-stimulated IL-4 during pregnancy [50],
while Matthiesen and colleagues presented data suggesting
an increase in both IL-4 and IFN-y secreting cells in preg-
nancy compared with nonpregnant controls [51, 52]. Such
discrepancies may be due to characterisation of cytokine
profiles in either isolated cell populations or whole blood, the
latter arguably being a more biologically relevant system.

4.2. Maternal Fetal Interface and Nonimmune Cells. While
much research has been dedicated toward circulating
cytokines in pregnancy, local cytokine production at the
maternal interface may be of greater significance than
measurements obtained in the peripheral blood [23]. IL-
4, IL-10, and macrophage colony-stimulating factor (m-
CSF) production by T cells at the maternal fetal interface
is associated with successful pregnancy [23]. Trophoblast,
decidua, and amnion all contribute to the Th2 cytokine
environment by production of IL-13 [53], IL-10 [54], IL-
4 and IL-6 [55, 56]. Coculture of trophoblasts and T cells
results in an increase in the transcription factors GATA-
3 and STAT-6 (which regulate Th2 cytokine production),
and a reduction in the Th1 transcription factor STAT-4 and
subsequently decreased production of IFN-y and TNF-«
[57]. The placenta also synthesises PGD,, which may act as
a chemoattractant of Th2 cells to the maternal fetal inter-
face via the classic Th2 receptor CRTH2 (chemoattractant
receptor-homologous molecule expressed on Th2 cells) [28].
CRTH2* cells are reduced at the maternal fetal interface of
women suffering from recurrent loss compared with women
undergoing elective termination [58].

Local production of IL-4 and IL-10 inhibits the function
of both Thl cells and macrophages, which serves to prevent
fetal allograft rejection [59]. Other anti-inflammatory effects
of these interleukins result in inhibition of the Thl cytokine
TNF-a [60], and TNF-a-induced cyclo-oxygenase-2 (COX-
2), and/or PGE, synthesis in amnion-derived wish cells.
Similar effects are observed in decidual and placental cells in
vitro [61-64], which is thought to inhibit the onset of labour.
Consistent with such a role, decidual CD4 positive cells from
women undergoing unexplained recurrent pregnancy loss
typically exhibit reduced IL-4 and IL-10 production [65].

5. Th1:Th2 Cytokines in Labour

5.1. Peripheral Blood. The Th2 cytokine predominance
which exists during pregnancy has been shown to return to
nonpregnant Th1:Th2 ratios by 4 weeks postpartum [66].
Labour is often seen as a proinflammatory state marking
the end of the pregnancy, and thus it is plausible that
labour is associated with a reversal in the bias back towards
Thl rather than Th2. Rather, Kuwajima and colleagues



have shown that the Th2:Thl ratio remained constant in
favour of Th2 through pregnancy and labour, with a reversal
back to nonpregnant parameters at 7 days postpartum [67].
However, this finding is somewhat contrary to an earlier
report indicating that serum IL-4 levels measured by ELISA
in women through pregnancy and at different stages of
labour were reduced in the later part of labour and by day 1
postpartum in both normotensive and preeclamptic women
[68]. In this study, the Thl proinflammatory cytokine TNF-
a peaked in early labour consistent with labour being a
proinflammatory state. Consistent with this, an increase in
IFN-y and IL-1$ in women in active labour has also been
reported [69].

5.2. Maternal Fetal Interface and Nonimmune Cells. There
is substantial evidence that the Thl cytokines play a role
in the initiation of labour at term [22]. The importance of
local rather than peripheral production of the cytokines is
highlighted by their direct input into the biochemical path-
ways involved in parturition. Fetal membranes [70, 71] and
myometrium [72] produce IL-1f at term, a potent inducer
of NF-«B [73]. This transcription factor regulates the expres-
sion of numerous labour-associated genes including COX-2,
the oxytocin receptor, IL-8, and matrix metalloproteinase-
9 (MMP-9) [74]. TNF-a and IL-1§ are both increased in
amnion, amniotic fluid, and decidua at term [75] and can
induce PGE, production in amniocytes and decidual cells
in vitro [76, 77]. Despite the proinflammatory nature of the
Thl cytokines they are required for successful pregnancy
contributing to the physiology of term labour.

6. Th1:Th2 Cytokines in Infection

Activation of the Th1 cytokines occurs as a specific response
to infection caused by intracellular bacteria, parasites, and
viruses [78]. The necessary proinflammatory type 1 response
elicited by infection, along with the action of the activated
T cells, drives local and systemic cytokine production that,
if left unchecked, can be harmful to the host [78]. In some
situations, the Th1 response is balanced by the production
of Th2 cytokines, particularly IL-4 and IL-10 [79-82]. In the
early stages of infection, IL-12 is produced by macrophages
and dendritic cells [83, 84], which lead to polarisation from
ThO to Th1 type cells [24]. IFN-y enhances Th1 development
by upregulating the IL-12 receptor and inhibiting the growth
of Th2 cells [85]. IFN-y also primes macrophages to begin
phagocytosis and to stimulate the release of interleukin-1
[86].

While the Thl cytokine response may be suppressed
by both the maternal and fetal immune system during
pregnancy [87], it still maintains the capacity to mount a
defensive response in the context of infection. For example,
cord blood mononuclear cells cultured with lipopolysaccha-
ride (LPS) in vitro show an increased production of IFN-
y concurrent with reduced IL-4 secretion [88]. Similarly,
neonates exposed to intrauterine infection have an increased
percentage of IFN-y-producing cells, with some neonates
also showing an increase in IL-4-producing cells [89].
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In response to LPS amnion, chorion, deciduas, and placenta
also release proinflammatory cytokines [64, 90, 91].

7. Th1:Th2 Cytokines in Preterm Labour

Approximately, 30% of preterm births are associated with
infection [92], with a higher rate of 80-85% in early preterm
birth (<28 weeks) [93]. Immune and nonimmune cells
contribute to a cytokine-rich environment in the presence
of infection and inflammation. Proinflammatory cytokines
such as TNF-« and IL-1p ultimately result in the production
of prostaglandins and MMPs [86], via NF-«B. This triggers
a cascade of prolabour events including uterine contractility
and fetal membrane rupture, and if this cascade is activated
early in pregnancy, preterm labour can ensue.

7.1. Peripheral Blood. As discussed above, the peripheral
response may not be as potent as the local Th1:Th2 response
and may instead reflect a more significant inflammatory
response at the fetal placental compartment. A large case
control study of 101,042 Danish women showed that an
elevated mid pregnancy IFN-y plasma level was associated
with moderate and late spontaneous preterm delivery,
whereas no increased risk was seen with elevated TNF-«
or IL-2 [94]. However, a study comparing women in active
preterm labour and no labour looked at mitogen-stimulated
production of IFN-y and the Th2 cytokines IL-4, IL-10,
and IL-13 and showed no difference in median cytokine
production in the supernatant in vitro [86]. The differing
results between these studies could be explained by the fact
that the in vitro cells lack the presence of other cells of
the immune system and thus lack the ability to reflect the
complexity of the immune system as a whole. This same
study did however show a higher IL-12 and lower IL-4 in
cervical secretions of women in preterm labour, reflecting
the localised Th1:Th2 dichotomy. Bahar and colleagues did
not demonstrate any difference in serum TNF-«a or IFN-y
in women with preterm labour compared to term labour
or matched controls not in labour [95]. However, those
women in the preterm labour group received indomethacin,
an anti-inflammatory COX-2 inhibitor, which could have
dampened a typical proinflammatory response. Serum taken
from women with preterm prelabour rupture of membranes
(pPROM) compared to women who delivered at term
exhibit a higher concentration of IFN-y. Levels of IL-4 and
IL-5 were undetectable in both groups [96]. In a study
of 30 women in preterm labour, mitogen- and antigen-
stimulated PBMCs showed a higher production of the pro-
inflammatory cytokines IFN-y and IL-2, along with an
altered Th1:Th2 ratio favouring a Thl response compared
with controls who delivered at term [97]. Taken together,
these results suggest that, rather than a decrease in the
Th2 response, preterm labour most likely represents an
activation of the Thl response. Thus, future development of
therapeutic targets would likely be more effective if directed
towards the modulation of the Th1 cytokines.

The Th1:Th2 dichotomy likely represents an oversim-
plification of the complexity of the cross-talk between the
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Thl and Th2 cytokines. The ratio of Th1l:Th2 is likely
to be of more physiological importance than the actual
concentrations produced. In support of such a notion,
women in threatened preterm labour with high serum levels
of IL-12 (which induces a Thl cytokine response) and no
change in serum IL-18 (which can induce both Th1 and Th2
response) do not show significant associations with preterm
labour. However, women with high IL-12 levels and low IL-
18 and thus a high IL-12:1L-18 ratio increasing the Thl
predominance are associated with a twofold risk of preterm
labour when presenting with threatened preterm labour [98].

7.2. Maternal Fetal Interface and Nonimmune Cells. The
inflammatory response at the maternal fetal interface more
likely reflects the true importance of the Th1:Th2 dichotomy
and the aberrant profile in preterm labour. A recent meta-
analysis concluded that proinflammatory cytokines at the
maternal fetal interface play a role in the events leading to
spontaneous preterm labour, while systemic inflammation
does not appear to be present in asymptomatic women
early on in pregnancy who then go on to deliver preterm
[99]. This is consistent with a more local intrauterine
inflammatory response syndrome, where no organisms
are identified. Understanding the pathophysiology at the
maternal interface is essential for developing new therapies
for the prevention of inflammation-induced preterm labour,
although using such local changes for the prediction is
challenging because of lack of access to the maternal fetal
interface.

Placentas from women with pPROM and preterm deliv-
ery have higher Th1, inducing cytokines [100], and placentas
from women following preterm delivery compared with term
delivery show a bias towards the Th1 profile with significantly
higher levels of IFN-y and IL-2 as well as the Th1-inducing
cytokine IL-12 [100]. Moreover, term placentas exhibit
comparatively higher levels of the Th2 cytokines, IL-4, and
IL-10, compared with the preterm placentas.

TNF-« is increased in choriodecidual tissues [71] and
amniotic fluid [101] in preterm labour. TNF-«a is known
to stimulate PG production through the TNF receptor 2,
leading to uterine contractions likely via activation of NF-
xB, but is also likely to contribute to MMP-9 production
leading to PROM via activation of its receptor TNF Receptor
1 (TNFR1) [102]. Interestingly, samples of myometrium
collected women in preterm labour and samples collected
preterm before labour express comparable mRNA levels of
TNE-a. However, mRNA levels of the receptors, TNF R1 A
and B, are increased in preterm labour and term labour com-
pared with nonlabour controls [103] suggesting a receptor-
mediated increase in sensitivity to TNF-a.

Although placental, amnion, and choriodecidual cells
secrete proinflammatory cytokines, cytokine levels in tissues
from preterm deliveries (with and without intrauterine
infection) correlate with the extent of leukocyte infiltration
in fetal membranes [75]. In the presence of infection, the
primary cellular source of cytokine production in fetal
membranes is likely to be infiltrating leukocytes rather than
amniocytes or choriodecidual cells. [75].

7.3. Polymorphisms of the Thl and Th2 Cytokines. Studying
genetic polymorphisms of the Th1 and Th2 cytokines could
provide a novel screening method for determining women
at high risk of preterm labour. Polymorphisms giving rise to
functional alterations can also provide information on the
importance of the interleukins in preterm labour. There has
yet to be any promising genetic polymorphisms identified in
the Th1:Th2 cytokines for the prediction of preterm labour,
the work conducted warrants consideration (see Table 1).

8. Non-Th1:Th2 Interleukins

8.1. IL-8. Interleukin 8 is a chemokine produced by many
immune cells but primarily macrophages and monocytes
[116]. Its production is stimulated by LPS, TNF, and IL-1
[117] and, in the context of pregnancy, is thought to attract
leukocytes to the gestational tissues and the cervix at the
onset of term and preterm labour. IL-8 mRNA expression has
been reported to be increased more than 50-fold in preterm
labour and more than 1000-fold in preterm labour with
evidence of chorioamnionitis in amnion and choriodecidua
[118]. A number of studies have also identified increases of
IL-8 in the myometrium and cervix with the onset of labour
[119, 120]. Placental IL-8 is also higher in preterm deliveries
compared with term deliveries [71].

8.2. IL-6. Although IL-6 is produced by Th2 cells, it is a
proinflammatory cytokine and a major mediator of host
response to inflammation and infection [121]. IL-6 levels
are moderately increased in placenta, significantly increased
in amnion and choriodecidua in women with preterm
delivery compared with term delivery [71]. IL-6 appears
to be among the most sensitive and specific indicators of
infection-associated preterm labour [122, 123]. The presence
of an increase in IL-6 in amniotic fluid and cervicovaginal
fluid is an independent risk factor for preterm labour and
neonatal morbidity [124] including cerebral palsy [125] and
bronchopulmonary dysplasia [126].

9. Therapeutic Modulation of
Th1 and Th2 Profile

Various therapeutic strategies have been proposed to pre-
vent preterm labour, with the primary objectives of (1)
delaying delivery to increase gestation at delivery and (2)
to improve neonatal condition at birth [127]. Currently,
many of the strategies adopted for the prevention of preterm
labour involve targeting the proposed pathways and events
that result in uterine contractions and cervical shortening
and dilation rather than targeting immune activation. As
described here, an aberrant proinflammatory profile exists
in both term and preterm labour, which is associated
with neonatal morbidity. The limitation of tocolytics is
the inability to counteract the exposure of the fetus to
proinflammatory cytokines, which lead to the fetal inflam-
matory response syndrome. This may in fact worsen neonatal
outcome by prolonging the exposure of the fetus to a hostile
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TaBLE 1: Cytokine polymorphism associations with preterm labour (PTL).
Gene Polymorphism Th1/Th2 Function Reference
Classic Th1 cytokine. Proinflammatory. No clear association between
IFN-y +874A>T Thi IENy polymerphisms and PTL (104, 105]
Refute
association
Regulatory role in PG synthesis elevated at maternal fetal interface [104, 106,
TNF-a ~308G>A Thi BTy 1o s v : 107]
controversial link between PTL and TNF-« polymorphisms
Support
association
(108, 109]
Classic Th2 cytokine. The IL-4 590 C/C genotype is associated with
preterm birth but unclear. IL-4-590 SNP has been associated with
IL-4 -590 Th2 both low and high IL-4 expression. Link also exists between IL-4 (110, 111]
promoter polymorphisms and preterm birth in multiple pregnancies;
however, polymorphism actually associated with increased IL-4
Anti-inflammatory Th2 cytokine inhibits production of cytokines,
—1082G>A chemokines, and prostaglandins in LPS stimulated amnion, [104—
IL-10 —-819C>T Th2 choriodecidual, and placental explants [112-114]. However, no clear 106, 115]
—592C>A association between IL-10 polymorphisms and PTL or adverse ’ ’

neonatal outcome

environment. There is mounting evidence that periventric-
ular leukomalacia and cerebral palsy are associated with
fetal exposure to intra-amniotic inflammation and the devel-
opment of fetal inflammatory response syndrome [128].
Thus, a strategy for targeting immune activation through the
modulation of the Th1:Th2 bias may be beneficial for both
the prevention of preterm labour as well as the reduction of
neurological insult to the fetus.

9.1. Progesterone. There have been several studies indicating
a positive response to progesterone treatment for the pre-
vention of preterm labour in specific patient populations
[129-131]. The strongest evidence for improvement in
neonatal outcomes comes from the most recent multicentre
randomised controlled trial which showed a 45% reduction
in preterm labour (<33 weeks) and a 60% reduction in respi-
ratory distress syndrome at <33 weeks using 90 mg of vaginal
progesterone in women with a short cervix of 10-20 mm
[132]. The mechanism by which progesterone contributes
to pregnancy maintenance has traditionally been attributed
to maintenance of uterine quiescence by increasing cyclic
AMP (cAMP) and a reduction in intracellular calcium thus
reducing contractility [133]. Moreover, progesterone appears
to inhibit the phosphorylation of myosin, a critical step in the
activation of the myometrial contractile machinery required
for labour onset [134, 135].

Progesterone also has immunomodulatory effects on
the Th1:Th2 bias. Progesterone is able to suppress Thl
differentiation and enhance Th2 differentiation in peripheral
blood mononuclear cells in vitro [136]. A more potent and
orally bioavailable progestogen, dydrogesterone (6-dehydro-
9f3,10a-progesterone) upregulates IL-4 and downregulates
IFN-y in PHA-stimulated PBMCs more significantly than
progesterone in vitro [137]. There is also in vivo evidence

of an anti-inflammatory effect of prolonged administration
of vaginal progesterone. In a study of pregnant women
receiving either progesterone or placebo from 24 to 34
weeks, peripheral blood leukocytes were collected before
and after treatment [138]. mRNAs of the proinflamma-
tory cytokines IL-1 and IL-8 were reduced with proges-
terone treatment, whereas the anti-inflammatory IL-10 was
increased. A multicentre placebo controlled trial (OPPTI-
MUM, https://www.opptimum.org.uk/: ISRCTN 14568373)
powered on neonatal outcome will provide us with evidence
of any potential beneficial effect of vaginal progesterone on
neonates born preterm.

9.2. NF-xB Inhibitors. Inhibition of NF-xB activation is
another attractive strategy to prevent preterm labour as NF-
kB activation is central to the activation of labour-associated
genes in labour [139]. NF-xB activation also leads to a
proinflammatory response in various cytokines including
IFN-y [140], IL-15 [74], TNF-«, and IL-8 [141]. Ex vivo
studies with the anti-inflammatory sulfasalazine suppress
LPS-induced IL-6 and TNF-« production in fetal membranes
via inhibition of translocation of p65 to the nucleus [142].
The reported clinical safety profile of sulfasalazine has
been variable [143-145], however, if used in pregnancy
is often supplemented with folate. The anti-inflammatory
characteristics of the cyclopentenone PG, 15-deoxy-A'214-
prostaglandin J, (15dPGJ,) appears to be derived from its
ability to inhibit NF-xB activation in human amnion and
myometrial cell culture [146]. We have also shown that
15dPG]J, inhibits activation of NF-«B in human peripheral
blood mononuclear cells and reduces the percentage of
cells producing the proinflammatory cytokines, IFN-y and
TNF-a, [147]. Work conducted in our laboratory has also
shown that 15dPG]J, is able to delay labour and provide
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neuroprotection by reducing pup mortality from 75% to 5%
in a murine model of inflammation induced preterm labour
[148].

10. Conclusion

There has been extensive interest in the Th1:Th2 dichotomy
for the maintenance of successful pregnancy. A trend towards
the Th2 cytokine profile and a suppression of the Thl
cytokine profile appears to exist both in the peripheral
blood but more significantly at the maternal fetal interface.
Activation of the proinflammatory Thl profile—rather than
suppression of the Th2 profile—is apparent in preterm
labour and thus should be considered as the logical target for
immunomodulating therapies for the prevention of preterm
labour and improving neonatal outcome.
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