Skip to main content
. 2012 Jun 3;2012:135387. doi: 10.1155/2012/135387

Table 3.

Performance of different multilabel learning algorithms.

Group (mean ± std) ML-kNN ECC BSVM BP-MLL RANK-SVM REAL
Average precision 0.759 ± 0.029 0.802 ± 0.016 0.802 ± 0.016 0.540 ± 0.023 0.707 ± 0.022 0.820 ± 0.029
Coverage 0.200 ± 0.023 0.186 ± 0.019 0.174 ± 0.023 0.345 ± 0.039 0.237 ± 0.016 0.160 ± 0.020
Hamming loss 0.167 ± 0.014 0.148 ± 0.016 0.156 ± 0.014 0.304 ± 0.014 0.214 ± 0.014 0.142 ± 0.019
One error 0.375 ± 0.050 0.261 ± 0.024 0.307 ± 0.022 0.755 ± 0.029 0.449 ± 0.034 0.283 ± 0.055
Ranking loss 0.167 ± 0.025 0.190 ± 0.025 0.130 ± 0.017 0.334 ± 0.040 0.206 ± 0.014 0.117 ± 0.018