Table 3.
Performance of different multilabel learning algorithms.
Group (mean ± std) | ML-kNN | ECC | BSVM | BP-MLL | RANK-SVM | REAL |
---|---|---|---|---|---|---|
Average precision | 0.759 ± 0.029 | 0.802 ± 0.016 | 0.802 ± 0.016 | 0.540 ± 0.023 | 0.707 ± 0.022 | 0.820 ± 0.029 |
Coverage | 0.200 ± 0.023 | 0.186 ± 0.019 | 0.174 ± 0.023 | 0.345 ± 0.039 | 0.237 ± 0.016 | 0.160 ± 0.020 |
Hamming loss | 0.167 ± 0.014 | 0.148 ± 0.016 | 0.156 ± 0.014 | 0.304 ± 0.014 | 0.214 ± 0.014 | 0.142 ± 0.019 |
One error | 0.375 ± 0.050 | 0.261 ± 0.024 | 0.307 ± 0.022 | 0.755 ± 0.029 | 0.449 ± 0.034 | 0.283 ± 0.055 |
Ranking loss | 0.167 ± 0.025 | 0.190 ± 0.025 | 0.130 ± 0.017 | 0.334 ± 0.040 | 0.206 ± 0.014 | 0.117 ± 0.018 |