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Accounts of statistical learning, both implicit and explicit, often invoke predictive processes as cen-
tral to learning, yet practically all experiments employ non-predictive measures during training. We 
argue that the common theoretical assumption of anticipation and prediction needs clearer, more 
direct evidence for it during learning. We offer a novel experimental context to explore prediction, 
and report results from a simple sequential learning task designed to promote predictive behav-
iors in participants as they responded to a short sequence of simple stimulus events. Predictive 
tendencies in participants were measured using their computer mouse, the trajectories of which 
served as a means of tapping into predictive behavior while participants were exposed to very 
short and simple sequences of events. A total of 143 participants were randomly assigned to stimu-
lus sequences along a continuum of regularity. Analysis of computer-mouse trajectories revealed 
that (a) participants almost always anticipate events in some manner, (b) participants exhibit two 
stable patterns of behavior, either reacting to vs. predicting future events, (c) the extent to which 
participants predict relates to performance on a recall test, and (d) explicit reports of perceiving 
patterns in the brief sequence correlates with extent of prediction. We end with a discussion of im-
plicit and explicit statistical learning and of the role prediction may play in both kinds of learning.
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Introduction

To what extent is prediction related to sequential learning and 

memory, and to implicit or explicit knowledge of that learning? In this 

paper, we offer a novel methodology that may help answer this ques-

tion, and present experimental results that suggest this methodology 

holds promise for connecting these phenomena: prediction, statistical 

learning, and explicit awareness. In brief, our experiment is a simple 

manual spatial-position tracking task, in which a participant’s behavior 

is tracked with the computer-mouse cursor. We are thus able to de-

tect predictive movements readily. We show that predictive behaviors 

emerge quickly in a simple short-sequence design, using 48-element 

sequences of varying grammatical regularity. Prediction, learning, and 

explicit knowledge all correlate strongly. 

Many researchers in diverse domains of cognitive science have 

identified prediction as central to perception, cognition, and ac-

tion (Bar, 2009; Bieri, 1955; Bubic, von Cramon, & Schubotz, 

2010; Cleeremans & McClelland, 1991; Craik, 1943; Elman, 1990; 

Enns & Lleras, 2008; Kveraga, Ghuman, & Bar, 2007; Neisser, 1976; 

Ramscar, Yarlett, Dye, Denny, & Thorpe, 2010; Rao & Sejnowski, 

2003; Reynolds, Zacks, & Braver, 2007; Schubotz, 2007; Shelhamer & 

Joiner, 2003; Sutton & Barto, 1998; Wolpert & Flanagan, 2001). This 

has been especially true of theories of statistical learning (Cleeremans 

& McClelland, 1991; Hoffmann, Martin, & Schilling, 2003; Hunt 

& Aslin, 2001; Nissen & Bullemer, 1987; Stadler, 1989). As we argue 

below, these theories are almost always based on indirect evidence for 

prediction: Virtually all statistical learning and serial reaction time 
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(SRT) experiments employ reaction-time (RT) methods that do not 

reveal predictive behaviors during learning (D. J. Marcus, Karatekin, 

& Markiewicz, 2006). Yet such experiments cannot mediate between 

predictive, forward-looking theories of statistical learning processes 

(Cleeremans & McClelland, 1991; Nissen & Bullemer, 1987), and theo-

ries that could be based more on associative memory traces that link 

event to event, and need not invoke forward-looking learning proces- 

ses (e.g., Jones & Pashler, 2007). The former family of theories needs a 

more direct technique to tap prediction and to support this common 

assumption. 

In this paper, we develop a technique for capturing prediction be-

havior directly, and present a simple experimental demonstration of 

it that speaks to this theoretical issue. Our results show that even if a 

brief sequential pattern is sufficiently ordered, participants begin to ac-

tively predict what stimulus will follow from a previous one, revealing 

prediction as a wholesale, active strategy. Participants who do so more 

also tend to report more explicit awareness of pattern in that stimulus 

sequence. Our data suggest that indeed prediction is central to learn-

ing and awareness, and may reveal how different forms of prediction 

may correlate with implicit or explicit awareness, which themselves 

are dependent upon the relative transparency of the structure being 

learned. In what follows, we first briefly review theoretical issues, and 

argue that predictive versus associative mechanisms can easily be 

confounded in statistical learning experiments. We then present our 

experimental results, and discuss their theoretical implications in the 

general discussion. 

Predictive versus associative 
processes for learning

Distinguishing between predictive and associative learning mecha-

nisms is a problem that extends across many domains in cognitive 

psychology, given that “...efficient processing of events in ambiguous 

contexts does not need to result from effective preparation, but retro-

spective use of information regarding events which occurred following 

those of interest” (Bubic et al., 2010, p. 2). Some studies have sought to 

tease apart these two potential mechanisms, predictive versus retro-

spective processing, in behavioral experiments. For example, Enns and 

Lleras (2008) showed that visual search from a recent scene in memory 

can be so fast (“rapid resumption”) that only a predictive mechanism 

could sensibly explain their findings. They noted that this is in contrast 

to fluid access to recent memory, characteristic of more retrospective 

processes. These same issues are faced by RT facilitation findings in 

sequential tasks that reveal statistical learning. 

Consider the findings of Hunt and Aslin (2001), whose study is 

similar to the design we employed here. They evaluated movement 

speed to predictable stimuli within a visuospatial layout. In their ex-

periment, the stimuli corresponded to seven lights that were arranged 

equidistantly in a semicircle. Participants were instructed to press the 

lights and then return to a fixed position below the lights to trigger 

the next position. They showed learning of predictable positions across 

trials of the experiment, finding that RTs were fastest for stimuli in 

predictable positions. 

Though Hunt and Aslin (2001) were primarily interested in the 

type of cues that underlie learning in this serial-reaction design, the 

cognitive process that was assumed to be operating in this context was 

one of an anticipatory nature: “If it [RT] was faster, this implied that 

the participant was relatively more certain about the subsequent ele-

ment in the sequence of stimuli and was able to anticipate the correct 

transition and produce a faster response” (p. 670). One issue with this 

general assumption is that faster latencies may simply reflect a capaci- 

ty to react more quickly given the strength of local “memory traces” 

induced during learning. As another example, in a recent computa-

tional model of SRT learning, Jamieson and Mewhort (2009) require 

only very local memory cuing, and the model by itself is not equipped 

with a predictive mechanism. It is in fact retrospective (in the sense of 

Bubic et al., 2010) because the generation of any new response is car-

ried out through integrating information from the previous stimulus 

and response, and with this simple local process, it can capture a wide 

range of basic statistical-learning results. A forward-looking model 

would produce expectations or anticipations for the next stimulus. 

This is an important distinction that should not be trivialized. The 

relevance of a current stimulus is evaluated when it is seen in a retro-

spective model, rather than before it is seen, which is how a predictive, 

anticipatory process would function. So a memory-based retrospective 

process could facilitate these responses in some manner, without being 

explicitly predictive. In short, the current stimulus is simply faster to 

process when it is seen.

The distinction between predictive and retrospective processes 

can be strengthened by considering two ways in which computational 

models could capture response facilitation. In a sequential statistical 

learning experiment, where we attempt to model the processing of 

some stimulus SN that has followed from some previous set of stimuli 

(SN-1, SN-2, etc.), there are two ways in which speeded processing of SN 

might happen. A retrospective model would process this SN more 

quickly if its (activated) memory traces for preceding material facilitate 

that processing. No preparation or prediction is required for this to be 

so: Any of various processes required for evaluating the new SN could 

be facilitated by having relevant recent representations active before 

SN. A predictive model, however, does not wait to be facilitated in this 

processing. Instead, it would in some manner or another have at least 

part of the requisite processing of SN already in place even before SN 

appears, because seeing SN-1, SN-2, etc. together encourages the system 

to “look forward” towards upcoming stimulus events. There is a com-

putational precedent for this distinction. In the retrospective case, 

McClelland (1979) introduced a cascade algorithm to model facilitated 

processing time in an associative feedforward network. In the predic-

tive case, the well-known simple-recurrent network architecture has 

been used to model SRT and statistical learning data (Cleeremans & 

McClelland, 1991; Misyak, Christiansen, & Tomblin, 2009). Yet neither 

of these processes, prima facie, is fundamentally or a priori the most 

desirable. We would agree that statistical learning studies offer consi- 

derable evidence that anticipation is pervasive. Despite this pervasive-

ness, some recent works suggest that this pervasiveness should not be 

taken for granted in any given situation, and that direct evidence for 
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such a central mechanism, and its benefits, ought to be obtained (e.g., 

Jones & Pashler, 2007).

The vast majority of research on statistical learning has employed 

indirect measures of anticipation. Reber (1967) used grammatical en-

dorsement scores in test phases as evidence of learning. Looking time 

has been used in statistical learning studies with infants and young 

children (see Saffran, 2003, for a review). SRT studies virtually all 

use basic RT measures in training phases, from Nissen and Bullemer 

(1987) onward. There are a few studies that reveal anticipatory tenden-

cies, such as those that show the emergence of predictive errors in SRT 

studies (e.g., Schvaneveldt & Gomez, 1998), yet these predictive errors 

may still be evidence of some learning having already taken place. In 

other words, prediction may not have been part of the learning process, 

but rather an effect. There is indeed some good evidence that ocular 

and manual movements display predictive behaviors during statisti-

cal learning and that this prediction relates to explicit knowledge.  

D. J. Marcus et al. (2006) showed that eye-movement anticipations are 

frequent in an SRT task, and relate to learning and explicit knowledge. 

Duran and Dale (2009) showed some weak evidence for anticipatory 

manual responses in a statistical learning paradigm similar to Saffran, 

Aslin, and Newport (1996; see also Moisello et al., 2009). The current 

experiment complements these findings and supplies a potential ex-

perimental framework for systematic exploration of prediction, and 

possibly, different types of prediction strategies. For example, here we 

show that manual anticipation can take on two different forms: “opti-

mized” reaction (where one readies the response but does not try to 

make it beforehand), and explicit “wagers,” which appear to accompany 

explicit learning, in which a participant actually heads for the next ex-

pected stimulus prior to its appearance. In our experiment, we observe 

that participants first find an optimal cursor location from which to 

react while waiting for another stimulus to appear (without predicting 

a specific stimulus), though at some point during the experiment they 

become aware of a pattern and begin to explicitly predict or “wager” its 

next occurrence. Once they do predict, it becomes a stable strategy that 

guides learning of a short sequence.

In summary, most statistical learning experiments, whether 

explicit or implicit in their learning outcomes, are based on indirect 

information about anticipatory processes consistent with both an-

ticipatory and non-anticipatory types of models. We would agree with 

many researchers who have argued that anticipation seems to be the 

most appealing cognitive process for handling events in time (as cited 

above, and as discussed in the implicit learning literature, e.g., in D. J. 

Marcus et al., 2006; Nissen & Bullemer, 1987; Schvaneveldt & Gomez, 

1998; Stadler, 1989). But obtaining direct evidence of this process, and 

developing an empirical framework to further explore prediction in 

statistical learning, would further help to connect this mechanism for 

learning during learning. 

In this paper, we are not arguing that implicit learning is either 

purely associative or predictive, for it may be that they both work to-

gether during learning (and indeed, predictions may use associative 

mechanisms at root; e.g., Bar, 2009). Our point is that theories that use 

concepts of prediction could be further supported by directly reveal-

ing prediction in behavior. The purpose of this paper is to showcase 

an experimental paradigm that can reveal predictive processes, and 

to explore the properties of this anticipation/prediction as it relates to 

memory for sequences and explicit knowledge of the regularity of these 

sequences. We indeed find rich patterns of prediction, and this predic-

tion relates to learning and explicit awareness of that learning.  

Experiment

Here, we use an experimental design that reveals manual prediction, 

and we investigate the properties of this behavior. To provide an unam-

biguous measure of prediction, we turned to the measurement of hand 

movement during task performance. In several recent studies, the semi-

continuous movements of the computer-mouse cursor were regarded 

as a direct and (occasionally) uninterrupted translation of unfolding 

cognitive processes (Song & Nakayama, 2009; Spivey, Grosjean, & 

Knoblich, 2005). Motivated by this logic, we tracked participants’ com-

puter mouse as they clicked on a visual cue that moved around a spatial 

landscape on the computer screen. Every time the cue was clicked, it 

momentarily disappeared before reappearing in a new location. During 

this period of disappearance, the learner had an opportunity to predict 

the most likely region of reappearance of the cue (it is like a simplified 

version of the “Whac-A-Mole” classic arcade game that readers may 

be familiar with). By tracking the coordinates of the computer-mouse, 

results can show when (or if) participants manually gravitate towards 

predictable regions. We used this in a simple sequence-learning task, in 

the spirit of Nissen and Bullemer (1987) and of Hunt and Aslin (2001). 

The task requires participants to respond to spatial stimuli that occur 

in sequences that vary in their ordering regularities. 

Methods
Participants 

We recruited 143 participants from Amazon Mechanical Turk 

(www.mturk.com). This system has, in several previous studies, 

produced extremely reliable respondents even in relatively cognitive-

intensive tasks such as data coding (Kittur, Chi, & Suh, 2008; Snow, 

O’Connor, Jurafsky, & Ng, 2008; Sorokin & Forsyth, 2008). Our par-

ticipants were compensated with a small monetary reward for the task, 

which required approximately 10-15 min.

Stimuli and interface 
The interface was programmed using Adobe Flash, in which the 

computer-mouse cursor could be accessed for its x and y coordinates 

at a rate of approximately 40 Hz. The interface occupied a 500-by-500-

pixel region within the users’ Internet browser (see Figure 1, Panel A). 

Target stimuli were 35-pixel-diameter black circles that appeared indi-

vidually during training, arrayed in a 2 × 2 grid. Participants used only 

their computer pointer to interact with the interface.

We constructed 11 training sequences of 48-circle appearances 

using the constraint that a circle in one position could not appear con-

secutively. In addition, each position (1-4) appeared an equal number 

of times. Each sequence contained an order of circle positions of vary-
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Figure 1.

Panel A. Stimuli locations on computer screen. Panel B. Example region for reactive and predictive movements when mouse position is 
recorded after disappearance of stimulus t-1 and at the onset of stimulus t (750 ms lapsed). Panel C. Hypothetical trajectory examples 
for illustration of predictive/reactive categories during the 750-ms inter-stimulus interval. (Note that open circles reflect no stimuli on 
the screen, but indicate stimulus t and t-1.)

Table 1. 

The Stimulus Sequences by Circle Position

n Sequence G

11 4−2−3−2−1−2−1−2−4−1−3−2−1−4−1−3−1−3−2−4−1−3−1−3−1−4−2−4−3−4−2−4−1−3−1−4−2−3−2−4−1−4−2−3−4−3−2−3 .25

14 1−2−3−1−3−1−2−1−2−1−3−4−3−4−1−2−4−2−4−2−4−3−1−2−4−3−4−2−4−3−4−3−1−2−3−4−2−1−3−4−2−1−3−1−3−4−2−1 .40

16 2−1−4−3−4−3−2−4−1−2−3−2−1−2−1−4−3−4−3−2−3−2−3−2−1−3−2−1−4−1−4−1−4−3−4−1−2−1−4−1−4−3−2−3−2−3−4−1 .44

11 4−2−3−4−2−1−3−1−3−1−3−1−3−4−2−4−2−4−2−1−3−1−3−1−3−4−2−3−4−2−1−3−1−3−4−1−2−1−2−4−2−4−2−1−3−4−2−4 .55

11 4−3−4−3−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−3−2−1−4−3−2−1−3−2−1−2−1−4−3−2−1−2−1−4−3−4−2−1−4 .68

13 3−2−3−2−4−1−3−2−4−1−4−1−3−2−3−2−3−2−4−1−3−2−4−1−3−2−3−2−4−1−3−2−4−1−4−1−3−2−4−1−4−1−4−1−4−1−3−2 .76

10 2−3−1−4−1−4−1−4−2−3−1−4−2−3−1−4−2−3−1−4−2−3−1−4−2−3−2−3−2−3−2−3−1−4−1−4−2−3−1−4−2−3−1−4−2−3−1−4 .79

15 2−3−4−1−2−3−4−1−2−3−2−3−4−1−2−3−4−1−2−3−4−1−2−3−4−1−2−3−4−1−4−1−2−3−4−1−2−3−4−1−2−3−4−1−2−3−4−1 .89

15 2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4−2−1−3−4 1.0

14 1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3−1−2−4−3 1.0

11 4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1−4−3−2−1 1.0

Note. Stimulus sequences were numbered as in Figure 1. n = number of subjects randomly assigned to this training sequence. G is a grammatical regularity score 
taken from Jamieson and Mewhort’s (2009) study of implicit learning. G = 1 – U(sequence)/U(random) where U(sequence) is equal to the first-order entropy of the 
sequence. This is simply equal to the entropy of the probability distribution of transitions from positions i to j: -∑i∑jpijlog(pij), where pij is the probability that position 
i will transition to symbol j. U(random) is equal to the first-order entropy of a fully random transition matrix Ri,j (excluding where i = j). 
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ing regularity. From Jamieson and Mewhort (2009), regularity (G) was 

defined as the extent to which a 48-position sequence is redundant.  

G lies between 0 (no regularity) and 1 (high regularity), and we chose 

an array of values of G for our 11 sequences, including three sequences 

with perfect regularity, with the aim of having highly regular sequences 

in which prediction would be observed. Table 1 details this redundancy 

statistic, the stimulus sequences, and the regularity of each. Sequences 

of growing regularity have emerging patterning of the four positions, 

with fewer and fewer irregular trials intervening between these pat-

terns.

Procedure 
Participation consisted of three phases: (a) the training sequence, 

(b) a recall test, and (c) a report of explicit knowledge. Once participants 

opted to perform our task, they were forwarded to the Flash interface 

in their browser. Upon entry, the experimental software randomly as-

signed participants to a training stimulus sequence (each participant 

just saw one sequence). Participants were instructed to click the dots 

as fast as possible, because the interface was administering a RT task. 

The mouse cursor was continually tracked for the 48-position train-

ing stimuli. Circles appeared only one at a time, with a 750-ms inter- 

stimulus interval between them. This provided ample time for par-

ticipants to initiate a predictive mouse movement. Following these re-

sponses, participants were prompted to produce a 24-position sequence 

from memory that matched what they had seen during training (akin 

to the “inclusion” task that likely marshals both implicit and explicit 

knowledge of the sequences; cf. Destrebecqz & Cleeremans, 2001).  

We tracked the circle positions that were clicked during this recall test. 

The four circle positions were all on the screen for this part of the task. 

Finally, participants rated how patterned they felt the 48-element se-

quence was by clicking on a continuous scale between not patterned to 

completely patterned with somewhat patterned in between.

Measures and analyses 
We continually tracked the computer-mouse x,y-pixel coordinates 

during training. For each position appearance (of 48), we calculated 

two main measures on which our analyses are based: (a) initial distance 

(in pixels) to the next position and (b) initial distance (in pixels) from 

the previous position. For (a), we computed the pixel distance to the 

next target just before it appeared (at the 750-ms mark), which we call 

initial distance to next. If participants are making a perfect predictive 

movement, the initial distance will be 0 (i.e., right on top of the next 

circle position). A reactive behavior, by contrast, will have a larger 

initial distance, either near the previous target (“waiting”) or near the 

center (“readying”). However, for (b), a movement may be predictive 

but simply incorrect. We therefore also calculated the maximum hori-

zontal/vertical distance from the previous target (at the 750-ms mark), 

which we call initial distance from previous. If a movement is predictive 

at all, it will have a large distance from previous, regardless of whether 

it is correct or not (see Figure 1, Panel B). As we describe further in the 

analysis below, these two measures provide windows onto predictive 

wagers of participants, and capture when participants are willing to in-

vest mouse-cursor movements in a particular predicted stimulus. Any 

other trial, when the cursor does not make a large movement towards 

a particular stimulus, we term a reactive trial. Hypothetical illustrations 

of these trajectories are provided in Figure 1 (Panel C).

We also calculated the regularity of the test recall sequence, and 

its similarity to the corresponding training sequence that a participant 

saw. This is detailed below.

Results
Analysis of reaction times 

In an initial analysis, we simply tested whether our data indeed 

reflected traditional reaction-time facilitation across levels of sequence 

regularity (G score). In most statistical learning experiments, a control 

round using random sequences is used, to see whether RT or other 

measures are affected by the sudden change in the statistical structure 

of event sequences. Here, sequences of different G serve as relative, 

between-subject comparisons. We used a linear mixed-effects model 

with Subject as a random factor (Baayen, Davidson, & Bates, 2008), 

and Sequence Regularity G (0-1), Trial (1-48), and their interaction, as 

continuous fixed factors. G strongly predicted lower RT in this model, 

with each successive .1 increase in regularity leading to, on average, 

approximately 25 ms of facilitation, F(1, 139) = 42.5, p < .0001. There 

was also a significant effect of trial, with RT dropping by about 2 ms 

per trial, F(1, 6350) = 303.1, p < .0001. Importantly, these two factors 

interact, with high G sequences dropping more over trials than low G 

sequences, F(1, 6350) = 132.8, p < .0001. We therefore conclude that 

by a traditional analysis of RTs, we are able to show the same kind of 

results as found in previous work. The question, however, is whether 

these RT facilitation patterns can be accounted for by predictive move-

ments. If so, then facilitation will arise from predictive mouse-cursor 

movements that get closer and closer to where the next trial stimulus 

will appear, even before the stimulus appears on the screen. We explore 

this possibility in the next two analyses.

Correct predictive movements 
The overall extent to which participants moved the mouse cursor 

towards the next target prior to the target’s appearance was strongly 

related to the regularity of the grammar. This is shown in Panel A 

of Figure 2. Using the same model as described above, G highly 

significantly predicted initial distance to next. Each .1 increase in G 

on average led to about a 25-pixel closer initial position to the next 

target, F(1, 139) = 125.7, p < .0001. In general, each subsequent trial 

reduced initial position by about 1 pixel, F(1, 6351) = 174.2, p < .0001, 

but this depended upon G, indicated by a significant interaction term,  

F(1, 6351) = 161.2, p < .0001. In other words, high-G values (i.e., greater 

regularity) had a larger drop in initial position across trials compared 

to sequences with low-G values. 

Predictive movements 
We examined whether participants moved away from the previous 

target position using initial distance from previous. As described in 

the Measures and Analyses section above, if participants do not move 
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at all, or only move towards the center, then this would be a “reactive” 

trial, because participants are only preparing for the next target to ap-

pear. However, if participants move away by a certain pixel distance, 

then they are likely moving the mouse cursor towards another target 

(either correctly or incorrectly). Such a trial would be a predictive one. 

Figure 2 (Panel B) shows the increase in initial distance from previous 

across sequence regularities. In short, participants become more pre-

dictive in the high-G sequences than low-G sequences. All the same 

effects hold in the same mixed-effects model (ps < .0001; we excluded 

the first trial from these analyses, as there is no previous trial to obtain 

such a measure). As suggested by the previous analysis, and in general, 

the extent to which predictive behaviors occurred over trials depended 

upon the predictability of the sequence itself. 

Reactive-predictive strategies 
Simply averaging over participants (as in Figure 2) does not reveal a 

stark bimodality in predictive tendencies that we observed in our par-

ticipants. To showcase this bimodality, we used the previous dependent 

measure (distance away from previous trial) and conducted distribu-

tion analyses. In the 48-position trials, any individual trial was deemed 

“predictive” when the initial distance from previous was 275 pixels or 

greater (indicating substantial movement away, likely to another target; 

see Panel B of Figure 1). We calculated the proportion of trials that 

were predictive in six-trial blocks (giving eight blocks). For any given 

block for each subject, a proportion score is obtained, lying between 

0 and 1, representing the extent to which that block was predictive.  

A score of 1 on this proportion would indicate that all trials of 

these 6 were predictive. A score of 0 would indicate only reaction: 

Participants stayed closer to their initial position prior to the next 

trial. For each block, 1 to 8, a distribution of 143 scores is obtained  

(see Figure 3). 

Each of these distributions is different from an assumed histo-

gram of a uniform distribution of prediction proportions, χ(6)s > 30,  

ps < .0001. In the first block, participants are primarily reactive. 

Gradually, participants exhibit a sharp bimodal distribution in the 

final block. In inspecting the same histograms but for individual se-

quences, the distribution is as one would predict from the aforemen-

tioned analyses: High-G sequences have participants that transition to 

fully predictive trials; low-G sequences have participants that mostly 

remain reactive; bimodality holds approximately in the intermediate 

sequences.

Prediction occurs before correct prediction 
We compared initial distance to next (correct prediction) and initial 

distance from previous (overall predictive movements) across blocks. 

If prediction occurs before knowledge, then overall prediction should 

be significantly higher at a crucial period as prediction emerges. Figu- 

re 4 shows the first four blocks of the three perfectly regular sequences, 

for which prediction was stable and frequent in participants. At  

Block 2, trials tended to be more predictive overall rather than simply 

correctly predictive. We generated a score from 0 to 6 for each block for 

each subject, computed by subtracting the number of correct predic-

tions (using a conservative 100-pixel threshold) from the number of 

overall predictions by initial distance from previous (using the same 

275-pixel threshold). In Blocks 1, 3, and 4 this score did not differ sig-

nificantly from 0, as expected from Figure 4, ts < 1.9, ps = .10, .09, and 

.07, respectively. However, in Block 2, this score is substantially posi-

tive across these participants, t(39) = 5.1, p < .0001. This indicates that 

at about Block 2, there is more prediction in general than just correct 

prediction. In short, prediction generally appears to occur prior to total 

correct knowledge about the sequences.

Do the participants recall correctly? 
We calculated the grammatical regularity of the participants’ 

testing output of 24 clicks using the same statistic as in Jamieson 

and Mewhort (2009). In the expected direction, there is a strong 
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Figure 2.

Panel A. Distance (in pixels and as a function of sequence regularity, G) to next stimuli after 750-ms lapse between disappearance of 
previous stimuli and onset of next stimuli. Panel B. Distance from previous stimuli after 750-ms lapse.
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relationship between the G-score regularity of the training sequence 

and the testing recall, r = .42, p < .0001. We also found that the testing 

sequences more closely matched the original training sequences in the 

same direction, r = .48, p < .0001. This matching score was generated 

using a sequence-alignment method known as cross-recurrence (see 

Dale & Spivey, 2005), where a percentage score reflects the overall 

match between the original and testing sequences by calculating 

the percentage of position sequences that are the same (similar to 

Levenshtein distance). In addition, we tested the relationship between 

how predictive a participant is in the final two blocks of the experi-

ment (12 trials, using distance from previous with 275-pixel thre- 

shold), and the matching score, controlling for the training sequence 

G-scores (included as a covariate in a linear multiple-regression 

model). In the total model, training sequence G-score is a significant 

predictor (p < .01), but amount of prediction also strongly relates to 

the matching score (p < .005; multiple-R2 = .29, p < .0001). The rela-

tionship between matching score, and G, and predictiveness, is shown  

in Figure 5. 
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 Figure 3.

The percentage of participants (from all 11 G-score sequences) that exhibit reactive (proportion prediction = 0) or predictive (propor-
tion prediction = 1) response modes across 48-position sequences divided into eight blocks. (Note that Block 1 shows 6 bins because 
Block 7 contained no participants. This 0 was included in the analysis, however.)

Figure 4.

The distribution of trials in correct predictions (black line) and any predictive movement at all (dotted line). As seen in Block 2, overall 
prediction represents a larger proportion of the trials (approximately 70%) than correct prediction by itself (50%). In other blocks, 
prediction and correct prediction overlap closely.

 Prediction in Statistical Learning 46 

 

Figure 4 

 

%
 T

ri
a
ls

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 

 

FALSE TRUE

Block 1

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 

 

FALSE TRUE

Block 2

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 

 

FALSE TRUE

Block 3

2
0

3
0

4
0

5
0

6
0

7
0

8
0

 

 

FALSE TRUE

Block 4

PredictionReaction

Correct predictionOverall prediction

   

 

 

Proportion Prediction

Reaction Prediction

%
 T

ria
ls

Overall prediction Correct prediction

%
 P

ar
tic

ip
an

ts

http://www.ac-psych.org


Advances in Cognitive Psychologyresearch Article

http://www.ac-psych.org2012 • volume 8(2) • 196-209203

The same finding held for the relationship between prediction 

and test recall G-score (for prediction: p < .0001, multiple-R2 = .41,  

p < .0001). Interestingly, when factoring in how predictive participants 

are, training sequence G-score was no longer a significant predic-

tor of the 24-item test recall G-score (p = .9). This suggests that the 

regularity of a participant’s memories for the sequences is somehow 

dependent upon their tendencies to actively predict the positions. 

Therefore, when controlling for the training sequence’s G-score, the 

tendency of participants to be predictive relates significantly to their 

performance on the test in both the free-response regularity and match  

to the training.

Explicit awareness correlates  
with all measures

Participants who deemed the sequences to be more patterned 

tended to be the ones who had training sequences of higher G, r = .41, 

p < .0001. Higher explicit awareness of pattern related to greater test 

match to the training sequences, r = .47, p < .0001, and greater predic-

tive behavior in the final 12 trials, r = .51, p < .0001. We ran a separate 

regression analysis to test for the relationship between prediction and 

explicit awareness while controlling for other variables, because predic-

tion on the last 12 trials related significantly to these as well. First, we 

used the G score of a training sequence to predict perception of explicit 
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Figure 5.

Panel A. Test sequence match score (%) as a function of G, with means grouped by stimulus condition. Panel B. Using the same stimu-
lus list means, the match score as a function of predictiveness.

Figure 6.

Panel A. Pattern awareness, a continuous-scale score from 100 to 400 (based on a clicked icon on the computer screen) as a function of 
G, means grouped by stimulus list. Panel B. Pattern awareness score as a function of overall predictiveness proportion, means grouped 
by stimulus list condition.
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awareness, and saved the residuals. When the G score was factored out 

of explicit awareness in this way, predictive tendencies still significantly 

accounted for what was left over in those residuals, r = .27, p = .005. The 

reverse is not true: Once prediction behavior is taken out of explicit 

awareness, G score is no longer significantly related to these residuals,  

r = .08, p = .4, suggesting that prediction mediates between a sequence’s 

regularity and explicit awareness. We chose to use participants’ test 

sequence generation’s match to training as an additional measure of 

explicit awareness, and both prediction and test recall correlated with 

explicit awareness, even when controlling for each other, rs > .25,  

ps < .005. The relationship between awareness score, and G, and pre-

dictiveness, is shown in Figure 6.

Is there really implicit learning at all?
It is important to reiterate that the current experiment is a very 

short one, using brief exposure on a simple sequence of four positions. 

Nevertheless, we sought to test whether there was any sign of implicit 

learning. As noted above, most statistical learning experiments use a 

control round with random (or different) sequences to see whether 

RT or other measures are increased by the change in the structure of 

sequences. Again, sequences of different G serve as relative, between-

subject comparisons. If there is any implicit learning then participants 

who have low pattern awareness should nevertheless show improve-

ment in RT across trials, moderated by the relative level of regularity in 

the sequence, as captured by G. We chose a subset of our participants 

who reported lower awareness of pattern (below but not equal to 

“somewhat patterned,” n = 25), and ran a linear mixed-effects regres-

sion with Subject as a random factor, and G, and Trial (1-48) as fixed 

factors, and included an interaction term. G was not alone significant, 

F(1, 29) = 2.1, p = .16, though trial was, F(1, 1404) = 19.9, p < .001.  

G and Trial interacted significantly, F(1, 1404) = 6.5, p = .01. The pat-

tern of this interaction was as expected: The higher G sequences in-

duced more learning across trials relative to lower G sequences. These 

participants reported low awareness of sequence pattern, and never-

theless showed modulated RTs relative to the regularity of the structure 

they received. This is at least suggestive of implicit learning in this brief 

exposure. As expected from previous analyses above, these participants 

also have significantly less predictive behavior in the final 12 trials than 

the remainder (n = 99) of the participants, p < .05.

Discussion
These extensive analyses of our data offer some basic ideas about 

prediction and statistical learning, and their relationship to the im-

plicit/explicit divide. First, prediction in the form of a “behavioral 

wager” tends to rapidly emerge as participants detect structure in the 

sequence. It is a stable strategy that does not seem to happen as a re-

sult of learning, but instead seems to occur in conjunction with early 

moments of learning. The results showing that incorrect prediction 

occurs as participants are transitioning into this predictive “mode” 

supports this. Below we further consider a “two system” hypothesis 

related to this: When an implicit learning process extracts sufficient 

structure, the cognitive system can “seek out” a forthcoming stimulus, 

thus producing an error signal, and kick starting explicit awareness  

and learning. 

Second, explicit awareness measures (recall memory and awareness 

report) both correlate strongly with predictive behavior, even when 

controlling for sequence regularity. Thus, explicit knowledge appears 

to co-occur with “wagers” that participants are willing to invest in 

when they become aware of some structure. It may be that a particular 

kind of prediction (for a particular stimulus) is related to processes that 

unfold under conditions of conscious awareness. 

As a final note, we observed that participants who did not wager of-

ten adopted the “centering” strategy that Duran and Dale (2009) found 

in their spatial statistical learning experiment. Participants anticipated 

the next stimulus, which occurred at one of three other locations, by 

positioning the mouse cursor at an optimal location, equidistant from 

the next stimulus (i.e., in the center). As we discuss further below, 

this may not be best described as reactive, as we have categorized it in 

our analysis, but rather an optimal anticipatory positioning close to 

possible future stimuli. Even participants with low pattern awareness 

engaged in this form of behavior. 

General Discussion

Admittedly, we designed a very simple task, and used it to explore 

initial response tendencies. Results thus reflect the processing of short-

term event sequences that may be routinely faced by cognitive systems 

during daily activities (e.g., observing or producing brief structured 

action sequences; Botvinick & Plaut, 2004). Our experiment simplified 

this ecological context, and exposed participants to a single stream of 

visuospatial information. Certainly, the experiment is not of the same 

scope of traditional statistical learning and of SRT tasks, which use 

more complex sequences over many blocks of training. In that respect, 

what we are revealing is the very beginning of the learning system’s 

behavior, using computer-mouse trajectories to unveil the “micro-

structure” of this initial processing. 

Results do suggest that the cognitive system, at least with respect 

to the manual motor system, is not constantly predicting the next 

particular stimulus event, especially in random environments. Instead, 

it adapts a readiness to respond, which may transition sharply into 

prediction once some regularity appears to be present. From here, 

prediction permits the generation of error (Rescorla & Wagner, 1972; 

Sutton & Barto, 1998), whereas simple reaction does not. From basic 

learning theory (Miller, Barnet, & Grahame, 1995), to more complex 

computational approaches of the past couple of decades (e.g., Elman, 

1990), prediction is a wager the outcome of which leads to adjusted 

future expectations. It may be from such contingencies that deeply 

entrenched learning ensues. 

Though our experimental findings appear robust, there are clear 

limitations to the current approach, which we hope to overcome in 

future investigations. Our simple design was deliberately short, seek-

ing to observe and relate prediction in stimuli that are only brief. The 

optimal simultaneous “mixed strategy” (for middle G-scores), in which 

participants might both wager/center in predictable/unpredictable 
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positions, is not observed but may emerge after extended training. 

Another issue, mentioned above in our experimental discussion, is that 

our participants often engaged in a consistent “centering” strategy. This 

is not mere reaction, as one would call the “wait and respond” strategy; 

yet it is not overt prediction either because participants are placing 

the cursor in an optimal position to react. Future work may seek to 

identify perhaps diverse response strategies that have various aspects 

of optimality depending on the task structure and instructions at hand, 

and could identify individual differences in this capacity to predict, 

either as an explicit or implicit strategy, which may relate to tendencies 

in other tasks (e.g., Proulx & Heine, 2009). In addition, our aggregate 

measures of memory may have underestimated the amount of explicit 

learning achieved during the task. It may be that explicit knowledge 

reported during the test is simply organized around particular sub-

sequences (e.g., “4−3−2−1”). Given the small number of participants 

per sequence, a statistical test of this hypothesis cannot be conducted 

here. Indeed, future work may demonstrate that computer-mouse 

movements form organized hierarchical units of predictive patterns, 

as suggested in work that models the organization of action sequences 

(e.g., Botvinick & Plaut, 2004). This would also bear on models that 

hypothesize different unitization of emerging statistical knowledge 

(e.g., Perruchet & Vinter, 1998).

We also focused on manual prediction tendencies, and did not 

look at oculomotor prediction. Previous work has shown the eyes to 

be widely predictive and the extent of this predictiveness to be related 

to explicit learning (D. J. Marcus et al., 2006), suggesting reactive-

predictive strategies in oculomotor control could function distinctively 

(see also Land & Furneaux, 1997; Shelhamer & Joiner, 2003). Despite 

this potentially distinctive functioning, it is highly likely the unfolding 

of oculomotor and manual dynamics are coupled in natural contexts 

(Ballard, Hayhoe, & Pelz, 1995), and the relationship between their 

predictiveness could be explored with simple experiments like the one 

presented here. Indeed, the presence (or absence) of action contingen-

cies is something that researchers in implicit statistical learning have 

debated (e.g., Heyes & Foster, 2002; Mayr, 1996; Willingham, 1999). 

The role of predictive processes is considered by many as central to 

this coupling between perception, action, and the environment. We 

feel our experiment could fruitfully connect prediction, statistical 

learning, and awareness of that learning in a single paradigm, and 

our results are suggestive of rich underlying relationships. We discuss  

this next.

Implicit/explicit divide:  
Two systems?

We should preface our discussion here with an important note: Our re-

sults are correlational in nature. Prediction and awareness of a pattern 

are correlated in our task, as observed in past research (D. J. Marcus et 

al., 2006; Willingham, Nissen, & Bullemer, 1989). Yet, this awareness 

does not necessarily mean that a complete, explicit knowledge of the 

exact sequencing has been formed. Controlling for explicit knowledge 

by factoring out test sequence match, we still find that prediction oc-

curs, suggesting that predictive behavior mediates the transition be-

tween a vague awareness of a pattern and the full-blown knowledge 

of that pattern (to which D. J. Marcus et al., 2006, also attest). Thus, 

explicit wagers of the kind we observe emerged rapidly in high G se-

quences, showcasing errors of prediction earlier in learning, and then 

settling into a stable strategy.  

One subtle aspect of the debate in statistical learning in the past 

decade has been the extent to which it is taken to be anticipatory in na-

ture (D. J. Marcus et al., 2006; Nissen & Bullemer, 1987; Schvaneveldt & 

Gomez, 1998; Stadler, 1989), or may be based on associative processes 

that need not always involve forward-looking mechanisms (Heyes & 

Foster, 2002; Jones & Pashler, 2007; Mayr, 1996). In fact, models used 

to capture this behavior have both properties as well, from local asso-

ciative traces to more predictive processes (see Cleeremans & Dienes, 

2008, for an elegant review of models). A tentative conjecture from 

our approach is that, as learners become acquainted with a sequential 

environment, their strategies may change depending on the regularity 

of that environment, and extent of exposure. 

These strategies could reveal distinct underlying systems at work 

during learning. For example, in a study by Schvaneveldt and Gomez 

(1998), it was observed that single- versus dual-task learning contexts 

may induce different sorts of processes, with differing capacities to 

transfer that learning. They found in particular that knowledge gained 

in single-task learning was not easily transferred to a dual-task context 

when participants switched. Dual-task learning, however, induced 

knowledge that was transferrable to a new single-task context. As 

another example, previous researchers have debated the presence of 

two systems for learning, one based on attention to the material and 

the other not requiring attention (e.g., Curran & Keele, 1993), or 

whether just one system can account for such data (e.g., Frensch, Lin, 

& Buchner, 1998). Theoretical debate in implicit learning has often 

been geared towards identification of the subsystems involved, their 

properties, whether they operate alone or in parallel, and whether they 

produce abstract or concrete, or rule-based or statistical, knowledge 

(for reviews, see e.g., Cleeremans, Destrebecqz, & Boyer, 1998; Clegg, 

2005; Conway & Christiansen, 2006; Curran & Keele, 1993; Frensch 

et al., 1998; Jamieson & Mewhort, 2009; Keele, Ivry, Mayr, Hazeltine, 

& Heuer, 2003; Kirkham, Slemmer, & Johnson, 2002; G. F. Marcus, 

Vijayan, Bandi Rao, & Vishton, 1999; Perruchet & Pacton, 2006; Reber, 

1989; Seidenberg, 1999; Willingham & Goedert-Eschmann, 1999).

One may be tempted therefore to situate our results in this general 

trend to identify subsystems for learning. An implicit learning system 

may work to associate spatial positions over time, which facilitates 

spatial processing as they appear in sequence (debate also concerns 

whether there are subsystems here, regarding perceptual, attentional, 

and response-based bases; and recently there is suggestion that it could 

even exhibit modality specificity, cf. Conway & Christiansen, 2005). 

As sufficient structure is extracted by this general system, an “explicit” 

one kicks in, and participants begin to make explicit behavioral wagers 

about the next stimulus location. Indeed, there exists a prominent and 

related theory of cognitive control that also proposes two underlying 

modes of proactive and reactive operation (Braver, Gray, & Burgess, 

2007). Yet we agree with Cleeremans and Dienes (2008) that identifica-
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tion of separate subsystems does not by itself count as an explanation 

of any data, and besides, as suggested, for example, in discussion by 

Kirkham, Slemmer, and Johnson (2002), what we observed could 

be multiple behavioral strategies emerging from a single general-

purpose learning system. In fact, the modeling work of Destrebecqz 

and Cleeremans (2003) includes both an associative and predictive 

component that could capture both patterns we observe here. It may 

be (as we discuss below), that participants can simply verbalize this 

single system’s operation in some contexts, such as when prediction 

is possible, versus others, such as when only equidistant positioning 

(“centering”) is possible. Finally, even if we were to propose such a two-

system explanation, further research is needed to judge whether, in our 

particular task, the associative, implicit system is still functioning even 

when overt behavior is overwhelmingly predictive (e.g., Willingham & 

Goedert-Eschmann, 1999).

Whatever the architectural description, there are clearly two strate-

gies or “modes” observed in our behavioral data. And what is new in 

our observations is that these modes can rapidly transition from one 

into the other, from reactive practices into tentative prediction, and 

then to wholesale wagering that gives way to consistently correct pre-

dictions. And despite our task’s simplicity, we were able to go beyond 

previous research, in which such modes of learning or operating in 

sequential tasks are shielded by the wonderfully easy to acquire yet 

aggregate measure of RT; this can mask any interesting microstruc-

ture of unfolding statistical learning. Very elegant experiments can 

be designed to capture strategies using this measure (e.g., error and 

probabilistic sequences; Schvaneveldt & Gomez, 1998), by focusing 

on the RT distribution itself (e.g., very-short RTs; Willingham et al., 

1989), or simply by inducing prediction during training or testing (e.g., 

Destrebecqz & Cleeremans, 2005); but in our design, the dynamics 

of prediction during learning are unveiled naturally and more trans-

parently. Future work could identify the modes of operating, and the 

principles that guide them, by exploiting the behavioral measures we 

used here (cf. Duran & Dale, 2009; Moisello et al., 2009; D. J. Marcus 

et al., 2006).

Implicit/explicit divide:  
Prediction and awareness

Previous studies have also found that indices of prediction correlate 

with explicit knowledge of the presence of regularity of a sequence 

(D. J. Marcus et al., 2006; Willingham et al., 1989), and our results 

replicate this connection. What is especially novel in our results, the 

study’s limitations notwithstanding, is that the time course of the onset 

of this prediction can be captured. The data reported here suggest that 

participants rapidly initiate prediction as a strategy that accompanies 

the acquisition of knowledge, rather than being a direct consequence 

of it (cf. D. J. Marcus et al., 2006). As mentioned at the outset of this 

paper, many researchers have identified prediction as a central pro- 

cess underlying much of perception, cognition, and action. It has been 

implicated in high-level cognitive processes, such as explicit awareness 

of causal agency (e.g., temporal relations in action-effect for judgment 

of authorship; Wegner, 2003) and self-awareness (see Jeannerod, 2006, 

for a review of relevant evidence), and even at lower levels, as a foun-

dational process of action and perception, since prominent theories of 

action control still propose that the cognitive system predicts the con-

sequences of actions (e.g., Hommel, 2009). Yet the fact that prediction 

seems to relate to implicit/explicit knowledge in statistical learning has 

not gained much theoretical attention.

One recent account that may explain why explicit prediction of 

the kind measured here – which we have often referred to as wagers 

– is the theory of Morsella (2005), which explains phenomenal states 

as emerging in cross-modal and integrative contexts that converge to 

control body plans. When diverse information (e.g., from multiple 

modalities) converges on action plans, the states that accompany such 

a condition have phenomenal properties that may function to bind 

these diverse information sources into a likeness of experience that 

we typically call consciousness, awareness, and so on. When wagering 

prediction occurs, it may reflect a convergence of information from 

prior perception and action experiences that, in Morsella’s (2005) 

terms, interfere with ongoing body plans, and phenomenal states 

reflect the cognitive system’s integration or binding of these expe- 

riences in order to maintain skeletomotor control. In this sense, the 

strategy of explicit, stimulus-specific prediction must draw the motor 

system away from other possible association and drive the system to-

ward a particular location; implicit associative processes may involve 

parallel processes that compete more “benignly” and do not require 

phenomenal binding processes to anchor them. This proposed dis-

tinction can only be treated as gradient and approximate, however, 

because there is evidence for implicit predictions in statistical learning 

in other work (e.g., Turk-Browne, Scholl, Johnson, & Chun, 2010). It 

turns out that these more implicit process do seem to relate to visual 

prediction (e.g., Bar, 2009), where underlying associative representa-

tions may be employed for relatively implicit, rapid expectations; 

whereas in ours and previous studies, explicit awareness accompanies 

motoric manifestations of prediction, as perhaps Morsella (2005) 

would hypothesize. Future research may reveal that prediction bears 

in different ways on perceptual and response-based implicit/explicit  

learning.

The foregoing discussion is not meant to argue that explicit  

knowledge is required for learning, and indeed our data are suggestive 

of the early stages of implicit learning in very simple sequences. We also 

do not wish to take up the notion that implicit/explicit learning sys-

tems are architecturally distinct; there are other perspectives on these 

issues that do not necessarily require complete separation of processes 

or their resulting knowledge in order to account for experimental data, 

whether one rejects any such dissociation (e.g., Perruchet & Amorim, 

1992), or embraces a more gradient perspective on implicit/explicit 

knowledge (Cleeremans & Jiménez, 2002). Regardless of one’s theo-

retical stance on architectural separation or distinct functioning modes 

of a single learning system, the surface behavior that is exhibited in 

this simple SRT task suggests that there are indeed different modes or 

strategies that emerge during learning. We would argue that the experi-

mental paradigm we have presented may help mitigate these kinds of 

theoretical debates.
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This discussion is, of course, purely speculative with regard to the 

current experiment, and there is extensive discussion about explicit 

“conscious” awareness of such things as the actions that unfold dur-

ing everyday tasks, of why such actions have taken place, and of the 

learning that may take place during these actions (Cleeremans et al., 

1998; Cleeremans & Jiménez, 2002; Cohen & Schooler, 1997; Haggard, 

Clark, & Kalogeras, 2002; Hurley, 2002; Jeannerod, 2006; Reber, 1992; 

Sarrazin, Cleeremans, & Haggard, 2008; Van Orden & Holden, 2002; 

Wegner, 2003), that we do not have space to consider here. The excite-

ment in the field regarding prediction, and the continued interest in 

consciousness as an outstanding puzzle of the cognitive sciences, may 

be a point of synergy between basic research on predictive cognition 

and philosophical discussion of explicit awareness of learning that 

takes place during everyday life. The field thus requires the develop-

ment of new techniques to tap predictive tendencies in laboratory 

contexts, and relate these tendencies to implicit or explicit processes 

that underlie statistical learning. We hope readers find the paradigm 

and experiment we offer here as a promising means by which this can 

be pursued to bridge the divide. 
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