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Abstract
Elasticity imaging methods have been used to study tissue mechanical properties and have
demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity
imaging methods typically only shear wave speed is measured and rheological models, e.g.,
Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical
properties such as the shear viscoelastic complex modulus. This paper presents a method to
quantify viscoelastic material properties in a model-independent way by estimating the complex
shear elastic modulus over a wide frequency range using time-dependent creep response induced
by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion
formula that is the analytic solution of a constitutive equation. The proposed method in
combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the
complex modulus so that knowledge of the applied radiation force magnitude is not necessary.
The conversion formula is shown to be sensitive to sampling frequency and the first reliable
measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and
compliance. Representative model-free shear complex moduli from homogeneous tissue
mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel
model-free ultrasound-based elasticity method that does not require a rheological model with
associated fitting requirements.

1. Introduction
Tissue mechanical properties, such as elasticity, are linked to tissue pathology state
(Mariappan et al., 2010; Huwart et al., 2008; Huwart et al., 2007; Arndt et al., 2010; Parker
et al., 2011). Several methods have been developed to measure tissue mechanical properties
noninvasively. The first proposed elasticity imaging methods, such as ultrasound
elastography and Acoustic Radiation Force Impulse imaging (ARFI), provide qualitative
measures of tissue stiffness based on the assumption that tissue elasticity is related to
measured deformation (Ophir et al., 1999; Nightingale, 2003). One of the limitations of such
methods is the fact that the stress and boundary conditions need to be considered to quantify
the tissue elasticity. To overcome this limitation, elasticity imaging methods such as
Magnetic Resonance Elastography (MRE), Shear Wave Elasticity Imaging (SWEI),
Transient Elastography (TE), Supersonic Shear Imaging (SSI) and Shearwave Dispersion
Ultrasound Vibrometry (SDUV), have been proposed to quantify tissue mechanical
properties based on the propagation of shear waves (Muthupillai et al., 1995; Sarvazyan et
al., 1998; Sandrin et al., 2003; Bercoff et al., 2004; Chen et al., 2009).

Shear waves are usually generated by external mechanical vibration or by acoustic radiation
force from a focused ultrasound beam (Nightingale et al., 2001; Muthupillai et al., 1995). In
the ultrasound-based methods mentioned above, shear waves that result from a transient
(impulsive or short tone burst) excitation of tissue propagate only a few millimeters, as a
result of tissue absorption and shear wave attenuation, therefore boundary condition
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problems are overcome, allowing us to assume that the shear waves propagate as if in an
infinite medium. The advantage of using acoustic radiation force is that if an acoustic
window is available then the ultrasound system can create a focused beam to apply radiation
force to push on tissue.

Although these methods initially consider a pure elastic medium to describe the tissue
mechanical properties, some of them have been extended to quantify tissue viscoelastic
properties based on the characteristic that tissue exhibits time-dependent behavior known as
viscoelastic behavior (Fung, 1993). Tissue viscoelastic properties, such as shear elasticity
and viscosity, are measured in a model-dependent manner by means of fitting a rheological
model, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, to shear wave speed
dispersion (Chen et al., 2009; Deffieux et al., 2009) or in a model-independent manner if
both shear wave speed and attenuation are known (Oliphant et al., 2001; Catheline et al.,
2004). Although measuring shear wave speed attenuation is challenging in the field of
elasticity imaging, a method called Harmonic Motion Imaging proposes to estimate shear
wave attenuation from phase shift between input force and shear stress (Vappou et al.,
2009).

Acoustic radiation force has been used to study quasi-static viscoelastic properties of tissue
during creep and relaxation conditions. Tissue creep response to an applied step-force by
means of external compression (Sridhar and Insana, 2007; Qiu et al., 2008) and acoustic
radiation force has been shown in several studies (Walker et al., 2000; Viola and Walker,
2003; Nightingale et al., 2001; Mauldin et al., 2008). Mauldin, et al. (2008) have reported a
method to estimate tissue viscoelastic properties by monitoring the steady-state excitation
and recovery of tissues using acoustic radiation force imaging and shear wave elasticity
imaging. This method, called monitored steady-state excitation and recovery (MSSER)
imaging, is a noninvasive radiation force-based method that estimates viscoelastic
parameters by fitting rheological models, Kelvin-Voigt and Standard Linear Solid model, to
the experimental creep strain response. However, as with shear wave propagation methods, a
rheological model needs to be fit to the MSSER experimental data to solve for viscoelastic
parameters.

Current shear wave imaging techniques are useful to identify tissue linear viscoelastic
properties, however to quantify these properties a rheological model must be used. This
paper presents a method to quantify viscoelastic properties in a model-independent way by
estimating complex elastic modulus from time-dependant creep response induced by
acoustic radiation force. The creep response is generated as described in MSSER imaging
method and the viscoelastic parameters, complex elastic modulus and loss tangent, are
estimated by using a formula that converts time-domain creep compliance to frequency-
domain complex modulus developed by Evans, et al. (Evans et al., 2009) then shear wave
measurements using SDUV (Chen et al., 2009; Chen et al., 2004) are used to calibrate the
complex modulus. Using this shear wave method to calibrate the modulus makes the method
independent of needing to know the applied radiation force magnitude and spatial
distribution. Experimental data are obtained in homogeneous tissue mimicking phantoms
and one excised swine kidney.

2. Theory
2.1. Complex modulus spectrum from creep compliance

Transient characteristics of viscoelastic materials are known as creep and stress relaxation.
Creep is a slow, progressive deformation of a material under constant stress. In a shear creep
test, the ratio between the unitless measured shear strain response, γ(t), and the applied
constant shear stress, τ0 [N/m2], is called the creep compliance, J(t) [m2/N]. By using the
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Boltzmann superposition principle, which states that the sum of the strain outputs resulting
from each component of the stress input is the same as the strain output resulting from the
combined stress input, the strain output under variable stress, τ(t), is (Findley et al., 1989):

(1)

where γ is shear strain, τ is shear stress, J is creep compliance and ∂[·]/∂ξ represents the first
derivative respect to the independent variable ξ. Equation (1) is known as the integral
representation of viscoelastic constitutive equations (Findley et al., 1989) and illustrates how
the complex shear modulus, G*(ω) [N/m2], is related to the time-domain creep compliance,
J(t), by a convolution operation. This relationship becomes much clearer (4) when using the
Fourier transform convolution and derivative properties in (1)

(2)

(3)

(4)

where FT[.] represents the Fourier transform. Because creep compliance, J(t), is a function
that grows with increasing time, its Fourier transform is not a convergent integral. Recently,
Evans, et al. have reported the analytic solution of (4) by taking advantage of the properties
of Fourier transform (Evans et al., 2009). Briefly, the second derivative of the creep
compliance vanishes with time, therefore its Fourier transform exists. The time-creep
compliance to complex modulus conversion formula described by Evans, et al. is (Evans et
al., 2009):

(5)

where J(0) and η are the compliance at n = 0 and the steady-state viscosity, respectively.
The value of J(0) is estimated by extrapolation of the compliance function to t → 0.
Similarly, η is estimated by extrapolation of compliance function to t → ∞. The frequency
range of G*(ω) depends on the temporal resolution (the time of the first data point, t(1)) and
duration (the time of the last data point, t(N)) of the data set. The advantage of using (5) to
convert time-dependent compliance, J(t), to complex shear modulus, G*(ω), is the fact that
no fitting of theoretical models is required. Thus the moduli can be recovered for a range
of frequencies without a model.

2.2. Displacement and creep compliance relation
Acoustic radiation force can be used to apply a step-stress input, τ0, that causes creep in a
viscoelastic material (Nightingale et al., 2001; Mauldin et al., 2008; Walker et al., 2000;
Viola and Walker, 2003). The displacement, u(t), and creep compliance, J(t), relation is then
described in (6), where γ(t) is the unitless measured creep strain defined as measured
displacement u(t) [m] per unit length L [m], assuming that geometry and boundary
conditions do not change with time, and τ0 [N/m2] is the applied stress defined as applied
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force, F0 [N], per unit area A [m2]. However, the actual applied force, F0, is generally
unknown; as a consequence, the magnitude of the applied stress, τ0, is also unknown. In
addition, ultrasound motion detection applications usually estimate displacement responses
instead of strain response.

(6)

Assuming that the material is linear, the creep compliance, J(t), is then linearly proportional
to displacement, u(t):

(7)

where β [m/N] is a proportionality constant that relates the magnitude of the step-stress, F0/
A, and the length of an infinitesimal cube, L. By combining (4) and (7), the complex shear
modulus, G*(ω), can be extracted from the displacement, u(t), relative to the constant β:

(8)

If we call the extracted relative complex modulus, C*(ω) [1/m], it can be written in a form
where C*(ω) and G*(ω) are related by the constant β:

(9)

where Gs(ω) and Gl(ω) are the real and imaginary parts of the complex shear modulus
G*(ω). Gs(ω) is associated with energy storage and release during periodic deformation,
therefore called the elastic or storage modulus (Findley et al., 1989). Gl(ω) is associated
with the dissipation of energy that is transformed into heat, and is therefore called the
viscous or loss modulus (Findley et al., 1989).

Because the magnitude of the acoustic radiation force, F = 2αI/c, is proportional to the
absorption coefficient of the media, α, and the temporal average intensity of the acoustic
beam at a given spatial location, I (Torr, 1984), in a homogenous material, the magnitude of
the extracted relative complex modulus C*(ω) will vary as a function of material absorption
and acoustic beam intensity, therefore, the extracted relative complex modulus C*(ω) would
not be a very useful measure. To overcome this problem, a widely used property of
viscoelastic materials called loss tangent or tan(δ), defined as the ratio between the loss
modulus and the storage modulus, is used (Findley et al., 1989):

(10)

where Cs(ω) and Cl(ω) are the real and imaginary part of the extracted relative complex
modulus C*(ω). The loss tangent or tan(δ) is associated with the damping capacity of
viscoelastic material (Findley et al., 1989). In the following section a method to calibrate the
function in (9) to solve for the actual complex modulus over a range of frequencies is
described.

2.3. Complex modulus calibration with shear wave dispersion
The wavenumber, k, and the shear elastic modulus, G, are linked through the shear wave
propagation equation. In an elastic medium, they are related by
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(11)

where ρ is density of the medium and ω the angular frequency. In the case of linear
viscoelastic medium the wave number, k, and shear elastic modulus, G, are complex, written
as k* = kr − iki and G*(ω)=Gs(ω)+iGl(ω) (Blackstock, 2000). Then for a viscoelastic
medium, (11) can be written as (Vappou et al., 2009):

(12)

(13)

where ρ is density, kr is the real part of the wave number (defined as kr = ω/cs, where cs is
the shear wave speed), ki is the imaginary part of the wave number (defined as ki = αs,
where αs is shear wave attenuation), Gs is the storage shear modulus or shear elastic
modulus and Gl is the loss shear modulus or shear viscous modulus. The loss tangent or
tan(δ) written in terms of the complex wave number is (Vappou et al., 2009):

(14)

If both tan(δ) and kr are known, the negative root for ki in (14) is (Vappou et al., 2009):

(15)

Finally, by knowing kr and ki, the shear storage and loss moduli are obtained from (12) and
(13). In the following section applications of these methods for obtaining the complex
modulus without a model are described.

3. Methods
3.1. Radiation force induced creep (RFIC)

A Verasonics V-1 ultrasound system (Verasonics, Redmond, WA) equipped with a L7-4
linear array transducer (Philips Healthcare, Andover, MA) was used in all experiments.
Similar to monitored steady-state excitation and recovery (MSSER) radiation force imaging
previously described by Mauldin, et al., (Mauldin et al., 2008), two types of ultrasound
beams are used. Figure 1 illustrates the beam sequence to induce and monitor creep and
recovery. The symbols represent high intensity pushing beams (•) are interspersed with
conventional B-mode tracking beams (*) during the creep period. This sequence generates a
temporal step-force while creep displacements are tracked through the creep period.
Additionally, two reference tracking beams (Δ) are used before the creep period and
additional tracking beams following the cessation of the high intensity pushing beams.
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3.2. Shearwave Dispersion Ultrasound Vibrometry
SDUV is a method that quantifies both tissue shear elasticity and viscosity by evaluating
dispersion of shear wave propagation speed over a certain bandwidth (Chen et al., 2009;
Chen et al., 2004). The Verasonics V-1 ultrasound system equipped with a L7-4 linear array
transducer was used to generate shear waves with acoustic radiation force and capture shear
wave propagation with flash imaging (Montaldo et al., 2009). For a complete description of
the SDUV method, see (Chen et al., 2009) and (Chen et al., 2004).

4. Simulation and experiment
4.1. Simulation

The purpose of the simulations was to test these methods using a known analytic model and
to evaluate parameters affecting the performance of the creep compliance to complex
modulus conversion formula, such as the effect of sampling frequency, Fs, and the first
reliable data point, t1 (5). Creep compliance data were simulated by using a combination of
viscoelastic parameters in the Kelvin-Voigt model. The values of these viscoelastic
parameters are within a range of experimental values measured by ex vivo and in vivo
SDUV studies in various soft tissues such as liver, prostate, kidney, and heart (Chen et al.,
2009; Mitri et al., 2011; Amador et al., 2011; Nenadic et al., 2011) and human MRE studies
in liver (Huwart et al., 2006; Huwart et al., 2007). Equation (16) describe the Kelvin-Voigt
model creep compliance, JKV(t), under step-stress input, τ0 (Findley et al., 1989):

(16)

where G is the elastic element property as shear modulus and η is viscous element property
as viscosity. The complex shear modulus, G*(ω) = Gs(ω) + iGl(ω), for the Kelvin-Voigt
model is described in (17) and (18) (Findley et al., 1989).

(17)

(18)

For a given combination of G and η for the Kelvin-Voigt model, creep compliance and
complex shear modulus were calculated.

Once the creep compliance response was generated, the conversion formula (5) was used to

estimate the complex shear modulus, , from the simulated creep compliance,
(16). The conversion formula results were compared to the theoretical complex shear

modulus, , described in (17) and (18), by calculating the magnitude of the

complex modulus, , and computing the normalized mean absolute
error (nMAE), between the magnitude of the theoretical complex shear modulus,

, and the magnitude of the complex shear modulus recovered from the

conversion formula, . The normalized mean absolute error is defined as:

(19)
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Additionally, these simulations were used to illustrated the concept of tan(δ). The
conversion formula was applied to both creep compliance and creep strain. All simulations
were performed in MATLAB (The MathWorks, Inc., Natick, MA).

4.2. Experiment
Two homogeneous elasticity phantoms (custom-made by CIRS, Inc., Norfolk, VA) and one
excised swine kidney were used in this study. Each phantom had dimensions of 10 × 10 × 8
cm3 (width, depth, height) and the speed and attenuation of sound (claimed by CIRS, Inc.)
in phantom 1 was, 1538.1 m/s and 0.42 dB/cm-MHz, and phantom 2 was 1539 m/s and 0.43
dB/cm-MHz, respectively. The kidney was removed immediately after sacrifice and placed
in saline solution at room temperature.

4.2.1. Radiation force induced creep—The pulse repetition frequency (PRF) for both
pushing and tracking pulses was 6.25 kHz. The total duration of the creep period or pushing
sequences, including the intermittent tracking beams, was 10 ms and the total acquisition
time was 20 ms (63 pushing beams and 126 tracking beams). The magnitude of the
mimicked temporal step-force was varied by increasing the length of the pushing beams.
The pushing beam intensity was set at 8 cycles (1.6 μs) and 16 cycles (3.2 μs), the tracking
beam intensity was set at 2 cycles (0.4 μs). Both pushing and tracking beams were at 5 MHz
center frequency and focused at an axial distance of 20 mm with an F/1.0 focal
configuration. The acoustic radiation force creep sequence was used in 5 different regions of
the phantoms and the kidney, and 5 repeated measurements were acquired at each region.
The transducer was manually translated to the 5 different locations. These 5 different
locations were randomly selected. A 2D autocorrelation method was used to calculate axial
displacements (Kasai et al., 1985).

4.2.2. Shearwave dispersion ultrasound vibrometry—A 331 μs duration push beam
was transmitted and focused at 20 mm to generate shear waves in the medium. The shear
wave propagation was measured with the same transducer with plane wave compounding
imaging technique (Montaldo et al., 2009). A set of 5 plane waves with different emission
angles were transmitted at 12.5 kHz PRF. By coherently compounding each set of 5 plane
waves, a compound image PRF of 2.5 kHz was produced. The spatial resolution in x-
direction and z-direction were 0.15 mm and 0.15 mm respectively. Displacement response is
estimated using 2-D autocorrelation between two images (Kasai et al., 1985). Shear wave
phase velocity was estimated by previously described two–dimensional Fourier transform
method (Bernal et al., 2011; Alleyne, 1991). Shear wave speed thus measured at several
frequencies (100–500 Hz) is used to inversely solve for complex modulus through a Kelvin-
Voigt dispersion model:

(20)

The estimated shear elastic modulus, G, and viscosity, η, are then used to calculate Kelvin-
Voigt model shear complex modulus which then is compared to the model-independent
complex modulus.

5. Results
5.1. Simulations

Figure 2 illustrates the effect of temporal resolution in the Kelvin-Voigt model creep
compliance for viscosity values, η, of 2 Pa·s and 10 Pa·s, with an elastic modulus, G, fixed
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at 6 kPa. Two different time vectors were used to simulate creep compliance response, 1
kHz (Figure 2a) and 10 kHz (Figure 2b) sampling frequency, Fs and t1 of 1 ms and 0.1 ms
respectively. Similarly, the effect of temporal resolution in the time-creep compliance to
complex modulus conversion formula (5) for the Kelvin-Voigt model creep compliance
illustrated in Figure 2 was studied. Figure 3 illustrates both the estimated and theoretical
storage modulus (-, *) and loss modulus (--, *) from the creep compliance generated at 1
kHz sampling frequency and 10 kHz sampling frequency respectively at fixed viscosity of 2
Pa·s (Figures 3a and 3b) and viscosity of 10 Pa·s (Figures 3c and 3d).

The viscoelastic parameters used to simulate the Kelvin-Voigt model creep compliance
curves shown in Figure 2 are summarized in Table I as well as the nMAE calculated from
the magnitude of the estimated complex modulus and the magnitude of the theoretical
complex modulus shown in Figure 3, as described in (19).

Figure 4a illustrates the Kelvin-Voigt model creep strain and compliance response to 3 kPa
step-stress input, the elastic modulus G and viscosity η were fixed at 6 kPa and 6 Pa·s, the
sampling frequency was 10 kHz. The conversion formula described in (5) was used to
estimate the complex modulus from creep strain response and creep compliance response,
Figures 4b and 4c. In this case, the extracted relative modulus from creep strain, C*(ω), is
proportional to the extracted modulus from creep compliance, G*(ω), by a constant β which
is related the applied step-stress magnitude. The tan(δ) or ratio between the storage modulus
and loss modulus, from the extracted relative modulus C*(ω) and G*(ω) are shown in Figure
4d.

Figure 5 illustrates the Kelvin-Voigt model tan(δ) for (Figure 5a) fixed viscosity, η, and
different shear elastic modulus, G, and (Figure 5b) fixed shear elastic modulus, G, and
different viscosities, η.

5.2. Experiments
The mean (average of 5 repeated measurements) creep displacement response, estimated
relative storage (Cs), loss modulus (Cl) and loss tangent (tan(δ)) from a 1.6 μs and 3.2 μs
push duration in phantom 1 and phantom 2 are shown in Figure 6 and Figure 7, respectively.
The dashed lines represent the standard deviation of the five repeated measurements.

The mean loss tangent measured in five regions of interest using 3.2 μs push duration of
phantom 1 and phantom 2 are shown in Figure 8. The dashed lines represent the standard
deviation of 5 measured regions in each phantom.

Shear wave speed dispersion measured by SDUV, the shear wave attenuation estimated by
RFIC and SDUV using (15), the complex shear moduli calculated from shear wave speed
and shear wave attenuation in (12) and (13), and complex moduli estimated by fitting a
Kelvin-Voigt model to shear wave speed dispersion measured by SDUV in phantom 1 and
phantom 2 are shown in Figures 9 and 10, respectively. The shear elastic modulus G and η
from the Kelvin-Voigt model fit to shear wave dispersion were 1.67 kPa and 1.68 Pa·s for
phantom 1 and 3.39 kPa and 4.01 Pa·s for phantom 2.

Figures 11a and 11b show the mean (average of 5 repeated measurements) creep
displacement response and loss tangent (tan(δ)) from 5 locations in an excised swine kidney,
respectively. The dashed lines represent the standard deviation of the five repeated
measurements. Figures 11c and 11d show the average displacement and loss tangent of the 5
different locations, respectively. Shear wave speed dispersion measured by SDUV, the shear
wave attenuation estimated by RFIC and SDUV, the complex shear moduli calculated from
shear wave speed and shear wave attenuation, and complex moduli estimated by fitting a
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Kelvin-Voigt model to shear wave dispersion measured by SDUV in one excised swine
kidney are shown in Figure 12. The shear elastic modulus G and η from the Kelvin-Voigt
model fit to shear wave speed dispersion were 4.30 kPa and 12.70 Pa·s, respectively.

6. Discussion
Simulations showed that the new method of converting from creep compliance to complex
modulus is robust when using a high sampling rate to study low viscosity materials. For the
Kelvin-Voigt model, the discrepancies between the theoretical and estimated complex
moduli associated with a low sampling rate in a low viscous medium seems to be present
mostly in the loss modulus (refer to Figure 3a). These discrepancies are generally reduced
but still appear at high frequencies when the viscosity is increased (refer to Figure 3c) and
are not present when the sampling rate is increased (refer to Figures 3b and 3d). However,
the mean absolute error was relatively small in all scenarios even when a lower sampling
frequency was used.

As expected, the complex modulus estimated from simulated time-strain response is
proportional to the complex modulus estimated from simulated time-compliance response as
shown in Figures 4b and 4c. Unfortunately, the estimated complex modulus from creep-
strain would not be a useful value if the proportionality constant β is unknown, even for
homogeneous material. To overcome this limitation, a well known property of viscoelastic
materials called the loss tangent or the ratio between the loss modulus and the storage
modulus is used. Figure 4d illustrates the loss tangent calculated from both creep
compliance and strain. Interestingly, the loss tangent calculated from complex modulus from
creep strain agreed with the loss tangent calculated from complex modulus from creep
compliance. Therefore, knowledge of the applied radiation force magnitude is not necessary
to estimate the loss tangent.

The loss tangent as a function of shear elastic modulus, G, and viscosity, η, for the Kelvin-
Voigt model shown in Figure 5, illustrate that varying either storage or loss modulus is
represented as a shift of the curve. More specifically, increasing the storage modulus for a
fixed value of loss modulus shifted the loss tangent curve to the right, toward high
frequencies; on the other hand, increasing the loss modulus for a fixed value of storage
modulus shifted the loss tangent curve to the left toward lower frequencies. A potential
limitation of the proposed method, measuring loss tangent of tissues to differentiate healthy
tissue from disease tissue, is the case when both storage and loss modulus increase or
decrease with the same proportion, in that case, the loss tangent does not change, but the
magnitude of the complex modulus is different. Figure 13 shows a vector diagram with the
relationship between complex modulus, storage modulus, loss modulus and loss angle.

The complex modulus can be represented as the resultant vector of the storage modulus, Gs,
and loss modulus, Gl, and their ratio is represented as tan(δ). The complex modulus is
independent of tan(δ) when Gs and Gl change independently, for instance changing Gs and
Gl in opposite direction cause G* to be the same and tan(δ) to change, Figure 13a, or
changing Gs and Gl in the same direction and magnitude causes G* to change but tan(δ)
remains the same, Figure 13b. Creep displacement responses shown in Figures 6 and 7 were
obtained in the tissue-mimicking phantoms. When the magnitude of the radiation force was
increased by a factor of 2 by using a longer pushing pulse, a proportional increase in
displacement was observed in both phantoms, which is expected for linear viscoelastic
materials as shown in Figures 6a and 7a. Moreover, the extracted relative complex modulus,
C*(ω), was also proportional to the acoustic radiation force magnitude. Most importantly,
the estimated loss tangent was independent of force magnitude and geometry, as shown
theoretically and in simulations.
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The tissue mimicking phantoms were expected to have different storage modulus and
similar loss modulus, as reported by the manufacturer, this was illustrated in Figure 8, where
the phantom 1 loss tangent was approximately 1.3 times the loss tangent of phantom 2,
therefore phantom 1 is softer than phantom 2. Because there may be a case where loss
tangent is the same for materials with different storage and loss modulus, as discussed in the
previous paragraph, SDUV was used in combination with RFIC to estimate the true complex
modulus as demonstrated in Figures 9 and 10. The calibrated complex modulus for both
phantoms provides a more complete characterization of viscoelastic properties, and still in a
model-free manner. A difference in both storage and loss modulus was seen for both
phantoms, however, because the difference in storage modulus was higher compared to
difference in loss modulus between the two phantoms, the loss tangent was still different for
both phantoms. Shear wave elasticity methods usually fit a rheological model to shear wave
speed to solve for viscoelastic parameters. In the Kelvin-Voigt model, the storage modulus
is not a function of frequency, therefore the average model-free storage modulus over 100
Hz to 500 Hz would be comparable to the storage modulus estimated from Kelvin-Voigt
model fit to shear wave speed dispersion. The average model-free storage modulus over this
frequency range was 1.33 ± 0.13 kPa for phantom 1 and 3.34 ± 0.17 kPa for phantom 2.
Although the shear elastic modulus from Kelvin-Voigt model fit, 1.67 kPa and 3.39 kPa for
phantom 1 and 2 respectively, are approximately within the average model-free shear elastic
modulus, by inspection, the model-free shear elastic modulus does vary as a function of
frequency in both phantoms. On the other hand, in the Kelvin-Voigt model, the loss modulus
is a function of frequency, therefore the slope of the model-free loss modulus would be
comparable to the loss modulus estimated from Kelvin-Voigt model fit to shear wave speed
dispersion. The slope of the model-free loss modulus was 1.84 Pa·s for phantom 1 and 4.18
Pa·s for phantom 2. The Kelvin-Voigt model fit viscosity from the shear wave speed
measurements was 1.68 Pa·s and 4.01 Pa·s for phantoms 1 and 2 respectively, and model-
free loss modulus slope are within the same order of magnitude in both phantoms. The
Kelvin-Voigt model fit the loss modulus from the SDUV measurements are shifted towards
high frequencies when compared to the model–free loss modulus.

The excised swine kidney loss tangent for different regions of interest in the renal cortex
was expected to be different because the kidney is highly inhomogeneous. Although these
preliminary data do not show a significant difference in loss tangent for different locations
in the kidney, in vitro SDUV studies in swine kidney have shown that kidney viscoelastic
properties within an organ are typically similar (Amador et al., 2011). The calibrated
complex modulus with SDUV illustrates a linear loss modulus, as in the case of a Kelvin-
Voigt model, but shifted and a rather variant storage modulus with frequency.

Although the conversion formula (5) introduced by Evans, et al. returns a complex modulus
in a range of frequencies that depends on the resolution (first reliable data point at t1) and
duration (tN) of the measured creep data set, the upper limit of the measured relative
complex modulus was set to 500 Hz because the simulations showed that the output of the
conversion formula is biased at high frequencies when the sampling frequency is too low to
capture creep displacements for not so viscous materials. In addition, the frequency range of
the model-free complex modulus depends on the frequency range of the shear wave speed
dispersion, which is usually from 100 Hz to 500 Hz.

In this paper, we described and validated a method to fully quantify regional viscoelastic
properties in a manner independent of models by using RFIC and SDUV. Previous work in
this area involved the use of rheological models, but the need for such models affects the
viscoelastic parameter estimation as well as the fitting process. The described RFIC method,
uses a conversion formula that is the analytic solution of a constitutive equation. This
conversion formula is shown to be sensitive to sampling frequency and the first reliable
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measure in time. A more comprehensive study is needed to evaluate such parameters in
biological tissue applications. Clinical applications of this novel method are could be easily
explored because it only requires pushing beams similar to the acoustic radiation force
impulse imaging (ARFI) method, which is currently implemented on commercial ultrasound
scanning machines. Most importantly, the push beams are comparable to Doppler pulses,
therefore this method is compatible with most ultrasound scanners and tissue heating is
expected to be below FDA limits. Future work will focus in both in vitro and in vivo tissue
viscoelastic properties estimation by RFIC and SDUV.

7. Conclusion
Very few methods have been proposed to characterize tissue mechanical properties in a
model-independent manner. The method presented in this paper is a novel approach to
overcome difficulties encountered with rheological model and fitting approaches. Acoustic
radiation force creep in combination with a creep-compliance to complex modulus
conversion formula provides a non-invasive, fast, robust and local measure of tissue
viscoelasticity.
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Figure 1.
Illustration of the pulse sequences used to induce and monitor creep and recovery. The
symbols represent pushing beams (●), detecting beams (*) and reference beams (△).
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Figure 2.
Kelvin-Voigt model creep compliance for a shear elastic modulus, G, of 6 kPa and viscosity,
η, of 2 Pa·s (-) and 10 Pa·s (-*). The time vector in (a) starts at t1 of 1 ms with a sampling
rate, Fs, of 1 kHz. The time vector in (b) starts at t1 of 0.1 ms with a sampling rate of 10
kHz.
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Figure 3.
Estimated and theoretical storage modulus (-, *), Gs, and loss modulus (--, o), Gl, as a
function of frequency from Kelvin-Voigt model creep compliance for shear elastic modulus,
G, of 6 kPa and viscosity, η, of 2 Pa·s and (a) sampling frequency, Fs, of 1 kHz, (b)
sampling frequency, Fs, of 10 kHz. Viscosity, η, of 10 Pa·s and (c) sampling frequency, Fs,
of 1 kHz, (d) sampling frequency, Fs, of 10 kHz.
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Figure 4.
Kelvin-Voigt model; (a) creep strain (o) and creep compliance (-) response of shear elastic
modulus, G, of 6 kPa, and viscosity, η, of 6 Pa·s at 10 kHz sampling rate. (b) Estimated
relative storage modulus from creep strain (o), Cs, and creep compliance (-), Gs. (c)
Estimated relative loss modulus from creep strain, Cl, and creep compliance, Gl. (d) tan(δ)
from estimated complex modulus using from creep strain (o) and creep compliance (-).
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Figure 5.
Kelvin-Voigt model tan(δ) for (a) fixed viscosity, η, at 10 Pa·s and shear elastic modulus, G,
of 6 kPa (-), 9 kPa (*) and 12 kPa (o) at 10 kHz sampling rate; (b) fixed shear elastic
modulus, G, at 9 kPa and viscosity, η, of 2 Pa·s (-), 4 Pa·s (*) and 6 Pa·s (o) at 10 kHz
sampling rate.
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Figure 6.
Phantom 1 (a) mean creep displacement, (b) estimated relative storage moduli, Cs, (c)
estimated relative loss moduli, Cl, and (d) loss tangent, tan(δ), of a 1.6 μs (o) and 3.2 μs (*)
push duration. Average of 5 repeated measurements over a window of 3 mm in axial
direction and 1 mm in lateral direction. The dashed lines represent the standard deviation of
5 repeated measurements.
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Figure 7.
Phantom 2 (a) mean creep displacement, (b) estimated relative storage moduli, Cs, (c)
estimated relative loss moduli, Cl, and (d) loss tangent, tan(δ), of a 1.6 μs (o) and 3.2 μs (*)
push duration. Average of 5 repeated measurements over a window of 3 mm in axial
direction and 1 mm in lateral direction. The dashed lines represent the standard deviation of
5 repeated measurements.
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Figure 8.
Loss tangent (average of 5 measured locations using 3.2 μs push duration) as a function of
frequency for phantom 1 (*) and phantom 2 (o). The dashed lines represent the standard
deviation of 5 measured locations in each phantom.
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Figure 9.
Phantom 1 (a) shear wave speed dispersion estimated by SDUV, (b) shear wave attenuation
estimated by SDUV and RFIC, (c) model-free complex moduli estimated by shear wave
phase velocity and shear wave attenuation, (d) complex moduli estimated by Kelvin-Voigt
model fit to SDUV shear wave speed dispersion.
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Figure 10.
Phantom 2 (a) shear wave speed dispersion estimated by SDUV, (b) shear wave attenuation
estimated by SDUV and RFIC, (c) model-free complex moduli estimated by shear wave
phase velocity and shear wave attenuation, (d) complex moduli estimated by Kelvin-Voigt
model fit to SDUV shear wave speed dispersion.
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Figure 11.
Excised swine kidney (a) mean creep displacement, (b) estimated loss tangent of 5 repeated
measurements in 4 locations, the dashed lines represent the standard deviation of 5 repeated
measurements. (c) Mean creep displacement and (d) loss tangent of 5 locations, dashed lines
represent the standard deviation of 4 locations.
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Figure 12.
Excised swine kidney (a) shear wave speed dispersion estimated by SDUV, (b) shear wave
attenuation estimated by SDUV and RFIC, (c) complex moduli estimated by shear wave
phase velocity and shear wave attenuation, (d) complex moduli estimated by Kelvin-Voigt
model fit to SDUV shear wave speed dispersion.
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Figure 13.
Vector diagrams of the relationship between loss angle, δ, complex modulus, G*, storage
modulus, Gs, and loss modulus, Gl. The complex modulus, G*, is independent of tan(δ)
when Gs and Gl change independently; (a) changing Gs and Gl in opposite direction cause
tan(δ) to change and G* remains the same; (b) changing Gs and Gl in the same direction and
magnitude causes G* to change but tan(δ) remains the same.
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