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Over the last 20 years researchers have used the serial reaction time (SRT) task to investigate the 
nature of spatial sequence learning. They have used the task to identify the locus of spatial se-
quence learning, identify situations that enhance and those that impair learning, and identify the 
important cognitive processes that facilitate this type of learning. Although controversies remain, 
the SRT task has been integral in enhancing our understanding of implicit sequence learning. It is 
important, however, to ask what, if anything, the discoveries made using the SRT task tell us about 
implicit learning more generally. This review analyzes the state of the current spatial SRT sequence 
learning literature highlighting the stimulus-response rule hypothesis of sequence learning which 
we believe provides a unifying account of discrepant SRT data. It also challenges researchers to 
use the vast body of knowledge acquired with the SRT task to understand other implicit learning 
literatures too often ignored in the context of this particular task. This broad perspective will make 
it possible to identify congruencies among data acquired using various different tasks that will al-
low us to generalize about the nature of implicit learning.
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Introduction

Learning is an integral part of human experience. Throughout our 

lives we are constantly presented with new information that must 

be attended, integrated, and stored. When learning is successful, the 

knowledge we acquire can be applied in future situations to improve 

and enhance our behaviors. Learning can occur both consciously and 

outside of our awareness. This learning without awareness, or implicit 

learning, has been a topic of interest and investigation for over 40 years 

(e.g., Thorndike & Rock, 1934). Many paradigms have been used to 

investigate implicit learning (cf. Cleeremans, Destrebecqz, & Boyer, 

1998; Clegg, DiGirolamo, & Keele, 1998; Dienes & Berry, 1997), and 

one of the most popular and rigorously applied procedures is the se-

rial reaction time (SRT) task. The SRT task is designed specifically to 

address issues related to learning of sequenced information which is 

central to many human behaviors (Lashley, 1951) and is the focus of 

this review (cf. also Abrahamse, Jiménez, Verwey, & Clegg, 2010).

Since its inception, the SRT task has been used to understand the 

underlying cognitive mechanisms involved in implicit sequence learn-

ing. In our view, the last 20 years can be organized into two main thrusts 

of SRT research: (a) research that seeks to identify the underlying locus 

of sequence learning; and (b) research that seeks to identify the role 

of divided attention on sequence learning in multi-task situations. 

Both pursuits teach us about the organization of human cognition as 

it relates to learning sequenced information and we believe that both 

also lead to the same conclusion. Namely, that sequence learning, both 

alone and in multi-task situations, largely involves stimulus-response 

associations and relies on response-selection processes. In this review 

we seek (a) to introduce the SRT task and identify important conside- 

rations when applying the task to specific experimental goals, (b) to 

outline the prominent theories of sequence learning both as they relate 

to identifying the underlying locus of learning and to understand when 

sequence learning is likely to be successful and when it will likely fail, 
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and finally (c) to challenge researchers to take what has been learned 

from the SRT task and apply it to other domains of implicit learning to 

better understand the generalizability of what this task has taught us.

The Serial Reaction Time Task

In 1987, Nissen and Bullemer developed a procedure for studying im-

plicit learning that over the next two decades would become a paradig-

matic task for studying and understanding the underlying mechanisms 

of spatial sequence learning: the SRT task. The goal of this seminal 

study was to explore learning without awareness. In a series of experi-

ments, Nissen and Bullemer used the SRT task to understand the diffe- 

rences between single- and dual-task sequence learning. Experiment 1 

tested the efficacy of their design. On each trial, an asterisk appeared 

at one of four possible target locations each mapped to a separate re-

sponse button (compatible mapping). Once a response was made the 

asterisk disappeared and 500 ms later the next trial began. There were 

two groups of subjects. In the first group, the presentation order of tar-

gets was random with the constraint that an asterisk could not appear 

in the same location on two consecutive trials. In the second group, 

the presentation order of targets followed a sequence composed of 10 

target locations that repeated 10 times over the course of a block (i.e., 

“4−2−3−1−3−2−4−3−2−1” with 1, 2, 3, and 4 representing the four 

possible target locations). Participants performed this task for eight 

blocks. Significant Block × Group interactions were observed in both 

the reaction time (RT) and accuracy data with participants in the se-

quenced group responding more quickly and more accurately than par-

ticipants in the random group. This is the standard sequence learning 

effect. Participants who are exposed to an underlying sequence per-

form more quickly and more accurately on sequenced trials compared 

to random trials presumably because they are able to use knowledge 

of the sequence to perform more efficiently. When asked, 11 of the 12 

participants reported having noticed a sequence, thus indicating that 

learning did not occur outside of awareness in this study. However, 

in Experiment 4 individuals with Korsakoff’s syndrome performed 

the SRT task and did not notice the presence of the sequence. Data 

indicated successful sequence learning even in these amnesic patents. 

Thus, Nissen and Bullemer concluded that implicit sequence learning 

can indeed occur under single-task conditions.

In Experiment 2, Nissen and Bullemer (1987) again asked partici-

pants to perform the SRT task, but this time their attention was divided 

by the presence of a secondary task. There were three groups of par-

ticipants in this experiment. The first performed the SRT task alone as 

in Experiment 1 (single-task group). The other two groups performed 

the SRT task and a secondary tone-counting task concurrently. In this 

tone-counting task either a high or low pitch tone was presented with 

the asterisk on each trial. Participants were asked to both respond 

to the asterisk location and to count the number of low pitch tones 

that occurred over the course of the block. At the end of each block, 

participants reported this number. For one of the dual-task groups the 

asterisks again followed a 10-position sequence (dual-task sequenced 

group) while the other group saw randomly presented targets (dual-

task random group). There were a total of four blocks of 100 trials 

each. A significant Block × Group interaction resulted from the RT 

data indicating that the single-task group was faster than both of the 

dual-task groups. Post hoc comparisons revealed no significant diffe- 

rence between the dual-task sequenced and dual-task random groups. 

Thus these data suggested that sequence learning does not occur when 

participants cannot fully attend to the SRT task. 

Nissen and Bullemer’s (1987) influential study demonstrated that 

implicit sequence learning can indeed occur, but that it may be ham-

pered by multi-tasking. These studies spawned decades of research on 

implicit sequence learning using the SRT task investigating the role of 

divided attention in successful learning. These studies sought to explain 

both what is learned during the SRT task and when specifically this 

learning can occur. Before we consider these issues further, however, 

we feel it is important to more fully explore the SRT task and identify 

those considerations, modifications, and improvements that have been 

made since the task’s introduction.

Methodological Considerations 
in the SRT task

Research has suggested that implicit and explicit learning rely on dif-

ferent cognitive mechanisms (N. J. Cohen & Eichenbaum, 1993; A. S. 

Reber, Allen, & Reber, 1999) and that these processes are distinct and 

mediated by different cortical processing systems (Clegg et al., 1998; 

Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003; A. S. Reber et al., 1999). 

Therefore, a primary concern for many researchers using the SRT task 

is to optimize the task to extinguish or minimize the contributions of 

explicit learning. One aspect that seems to play an important role is the 

choice of sequence type. 

Sequence structure
In their original experiment, Nissen and Bullemer (1987) used a 10-

position sequence in which some positions consistently predicted the 

target location on the next trial, whereas other positions were more 

ambiguous and could be followed by more than one target location. 

This type of sequence has since become known as a hybrid sequence 

(A. Cohen, Ivry, & Keele, 1990). After failing to replicate the original 

Nissen and Bullemer experiment, A. Cohen et al. (1990; Experiment 1) 

began to investigate whether the structure of the sequence used in 

SRT experiments affected sequence learning. They examined the influ-

ence of various sequence types (i.e., unique, hybrid, and ambiguous) 

on sequence learning using a dual-task SRT procedure. Their unique 

sequence included five target locations each presented once during the 

sequence (e.g., “1−4−3−5−2”; where the numbers 1-5 represent the five 

possible target locations). Their ambiguous sequence was composed of 

three possible target locations each of which was repeated exactly twice 

in the sequence (e.g., “2−1−3−2−3−1”). Finally, their hybrid sequence 

included four possible target locations and the sequence was six posi-

tions long with two positions repeating once and two positions repeat-

ing twice (e.g., “1−2−3−2−4−3”). They demonstrated that participants 

were able to learn all three sequence types when the SRT task was 
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performed alone, however, only the unique and hybrid sequences were 

learned in the presence of a secondary tone-counting task. They con-

cluded that ambiguous sequences cannot be learned when attention is 

divided because ambiguous sequences are complex and require atten-

tionally demanding hierarchic coding to learn. Conversely, unique and 

hybrid sequences can be learned via simple associative mechanisms 

that require minimal attention and therefore can be learned even with 

distraction.

The effect of sequence structure was revisited in 1994, when Reed 

and Johnson investigated the effect of sequence structure on successful 

sequence learning. They suggested that with many sequences used in 

the literature (e.g., A. Cohen et al., 1990; Nissen & Bullemer, 1987), 

participants might not actually be learning the sequence itself because 

ancillary differences (e.g., how frequently each position occurs in the 

sequence, how frequently back-and-forth movements occur, average 

number of targets before each position has been hit at least once, etc.) 

have not been adequately controlled. Therefore, effects attributed to se-

quence learning may be explained by learning simple frequency infor-

mation rather than the sequence structure itself. Reed and Johnson ex-

perimentally demonstrated that when second order conditional (SOC) 

sequences (i.e., sequences in which the target position on a given trial is 

dependent on the target position of the previous two trails) were used 

in which frequency information was carefully controlled (one SOC 

sequence used to train participants on the sequence and a different 

SOC sequence in place of a block of random trials to test whether 

performance was better on the trained compared to the untrained 

sequence), participants demonstrated successful sequence learning 

despite the complexity of the sequence. Results pointed definitively to 

successful sequence learning because ancillary transitional differences 

were identical between the two sequences and therefore could not be 

explained by simple frequency information. This result led Reed and 

Johnson to suggest that SOC sequences are ideal for studying implicit 

sequence learning because whereas participants often become aware of 

the presence of some sequence types, the complexity of SOCs makes 

awareness far more unlikely. Today, it is common practice to use SOC 

sequences with the SRT task (e.g., Reed & Johnson, 1994; Schendan, 

Searl, Melrose, & Stern, 2003; Schumacher & Schwarb, 2009; Schwarb 

& Schumacher, 2010; Shanks & Johnstone, 1998; Shanks, Rowland,  

& Ranger, 2005). Though some studies are still published without this 

control (e.g., Frensch, Lin, & Buchner, 1998; Koch & Hoffmann, 2000; 

Schmidtke & Heuer, 1997; Verwey & Clegg, 2005).

Measures of explicit knowledge
Although researchers can try to optimize their SRT design so as to re-

duce the potential for explicit contributions to learning, explicit learn-

ing may still occur. Therefore, many researchers use questionnaires to 

evaluate an individual participant’s level of conscious sequence know- 

ledge after learning is complete (for a review, see Shanks & Johnstone, 

1998). Early studies (e.g., Curran & Keele, 1993; Frensch et al., 1998; 

Frensch, Wenke, & Rünger, 1999; Nissen & Bullemer, 1987) relied on 

explicitly questioning participants about their sequence knowledge. 

Specifically, participants were asked, for example, what they believed 

the goal of the experiment to be, and whether they noticed that the 

targets followed a repeating sequence of screen locations. It has been 

argued that given particular research goals, verbal report can be the 

most appropriate measure of explicit knowledge (Rünger & Frensch, 

2010), other measures, however, are also used. For example, some re-

searchers have asked participants to identify different chunks of the 

sequence using forced-choice recognition questionnaires (e.g., Frensch 

et al., 1998, 1999; Schumacher & Schwarb, 2009). Free-generation 

tasks in which participants are asked to recreate the sequence by ma-

king a series of button-push responses have also been used to assess 

explicit awareness (e.g., Schwarb & Schumacher, 2010; Willingham, 

1999; Willingham, Wells, Farrell, & Stemwedel, 2000). Furthermore, 

Destrebecqz and Cleeremans (2001) have applied the principles of 

Jacoby’s (1991) process dissociation procedure to assess implicit and 

explicit influences of sequence learning (for a review, see Curran, 2001). 

Destrebecqz and Cleeremans proposed assessing implicit and explicit 

sequence awareness using both an inclusion and exclusion version of 

the free-generation task. In the inclusion task, participants recreate the 

sequence that was repeated during the experiment. In the exclusion 

task, participants avoid reproducing the sequence that was repeated 

during the experiment. In the inclusion condition, participants with 

explicit knowledge of the sequence will likely be able to reproduce the 

sequence at least in part. However, implicit knowledge of the sequence 

might also contribute to generation performance. Thus, inclusion in-

structions cannot separate the influences of implicit and explicit know- 

ledge on free-generation performance. Under exclusion instructions, 

however, participants who reproduce the learned sequence despite 

being instructed not to are likely accessing implicit knowledge of the 

sequence. This clever adaption of the process dissociation procedure 

may provide a more accurate view of the contributions of implicit and 

explicit knowledge to SRT performance and is recommended. Despite 

its potential and relative ease to administer, this approach has not been 

used by many researchers.

Measuring Sequence Learning

One last point to consider when designing an SRT experiment is how 

best to assess whether or not learning has occurred. In Nissen and 

Bullemer’s (1987) original experiments, between-group comparisons 

were used with some participants exposed to sequenced trials and  

others exposed only to random trials. A more common practice today, 

however, is to use a within-subject measure of sequence learning (e.g., 

A. Cohen et al., 1990; Keele, Jennings, Jones, Caulton, & Cohen, 1995; 

Schumacher & Schwarb, 2009; Willingham, Nissen, & Bullemer, 1989). 

This is accomplished by giving a participant several blocks of sequenced 

trials and then presenting them with a block of alternate-sequenced 

trials (alternate-sequenced trials are typically a different SOC sequence 

that has not been previously presented) before returning them to a final 

block of sequenced trials. If participants have acquired knowledge of 

the sequence, they will perform less quickly and/or less accurately on 

the block of alternate-sequenced trials (when they are not aided by 

knowledge of the underlying sequence) compared to the surrounding 
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blocks of sequenced trials. This RT relationship, known as the transfer 

effect, is now the standard way to measure sequence learning in the 

SRT task. 

With a foundational understanding of the basic structure of the 

SRT task and those methodological considerations that impact suc-

cessful implicit sequence learning, we can now look at the sequence 

learning literature more carefully. It should be evident at this point 

that there are a number of task components (e.g., sequence structure, 

single- vs. dual-task learning environment) that influence the success-

ful learning of a sequence. However, a primary question has yet to be 

addressed: What specifically is being learned during the SRT task? The 

next section considers this issue directly.

Identifying the Locus of Sequence 
Learning

There are three main hypotheses1 in the SRT task literature con- 

cerning the locus of sequence learning: a stimulus-based hypothesis, 

a stimulus-response (S-R) rule hypothesis, and a response-based hy-

pothesis. Each of these hypotheses maps roughly onto a different stage 

of cognitive processing (cf. Donders, 1969; Sternberg, 1969). Although 

cognitive processing stages are not often emphasized in the SRT task 

literature, this framework is typical in the broader human perfor- 

mance literature. This framework assumes at least three processing 

stages: When a stimulus is presented, the participant must encode the 

stimulus, select the task appropriate response, and finally must execute 

that response. Many researchers have proposed that these stimulus 

encoding, response selection, and response execution processes are 

organized as serial and discrete stages (e.g., Donders, 1969; Meyer & 

Kieras, 1997; Sternberg, 1969), but other organizations (e.g., parallel, 

serial, continuous, etc.) are possible (cf. Ashby, 1982; McClelland, 

1979). It is possible that sequence learning can occur at one or more 

of these information-processing stages. We believe that consideration 

of information processing stages is critical to understanding sequence 

learning and the three main accounts for it in the SRT task.

The stimulus-based hypothesis states that a sequence is learned 

via the formation of stimulus-stimulus associations thus implicating 

the stimulus encoding stage of information processing. The stimulus-

response rule hypothesis emphasizes the significance of linking per-

ceptual and motor components thus implicating a central response 

selection stage (i.e., the cognitive process that activates representations 

for appropriate motor responses to particular stimuli, given one’s 

current task goals; Duncan, 1977; Kornblum, Hasbroucq, & Osman, 

1990; Meyer & Kieras, 1997). And finally, the response-based learning 

hypothesis highlights the contribution of motor components of the 

task suggesting that response-response associations are learned thus 

implicating the response execution stage of information processing. 

Each of these hypotheses is briefly described below.

Stimulus-based hypothesis
The stimulus-based hypothesis of sequence learning suggests that a se-

quence is learned via the formation of stimulus-stimulus associations 

and is not dependent on response (A. Cohen et al., 1990; Curran, 1997). 

More specifically, this hypothesis states that learning is stimulus-specific 

(Howard, Mutter, & Howard, 1992), effector-independent (A. Cohen 

et al., 1990; Keele et al., 1995; Verwey & Clegg, 2005), non-motoric 

(Grafton, Salidis, & Willingham, 2001; Mayr, 1996) and purely percep-

tual (Howard et al., 1992). Sequence learning will occur regardless of 

what type of response is made and even when no response is made at 

all (e.g., Howard et al., 1992; Mayr, 1996; Perlman & Tzelgov, 2009). 

A. Cohen et al. (1990, Experiment 2) were the first to demon-

strate that sequence learning is effector-independent. They trained 

participants in a dual-task version of the SRT task (simultaneous SRT 

and tone-counting tasks) requiring participants to respond using four 

fingers of their right hand. After 10 training blocks, they provided new 

instructions requiring participants to respond with their right index 

finger only. The amount of sequence learning did not change after 

switching effectors. The authors interpreted these data as evidence that 

sequence knowledge depends on the sequence of stimuli presented 

independently of the effector system involved when the sequence was 

learned (viz., finger vs. arm). 

Howard et al. (1992) provided additional support for the non-

motoric account of sequence learning. In their experiment participants 

either performed the standard SRT task (respond to the location of 

presented targets) or merely watched the targets appear without ma- 

king any response. After three blocks, all participants performed the 

standard SRT task for one block. Learning was tested by introducing 

an alternate-sequenced transfer block and both groups of participants 

showed a substantial and equivalent transfer effect. This study thus 

showed that participants can learn a sequence in the SRT task even 

when they do not make any response. However, Willingham (1999) 

has suggested that group differences in explicit knowledge of the se-

quence may explain these results; and thus these results do not isolate 

sequence learning in stimulus encoding. We will explore this issue in 

detail in the next section.

In another attempt to distinguish stimulus-based learning from 

response-based learning, Mayr (1996, Experiment 1) conducted 

an experiment in which objects (i.e., black squares, white squares, 

black circles, and white circles) appeared in four spatial locations. 

Both the object presentation order and the spatial presentation order 

were sequenced (different sequences for each). Participants always 

responded to the identity of the object. RTs were slower (indicating 

that learning had occurred) both when only the object sequence was 

randomized and when only the spatial sequence was randomized. 

These data support the perceptual nature of sequence learning by 

demonstrating that the spatial sequence was learned even when re-

sponses were made to an unrelated aspect of the experiment (object 

identity). However, Willingham and colleagues (Willingham, 1999; 

Willingham et al., 2000) have suggested that fixating the stimulus 

locations in this experiment required eye movements. Therefore, 

S-R rule associations may have developed between the stimuli and 

the ocular-motor responses required to saccade from one stimulus 

location to another and these associations may support sequence  

learning. 
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Although the data presented in this section are all consistent with a 

stimulus-based hypothesis of sequence learning, an alternative interpre-

tation might be proposed. It is possible that stimulus repetition may lead 

to a processing short-cut that bypasses the response selection stage en-

tirely thus speeding task performance (Clegg, 2005; cf. J. Miller, 1987; 

Mordkoff & Halterman, 2008). This idea is similar to the automatic-

activation hypothesis prevalent in the human performance literature. 

This hypothesis states that with practice, the response selection stage 

can be bypassed and performance can be supported by direct associa-

tions between stimulus and response codes (e.g., Ruthruff, Johnston, & 

van Selst, 2001). According to Clegg, altering the pattern of stimulus 

presentation disables the shortcut resulting in slower RTs. In this view, 

learning is specific to the stimuli, but not dependent on the characteris-

tics of the stimulus sequence (Clegg, 2005; Pashler & Baylis, 1991). 

Response-based hypothesis
Although there is support for the stimulus-based nature of sequence 

learning, there is also evidence for response-based sequence learning 

(e.g., Bischoff-Grethe, Geodert, Willingham, & Grafton, 2004; Koch 

& Hoffmann, 2000; Willingham, 1999; Willingham et al., 2000). The 

response-based hypothesis proposes that sequence learning has a mo-

tor component and that both making a response and the location of 

that response are important when learning a sequence. 

As previously noted, Willingham (1999, Experiment 1) hypothe- 

sized that the results of the Howard et al. (1992) experiment were a 

product of the large number of participants who learned the sequence 

explicitly. It has been suggested that implicit and explicit learning 

are fundamentally different (N. J. Cohen & Eichenbaum, 1993; A. S. 

Reber et al., 1999) and are mediated by different cortical processing 

systems (Clegg et al., 1998; Keele et al., 2003; A. S. Reber et al., 1999). 

Given this distinction, Willingham replicated Howard and colleagues 

study and analyzed the data both including and excluding participants 

showing evidence of explicit knowledge. When these explicit learners 

were included, the results replicated the Howard et al. findings (viz., 

sequence learning when no response was required). However, when 

explicit learners were removed, only those participants who made re-

sponses throughout the experiment showed a significant transfer effect. 

Willingham concluded that when explicit knowledge of the sequence is 

low, knowledge of the sequence is contingent on the sequence of motor 

responses.

In an additional experiment, Willingham (1999; Experiment 3) 

provided further support for a response-based mechanism under- 

lying sequence learning. Participants were trained using the SRT task 

and showed significant sequence learning with a sequence requiring 

indirect manual responses in which they responded with the button 

one location to the right of the target (where − if the target appeared 

in the right most location − the left most finger was used to respond; 

training phase). After training was complete, participants switched to 

a direct S-R mapping in which they responded with the finger directly 

corresponding to the target position (testing phase). During the test-

ing phase, either the sequence of responses (response constant group) 

or the sequence of stimuli (stimulus constant group) was maintained. 

Results indicated that the response constant group, but not the stimulus 

constant group, showed significant learning. Because maintaining the 

sequence structure of the stimuli from training phase to testing phase 

did not facilitate sequence learning but maintaining the sequence 

structure of the responses did, Willingham concluded that response 

processes (viz., learning of response locations) mediate sequence  

learning. 

Thus, Willingham and colleagues (e.g., Willingham, 1999; 

Willingham et al., 2000) have provided considerable support for the 

idea that spatial sequence learning is based on the learning of the or-

dered response locations. It should be noted, however, that although 

other authors agree that sequence learning may depend on a motor 

component, they conclude that sequence learning is not restricted to 

the learning of the location of the response but rather the order of 

responses regardless of location (e.g., Goschke, 1998; Richard, Clegg, 

& Seger, 2009).

Stimulus-response rule hypothesis
Finally, the S-R rule hypothesis of sequence learning offers yet another 

perspective on the possible locus of sequence learning. This hypo- 

thesis suggests that S-R rules and response selection are critical as-

pects of learning a sequence (e.g., Deroost & Soetens, 2006; Hazeltine, 

2002; Schumacher & Schwarb, 2009; Schwarb & Schumacher, 2010; 

Willingham et al., 1989) emphasizing the significance of both perceptual 

and motor components. In this sense, the S-R rule hypothesis does for 

the SRT literature what the theory of event coding (Hommel, Musseler, 

Aschersleben, & Prinz, 2001) did for the perception-action literature 

linking perceptual information and action plans into a common rep-

resentation. The S-R rule hypothesis asserts that sequence learning 

is mediated by the association of S-R rules in response selection. We 

believe that this S-R rule hypothesis provides a unifying framework for 

interpreting the seemingly inconsistent findings in the literature.

According to the S-R rule hypothesis of sequence learning, se-

quences are acquired as associative processes begin to link appropriate 

S-R pairs in working memory (Schumacher & Schwarb, 2009; Schwarb 

& Schumacher, 2010). It has previously been proposed that appropriate 

responses must be selected from a set of task-relevant S-R pairs ac-

tive in working memory (Curtis & D’Esposito, 2003; E. K. Miller & 

J. D. Cohen, 2001; Pashler, 1994b; Rowe, Toni, Josephs, Frackowiak, 

& Passingham, 2000; Schumacher, Cole, & D’Esposito, 2007). The S-R 

rule hypothesis states that in the SRT task, selected S-R pairs remain in 

memory across several trials. This co-activation of multiple S-R pairs 

allows cross-temporal contingencies and associations to form between 

these pairs (N. J. Cohen & Eichenbaum, 1993; Frensch, Buchner, & 

Lin, 1994). However, while S-R associations are essential for sequence  

learning to occur, S-R rule sets also play an important role. In 1977, 

Duncan first noted that S-R mappings are governed by systems of S-R 

rules rather than by individual S-R pairs and that these rules are appli-

cable to numerous S-R pairs. He further noted that with a rule or system 

of rules, “spatial transformations” can be applied. Spatial transforma-

tions hold some fixed spatial relation constant between a stimulus and 

given response. A spatial transformation can be applied to any stimulus 

http://www.ac-psych.org


Advances in Cognitive Psychologyreview Article

http://www.ac-psych.org2012 • volume 8(2) • 165-178170

and the associated response will bear a fixed relationship based on the 

original S-R pair. According to Duncan, this relationship is governed 

by a very simple relationship: R = T(S) where R is a given response, S is 

a given stimulus, and T is the fixed spatial relationship between them. 

For example, in the SRT task, if T is “respond one spatial location to the 

right,” participants can easily apply this transformation to the govern-

ing S-R rule set and do not need to learn new S-R pairs. 

Shortly after the introduction of the SRT task, Willingham, Nissen, 

and Bullemer (1989; Experiment 3) demonstrated the importance of 

S-R rules for successful sequence learning. In this experiment, on each 

trial participants were presented with one of four colored Xs at one of 

four locations. Participants were then asked to respond to the color of 

each target with a button push. For some participants, the colored Xs 

appeared in a sequenced order, for others the series of locations was se-

quenced but the colors were random. Only the group in which the rele- 

vant stimulus dimension was sequenced (viz., the colored Xs) showed 

evidence of learning. All participants were then switched to a standard 

SRT task (responding to the location of non-colored Xs) in which the 

spatial sequence was maintained from the previous phase of the ex-

periment. None of the groups showed evidence of learning. These data 

suggest that learning is neither stimulus-based nor response-based. 

Instead, sequence learning occurs in the S-R associations required by 

the task.

Soon after its introduction, the S-R rule hypothesis of sequence 

learning fell out of favor as the stimulus-based and response-based 

hypotheses gained popularity. Recently, however, researchers have 

developed a renewed interest in the S-R rule hypothesis as it seems 

to offer an alternative account for the discrepant data in the literature. 

Data has begun to accumulate in support of this hypothesis. Deroost 

and Soetens (2006), for example, demonstrated that when complicated 

S-R mappings (i.e., ambiguous or indirect mappings) are required in 

the SRT task, learning is enhanced. They suggest that more complex 

mappings require more controlled response selection processes, which 

facilitate learning of the sequence. Unfortunately, the specific mecha-

nism underlying the importance of controlled processing to robust 

sequence learning is not discussed in the paper. The importance of re-

sponse selection in successful sequence learning has also been demon-

strated using functional magnetic resonance imaging (fMRI; Schwarb 

& Schumacher, 2009). In this study we orthogonally manipulated both 

sequence structure (i.e., random vs. sequenced trials) and response 

selection difficulty (i.e., direct vs. indirect mapping) in the SRT task. 

These manipulations independently activated largely overlapping 

neural systems indicating that sequence and S-R compatibility may 

rely on the same fundamental neurocognitive processes (viz., response 

selection). 

Furthermore, we have recently demonstrated that sequence learning 

persists across an experiment even when the S-R mapping is altered, 

so long as the same S-R rules or a simple transformation of the S-R 

rules (e.g., shift response one position to the right) can be applied 

(Schwarb & Schumacher, 2010). In this experiment we replicated the 

findings of the Willingham (1999, Experiment 3) study (described 

above) and hypothesized that in the original experiment, when the 

response sequence was maintained throughout, learning occurred 

because the mapping manipulation did not significantly alter the S-R 

rules required to perform the task. We then repeated the experiment 

using a substantially more complex indirect mapping that required 

entirely different S-R rules from those required of the direct map-

ping. Learning was disrupted when the S-R mapping was altered even 

when the sequence of stimuli or the sequence of responses was main-

tained. Together these results indicate that only when the same S-R 

rules were applicable across the course of the experiment did learning  

persist.

An S-R rule reinterpretation
Up to this point we have alluded that the S-R rule hypothesis can be 

used to reinterpret and integrate inconsistent findings in the litera-

ture. We expand this position here and demonstrate how the S-R rule 

hypothesis can explain many of the discrepant findings in the SRT 

literature.

 Studies in support of the stimulus-based hypothesis that demon-

strate the effector-independence of sequence learning (A. Cohen et al., 

1990; Keele et al., 1995; Verwey & Clegg, 2005) can easily be explained 

by the S-R rule hypothesis. When, for example, a sequence is learned 

with three-finger responses, a set of S-R rules is learned. Then, if par-

ticipants are asked to begin responding with, for example, one finger 

(A. Cohen et al., 1990), the S-R rules are unaltered. The same response 

is made to the same stimuli; just the mode of response is different, 

thus the S-R rule hypothesis predicts, and the data support, success-

ful learning. This conceptualization of S-R rules explains successful  

learning in a number of existing studies. Alterations like changing 

effector (A. Cohen et al., 1990; Keele et al., 1995), switching hands 

(Verwey & Clegg, 2005), shifting responses one position to the left 

or right (Bischoff-Grethe et al., 2004; Willingham, 1999), changing 

response modalities (Keele et al., 1995), or using a mirror image of the 

learned S-R mapping (Deroost & Soetens, 2006; Grafton et al., 2001) 

do not require a new set of S-R rules, but merely a transformation of 

the previously learned rules. When there is a transformation of one 

set of S-R associations to another, the S-R rules hypothesis predicts 

sequence learning. 

The S-R rule hypothesis can also explain the results obtained by 

advocates of the response-based hypothesis of sequence learning. 

Willingham (1999, Experiment 1) reported when participants only 

watched sequenced stimuli presented, learning did not occur. However, 

when participants were required to respond to those stimuli, the se-

quence was learned. According to the S-R rule hypothesis, participants 

who only observe a sequence do not learn that sequence because S-R 

rules are not formed during observation (provided that the experimen-

tal design does not permit eye movements). S-R rules can be learned, 

however, when responses are made. Similarly, Willingham et al. (2000, 

Experiment 1) conducted an SRT experiment in which participants 

responded to stimuli arranged in a lopsided diamond pattern using 

one of two keyboards, one in which the buttons were arranged in a 

diamond and the other in which they were arranged in a straight line. 

Participants used the index finger of their dominant hand to make 
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all responses. Willingham and colleagues reported that participants 

who learned a sequence using one keyboard and then switched to the 

other keyboard show no evidence of having previously learned the 

sequence. The S-R rule hypothesis says that there are no correspon- 

dences between the S-R rules required to perform the task with the 

straight-line keyboard and the S-R rules required to perform the task 

with the diamond keyboard. The tasks are too dissimilar and there-

fore a mere spatial transformation of the S-R rules originally learned 

is not sufficient to transfer sequence knowledge acquired during  

training.

Thus, although there are three prominent hypotheses concerning 

the locus of sequence learning and data supporting each, the literature 

may not be as incoherent as it initially seems. Recent support for the S-R 

rule hypothesis of sequence learning provides a unifying framework 

for reinterpreting the various findings in support of other hypotheses. 

It should be noted, however, that there are some data reported in the 

sequence learning literature that cannot be explained by the S-R rule 

hypothesis. For example, it has been demonstrated that participants 

can learn a sequence of stimuli and a sequence of responses simul- 

taneously (Goschke, 1998) and that simply adding pauses of varying 

lengths between stimulus presentations can abolish sequence learning 

(Stadler, 1995). Thus further research is required to explore the 

strengths and limitations of this hypothesis. Still, the S-R rule hypo- 

thesis provides a cohesive framework for much of the SRT literature. 

Furthermore, implications of this hypothesis on the importance of 

response selection in sequence learning are supported in the dual-task 

sequence learning literature as well. 

Dual-Task Sequence Learning

Even in the first SRT study, the effect of dividing attention (by per-

forming a secondary task) on sequence learning was investigated 

(Nissen & Bullemer, 1987). Since then, there has been an abundance 

of research on dual-task sequence learning, however, the results of this 

effort have been controversial with many studies reporting intact se-

quence learning under dual-task conditions (e.g., Frensch et al., 1998; 

Frensch & Miner, 1994; Grafton, Hazeltine, & Ivry, 1995; Jiménez & 

Vázquez, 2005; Keele et al., 1995; McDowall, Lustig, & Parkin, 1995; 

Schvaneveldt & Gomez, 1998; Shanks & Channon, 2002; Stadler, 

1995) and others reporting impaired learning with a secondary task 

(e.g., Heuer & Schmidtke, 1996; Nissen & Bullemer, 1987). As a result, 

several hypotheses have emerged in an attempt to explain these data 

and provide general principles for understanding multi-task sequence 

learning. These hypotheses include the attentional resource hypothesis 

(Curran & Keele, 1993; Nissen & Bullemer, 1987), the automatic lear- 

ning hypothesis/suppression hypothesis (Frensch, 1998; Frensch et 

al., 1998, 1999; Frensch & Miner, 1994), the organizational hypothesis 

(Stadler, 1995), the task integration hypothesis (Schmidtke & Heuer, 

1997), the two-system hypothesis (Keele et al., 2003), and the parallel 

response selection hypothesis (Schumacher & Schwarb, 2009) of se-

quence learning. While these accounts seek to characterize dual-task 

sequence learning rather than identify the underlying locus of this 

learning, connections can still be drawn. We propose that the parallel 

response selection hypothesis is not only consistent with the S-R rule 

hypothesis of sequence learning discussed above, but also most ade- 

quately explains the existing literature on dual-task spatial sequence 

learning.

Methodology for studying dual-
task sequence learning

Before examining these hypotheses, however, it is important to un-

derstand the specifics of the method used to study dual-task sequence 

learning. The secondary task typically used by researchers when stu- 

dying multi-task sequence learning in the SRT task is a tone-counting 

task. In this task, participants hear one of two tones on each trial. 

They must keep a running count of, for example, the high tones and 

must report this count at the end of each block. This task is frequently 

used in the literature because of its efficacy in disrupting sequence 

learning while other secondary tasks (e.g., verbal and spatial work-

ing memory tasks) are ineffective in disrupting learning (e.g., Heuer 

& Schmidtke, 1996; Stadler, 1995). The tone-counting task, however, 

has been criticized for its complexity (Heuer & Schmidtke, 1996). In 

this task participants must not only discriminate between high and 

low tones, but also continuously update their count of those tones in 

working memory. Therefore, this task requires many cognitive pro- 

cesses (e.g., selection, discrimination, updating, etc.) and some of these 

processes may interfere with sequence learning while others may not. 

Additionally, the continuous nature of the task makes it difficult to iso-

late the various processes involved because a response is not required 

on each trial (Pashler, 1994a). However, despite these disadvantages, 

the tone-counting task is frequently used in the literature and has 

played a prominent role in the development of the various theirs of 

dual-task sequence learning. 

Accounts of dual-task sequence 
learning

The attentional resource hypothesis of dual-task sequence learning 

stems from early work using the SRT task (e.g., Curran & Keele, 1993; 

Nissen & Bullemer, 1987) and proposes that implicit learning is elimi-

nated under dual-task conditions due to a lack of attention available 

to support dual-task performance and learning concurrently. In this 

theory, the secondary task diverts attention from the primary SRT task 

and because attention is a finite resource (cf. Kahneman, 1973), learn-

ing fails. Later A. Cohen et al. (1990) refined this theory noting that 

dual-task sequence learning is impaired only when sequences have no 

unique pairwise associations (e.g., ambiguous or second order condi-

tional sequences). Such sequences require attention to learn because 

they cannot be defined based on simple associations. 

In stark opposition to the attentional resource hypothesis is the 

automatic learning hypothesis (Frensch & Miner, 1994) that states 

that learning is an automatic process that does not require atten-

tion. Therefore, adding a secondary task should not impair sequence  

learning. According to this hypothesis, when transfer effects are absent 

under dual-task conditions, it is not the learning of the sequence that 
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is impaired, but rather the expression of the acquired knowledge is 

blocked by the secondary task (later termed the suppression hypothesis; 

Frensch, 1998; Frensch et al., 1998, 1999; Seidler et al., 2005). Frensch 

et al. (1998, Experiment 2a) provided clear support for this hypothesis. 

They trained participants in the SRT task using an ambiguous se-

quence under both single-task and dual-task conditions (secondary 

tone-counting task). After five sequenced blocks of trials, a transfer 

block was introduced. Only those participants who trained under 

single-task conditions demonstrated significant learning. However, 

when those participants trained under dual-task conditions were then 

tested under single-task conditions, significant transfer effects were 

evident. These data suggest that learning was successful for these par-

ticipants even in the presence of a secondary task, however, it was only 

after the secondary task was removed that this learned knowledge was  

expressed.

Stadler (1995) noted that when a tone-counting secondary task is 

paired with the SRT task, updating is only required on a subset of trials 

(e.g., only when a high tone occurs). He suggested this variability in 

task requirements from trial to trial disrupted the organization of the 

sequence and proposed that this variability is responsible for disrupting 

sequence learning. This is the premise of the organizational hypothesis. 

He tested this hypothesis in a single-task version of the SRT task in 

which he inserted long or short pauses between presentations of the se-

quenced targets. He demonstrated that disrupting the organization of 

the sequence with pauses was sufficient to produce deleterious effects 

on learning similar to the effects of performing a simultaneous tone-

counting task. He concluded that consistent organization of stimuli is 

critical for successful learning.

The task integration hypothesis states that sequence learning 

is frequently impaired under dual-task conditions because the hu-

man information processing system attempts to integrate the visual 

and auditory stimuli into one sequence (Schmidtke & Heuer, 1997). 

Because in the standard dual-SRT task experiment, tones are randomly 

presented, the visual and auditory stimuli cannot be integrated into a 

repetitive sequence. In their Experiment 1, Schmidtke and Heuer 

asked participants to perform the SRT task and an auditory go/no-

go task simultaneously. The sequence of visual stimuli was always six 

positions long. For some participants the sequence of auditory stimuli 

was also six positions long (six-position group), for others the audi-

tory sequence was only five positions long (five-position group) and 

for others the auditory stimuli were presented randomly (random 

group). For both the visual and auditory sequences, participant in the 

random group showed significantly less learning (i.e., smaller transfer 

effects) than participants in the five-position, and participants in the 

five-position group showed significantly less learning than participants 

in the six-position group. These data indicate that when integrating 

the visual and auditory task stimuli resulted in a long complicated 

sequence, learning was significantly impaired. However, when task 

integration resulted in a short less-complicated sequence, learning was  

successful. 

Schmidtke and Heuer’s (1997) task integration hypothesis pro-

poses a similar learning mechanism as the two-system hypothesis 

of sequence learning (Keele et al., 2003). The two-system hypothesis 

proposes a unidimensional system responsible for integrating informa-

tion within a modality and a multidimensional system responsible for 

cross-modality integration. Under single-task conditions, both systems 

work in parallel and learning is successful. Under dual-task conditions, 

however, the multidimensional system attempts to integrate informa-

tion from both modalities and because in the typical dual-SRT task the 

auditory stimuli are not sequenced, this integration attempt fails and 

learning is disrupted.

The final account of dual-task sequence learning discussed here is 

the parallel response selection hypothesis (Schumacher & Schwarb, 

2009). It states that dual-task sequence learning is only disrupted 

when response selection processes for each task proceed in parallel. 

Schumacher and Schwarb conducted a series of dual-SRT task stu- 

dies using a secondary tone-identification task, which is similar to the 

tone-counting task except that participants respond to each tone by 

saying “high” or “low” on every trial. Because participants respond to 

both tasks on each trail, researchers can investigate task processing 

organization (i.e., whether processing stages for the two tasks are per-

formed serially or simultaneously). We demonstrated that when visual 

and auditory stimuli were presented simultaneously and participants 

attempted to select their responses simultaneously, learning did not 

occur. However, when visual and auditory stimuli were presented  

750 ms apart, thus minimizing the amount of response selection over-

lap, learning was unimpaired (Schumacher & Schwarb, 2009, Experi- 

ment 1). These data suggested that when central processes for the two 

tasks are organized serially, learning can occur even under multi-task 

conditions. We replicated these findings by altering central proces-

sing overlap in different ways. In Experiment 2, visual and auditory 

stimuli were presented simultaneously, however, participants were 

either instructed to give equal priority to the two tasks (i.e., promoting 

parallel processing) or to give the visual task priority (i.e., promot-

ing serial processing). Again sequence learning was unimpaired only 

when central processes were organized sequentially. In Experiment 3, 

the psychological refractory period procedure was used so as to intro-

duce a response-selection bottleneck necessitating serial central pro- 

cessing. Data indicated that under serial response selection conditions, 

sequence learning emerged even when the sequence occurred in the 

secondary rather than primary task. 

We believe that the parallel response selection hypothesis provides 

an alternate explanation for much of the data supporting the va-

rious other hypotheses of dual-task sequence learning. The data from 

Schumacher and Schwarb (2009) are not easily explained by any of the 

other hypotheses of dual-task sequence learning. These data provide 

evidence of successful sequence learning even when attention must 

be shared between two tasks (and even when they are focused on a 

nonsequenced task; i.e., inconsistent with the attentional resource hy-

pothesis) and that learning can be expressed even in the presence of 

a secondary task (i.e., inconsistent with the suppression hypothesis). 

Additionally, these data provide examples of impaired sequence  

learning even when consistent task processing was required on each 

trial (i.e., inconsistent with the organizational hypothesis) and when 
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only the SRT task stimuli were sequenced while the auditory stimuli 

were randomly ordered (i.e., inconsistent with both the task integra-

tion hypothesis and two-system hypothesis). 

Furthermore, in a meta-analysis of the dual-task SRT literature (cf. 

Schumacher & Schwarb, 2009), we looked at average RTs on single-

task compared to dual-task trials for 21 published studies investigating 

dual-task sequence learning (cf. Figure 1). Fifteen of those experiments 

reported successful dual-task sequence learning while six reported 

impaired dual-task learning. We examined the amount of dual-task 

interference on the SRT task (i.e., the mean RT difference between 

single- and dual-task trials) present in each experiment. We found that 

experiments that showed little dual-task interference were more likely 

to report intact dual-task sequence learning. Similarly, those studies 

showing large dual-task interference effects were more likely to report 

impaired dual-task sequence learning. In fact, there was significantly 

less dual-task interference in those studies demonstrating successful 

sequence learning compared to those studies demonstrating impaired 

learning. This meta-analysis suggests that high dual-task costs are as-

sociated with impaired sequence learning and that high dual-task costs 

are likely the result of parallel response selection processes in the dual-

SRT task. However, when response selection processes occur serially 

and dual-task interference is minimized, sequence learning emerges. 

This hypothesis is consistent with the S-R rule hypothesis of sequence 

learning derived from the single-task SRT literature.

Figure 1.

Analysis of dual-task interference on the serial reaction time (SRT) task of 21 published dual-task sequence learning experiments.  
In each experiment, the SRT task was paired with a tone-counting task. For the SRT task, the underlying sequence was higher order  
(i.e., at least some ambiguous associations) and deterministic (i.e., no studies using probabilistic mappings were included). The dual-
task interference on SRT task performance (i.e., the difference between the SRT task reaction times [RTs] under single- and dual-task 
conditions) is indicated by the length of the white and black bars for each experiment. The numbers across the top of the figure 
represent ranges of approximate mean RTs. The left edge of each bar represents the approximate mean RTs for the single-task condi-
tions. The right edge represents the approximate mean RTs for the dual-task conditions. Experiments reporting significant dual-task 
sequence learning are plotted with white bars and experiments reporting no significant dual-task sequence learning are plotted with 
black bars. The mean transfer effect (i.e., the amount of sequence learning) for each experiment is also shown. Adapted from “Parallel 
Response Selection Disrupts Sequence Learning Under Dual-Task Conditions” by E. H. Schumacher and H. Schwarb, 2009, Journal of 
Experimental Psychology: General, 138, p. 282. Copyright 2009 by the American Psychological Association. Reprinted with permission.
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Beyond the SRT Task

This review of the vast literature surrounding the SRT task demon-

strates that the past 20 years of research have afforded great insights 

into the underlying structure of implicit sequence learning. However, 

the generalizability of these principles to other implicit learning tasks 

has yet to be determined. The SRT task provides a highly controlled 

and efficient procedure for modeling sequence learning behavior; 

however, the fidelity of the underlying processes to those of real-world 

sequential learning has yet to be verified (Mathews, 1997). Applying 

the knowledge acquired about implicit sequence learning from the 

SRT task to other related implicit learning task is an important first step 

in verifying the universality of these SRT-derived accounts for implicit 

sequence learning.

We have proposed here that the response selection stage is critical 

to successful sequence learning and that sequence learning is mediated 

by the association of S-R rules. We have demonstrated that this account 

can explain much of the data in the SRT literature; however, the ques-

tion remains as to whether this account is also supported by implicit 

learning data from other tasks. 

In addition to the SRT task, numerous other tasks have been used 

to investigate implicit learning. Some of these tasks are very similar to 

the SRT task, such as the triplet-learning task (e.g., Howard, Howard, 

Dennis, & Kelly, 2008) and the target-marked locations task (e.g., 

Remillard, 2003, 2009). Other tasks are less similar, such as artificial 

grammar learning (AGL) tasks (e.g., A. S. Reber, 1967; A. S. Reber & 

Allen, 1978; A. S. Reber et al., 1999), mirror tracing tasks (e.g., Grafton 

et al., 1995), serial search tasks (e.g., Goschke, 1998), prototype ex-

traction tasks (e.g., Knowlton & Squire, 1993; Reed, Squire, Patalano, 

Smith, & Jonides, 1999), speeded choice tasks (e.g., Pashler & Baylis, 

1991), weather prediction tasks (e.g., Knowlton, Squire, & Gluck, 

1994), and dynamic system control tasks (e.g., Berry & Broadbent, 

1984) to name a few. Among these various tasks, there is some evi-

dence that the S-R rule hypothesis may generalize to other instances of 

implicit learning. However, for other tasks, the possible importance of 

S-R rules to successful performance has either not been supported or 

has yet to be evaluated. 

One example of a task where the principles of the S-R rule hy-

pothesis are applicable is the AGL task. Like the SRT task, the AGL 

task has been used frequently to study implicit learning (for reviews, 

see Cleeremans et al., 1998; Dienes & Berry, 1997). In the AGL task 

participants are asked to memorize a set of letter strings that have been 

constructed according to an artificial grammar (i.e., a finite-state lan-

guage used to build strings of symbols, letters, numbers, shapes, etc., 

with consistent relations; for review, see Pothos, 2007). After learning 

is complete, participants are presented with new letter strings and 

asked to categorize them as either grammatical or ungrammatical. 

The standard finding is that the frequency with which participants 

classify grammatical strings as being a part of the learned grammar is 

significantly greater than chance (e.g., A. S. Reber, 1967). As in the SRT 

literature, there have been multiple theories developed in an attempt to 

explain AGL task data (for review, see Pothos, 2007). One hypothesis 

in particular shows marked similarity to the S-R rule hypothesis of 

sequence learning described previously; namely the rules hypothesis 

of artificial grammar learning (cf. Pothos, 2007). This hypothesis states 

that in the AGL task, participants learn the underlying rules that govern 

the memorized grammatical letter strings (A. S. Reber & Allen, 1978) 

and participants are then able to use knowledge of these rules to clas-

sify new letter strings as grammatical or not (e.g., A. S. Reber, 1967). 

When these abstract rule structures have been learned, participants 

can apply those rules to accurately classify not only new letter strings 

but also new letter sets (e.g., A. S. Reber, 1967). Thus, as predicted by 

the S-R rule hypothesis, the rules hypothesis suggests that one set of 

rules can be effectively applied to multiple stimuli. It is unlikely, how-

ever, that proponents of the rules hypothesis have conceptualized these 

overarching rules as S-R rules as in the artificial grammar paradigm, 

multiple stimuli require a single response; therefore, the nature of the 

rules in each account may not correspond directly. 

Further support for the S-R rule hypothesis outside of the SRT lite- 

rature comes from studies by Pashler and Baylis (1991) who in a series 

of experiments emphasized the importance of S-R rules in successful 

performance of a speeded choice task. In their experiment, digits, let-

ters, and symbols were mapped onto three buttons from right to left 

(training phase). After several training trials with this mapping, parti- 

cipants were presented with other digits, letters, and symbols that were 

not presented during the training phase (testing phase). Despite the 

differences in stimuli, performance was not disrupted (Experiment 1) 

because the same rules (e.g., “if digit then rightmost button”) were ap-

plicable. Similarly, if during the testing phase participants were asked 

to respond to digits, letters, and symbols from left to right but with the 

opposite hand, learning was again undisrupted (Experiment 5) because 

the same rules still applied. However, if during the testing phase, digits, 

letters, and symbols were remapped to different fingers (middle, left, 

right buttons, respectively), performance was substantially impaired 

(Experiment 4) because the S-R rules were changed (e.g., “if digits then 

rightmost button” no longer produced the correct response). These 

data demonstrate that only when the S-R rules were altered from train-

ing to test was performance impaired in the speeded choice task.  

Theories explaining the results of the weather prediction task (e.g., 

Knowlton et al., 1994) sometimes also show similarity to the S-R rule 

hypothesis. The weather prediction task is a probabilistic classification 

task (cf. Ashby & Maddox, 2005) in which on each trial participants are 

presented with one, two, or three cards marked with unique geometric 

patterns (four cards in all). The participants are asked to state whether 

or not the presented combination of cards indicates rain or sun and 

each combination is probabilistically associated with each outcome. 

There are multiple strategies that can be effectively used in this task 

(Ashby & Maddox, 2005): 

1. Participants can respond based on the presence (or absence) of 

one particular card, thus relying on a single S-R rule to respond. 

2. Participants can respond based on multiple cues thus requiring 

information integration processes. 

3. When one card is presented, participants can learn what that 

card predicts (single S-R rule), respond accordingly, and then sim-

ply guess when multiple cards are presented (singleton strategy). 
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Gluck, Shohamy, and Myers (2002) investigated individual differen- 

ces in strategy use in the weather prediction task and determined that 

the vast majority of participants (about 80-90% in their studies) used 

the singleton strategy in the early phases of the experiment and only 

shifting toward a multiple cue strategy later in training. Gluck and col-

leagues believed that only the multiple-cue strategy involves rule-based 

learning, therefore they concluded that although rule-based learning 

can occur in the weather prediction task, it is not the most commonly 

adopted strategy. However, as we have suggested, the singleton strategy 

could also be interpreted as a rule-based approach, though an ineffi-

cient and impoverished one. If using the singleton strategy participants 

are learning a single S-R association for a single card, when that card is 

presented they can always apply that rule. On multiple card trials, this 

strategy may not result in an error response, however, it is still consis- 

tent with rule-use. Thus, the S-R rule hypothesis may be more relevant 

in the weather prediction task than originally believed.

Despite support for the S-R rule hypothesis in several implicit 

learning tasks, other tasks demonstrate that S-R rules may not be criti-

cally important to learning in every case. For example, in the dynamic 

system control task, participants engage in a computer simulation (e.g., 

a sugar factory simulation; Berry & Broadbent, 1984) where partici-

pants attempt to control some output (e.g., total sugar production) by 

manipulating various input variables (e.g., the number of workers). 

With practice, performance improves indicating that participants 

have learned to control the system. Dienes and Fahey (1995), however, 

demonstrated that participants performed well when situations were 

repeated and they could simply replicate the response that had been 

successful previously. When presented with new situations, however, 

participants performed at chance levels. These data indicate that learning  

and successful performance in this task is associated with particular 

items rather than with underlying rules (Dienes & Berry, 1997; Dienes 

& Fahey, 1995). 

Another instance where the S-R rule hypothesis is insufficient can 

be seen in a study by Goschke (1998) who demonstrated that perfor- 

mance on a serial search task could not be explained by learning the 

underlying S-R rules. In this study, participants were presented with 

four letters and an auditory cue on each trial. The auditory cue indi-

cated the letter to which participants were to respond. Both the audi-

tory stimuli and the required responses composed different sequences. 

Participants were able to learn both sequences simultaneously. The 

S-R rule hypothesis did not predict learning of the auditory sequence 

in this experiment. The auditory stimulus cued which letter stimulus 

to focus on and the letter stimulus dictated the appropriate response. 

Thus the auditory S-R pairings changed on each trial and no general 

rules governed this relationship; therefore, the S-R rule hypothesis pre-

dicts that learning of the auditory sequence should not occur. However 

it should be noted that these data are inconsistent with other reports 

in which participants failed to learn two sequences simultaneously  

(e.g.,  Mayr, 1996; Schmidtke & Heuer, 1997). 

Additionally, research has shown that performance on the proto-

type extraction task does not appear to be governed by S-R rule-based 

learning (for review, see Ashby & Maddox, 2005). In this task, partici-

pants are presented with, for example, a series of dot patterns (train-

ing phase). These patterns are created by distorting a prototype image 

(e.g., nine dots randomly distributed in a 12 × 12 cm area) to varying 

degrees (low- and high-level distortions); however, the prototype is not 

presented during training. After the training phase is complete, par-

ticipants are presented with more nine-dot patterns (some previously 

seen and some new, including the prototype) and asked to determine 

whether or not the pattern belongs to the category of stimuli seen during 

the training phase. Typically participants endorse the unstudied pro-

totype with the highest probability followed by low-level distortions 

and then high-level distortions and random patterns (e.g., Knowlton & 

Squire, 1993). Results from this task are typically explained with exem-

plar and prototype theories and are contrasted with rule-based category 

learning (for review, see Ashby & Maddox, 2005). Neuroimaging data 

demonstrating differential activity in the visual cortex (i.e., bilateral 

posterior occipital cortex) to categorical versus noncategorical stimuli 

have provided an alternate account suggesting that perceptual learning 

likely plays an important role in successful performance on these pro-

totype extraction tasks (Ashby & Maddox, 2005; P. J. Reber, Stark, & 

Squire, 1998). These data thus suggest category learning occurs prior to 

the response selection stage in the prototype extraction ask.

Thus it is evident that there is some support for S-R rule based  

learning in the SRT task and many other implicit learning tasks. 

However, there are other tasks widely used to investigate the under-

lying neurocognitive mechanisms involved in implicit learning that 

do not rely on S-R rules. Although there is some indication that S-R 

rule learning can explain performance on a variety of implicit learning 

tasks, further research is necessary to truly assess the generalizability 

of this hypothesis. Such future research constitutes an important step 

in trying to identify a unifying theory of implicit learning that is more 

generally applicable and broad in scope rather than highly task specific. 

Conclusions

 In this review we have presented the SRT task in detail with a particular 

focus on important factors to consider when designing an SRT study. 

We have summarized the various hypotheses associated with identify-

ing the locus of spatial sequence learning and have demonstrated how 

the S-R rule hypothesis provides a cohesive framework for unifying a 

seemingly incongruous literature. Additionally we have reviewed va- 

rious studies using the dual-SRT task and suggested that the parallel re-

sponse selection hypothesis can explain many of the discrepant findings 

in this literature. The S-R rule hypothesis and the parallel response 

selection hypothesis are conceptually similar and both highlight the 

importance of response selection processes in successful sequence 

learning. We propose that taken together, the S-R rule hypothesis and 

parallel response selection hypothesis not only provide a unifying 

framework, but also point to response selection as the underlying criti-

cal cognitive process for effective sequence learning.

Finally, much has been learned about the underlying cognitive 

processes that support implicit spatial sequence learning in the SRT 

task, however, the generalizability of the knowledge and understand-
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ing gleaned with this paradigm has often been ignored. A wide variety 

of tasks have been used to study implicit learning and there is a need 

in the literature to attempt to identify congruencies across these tasks 

that will likely tell us about implicit learning more generally. We hope, 

therefore, that this review serves as a challenge to researchers to widen 

our perspectives and apply what we have learned from the SRT task to 

other implicit learning domains in an attempt to understand implicit 

learning more broadly.

Footnotes
1 This is not an exhaustive list of accounts; however, these are the 

most frequently discussed hypotheses regarding the locus of sequence 

learning in the SRT task. There is an additional plausible account that 

might be important for sequence learning (viz., the response-effect 

account), however, the nature of the SRT task makes it impossible to 

disambiguate the response-effect account from the S-R rule account. 

The response-effect account of sequence learning (e.g., Ziessler, 1998; 

Ziessler & Nattkemper, 2001) states that response-stimulus (R-S) learn-

ing is a powerful and the major mechanism in successful sequence 

learning. This theory states that when participants are presented with a 

spatial sequence, learning and performance improvements depend on 

learning the relationship between a current response and the following 

target location (Ziessler, 1998; Ziessler & Nattkemper, 2001). Much data 

in support of this theory come from the serial search-and-reaction task 

in which various letters are presented in a 5 × 5 matrix. Letter stimuli 

and button push responses are organized in an eight-to-four S-R map-

ping so that the relationship between response and upcoming target 

location can be systematically varied. Data demonstrate a performance 

improvement when a response predicts the following target location 

even when the presentation order of stimuli and required responses 

are random (Ziessler, 1998). Unfortunately, the data from the SRT task 

are unable to address this theory directly because with the one-to-one 

stimulus response mapping used here, R-S order is confounded with 

both the stimulus and response sequence. 
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