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Abstract
Nicotine and alcohol are two of the most commonly abused legal substances. Heavy use of one
drug can often lead to, or is predictive of, heavy use of the other drug in adolescents and adults.
Heavy drinking and smoking alone are of significant health hazard. The combination of the two,
however, can result in synergistic adverse effects particularly in incidences of various cancers
(e.g., esophagus). Although detrimental consequences of smoking are well established, nicotine by
itself might possess positive and even therapeutic potential. Similarly, alcohol at low or moderated
doses may confer beneficial health effects. These opposing findings have generated considerable
interest in how these drugs act. Here we will briefly review the negative impact of drinking–
smoking co-morbidity followed by factors that appear to contribute to the high rate of co-use of
alcohol and nicotine. Our main focus will be on what research is telling us about the central
actions and interactions of these drugs, and what has been elucidated about the mechanisms of
their positive and negative effects. We will conclude by making suggestions for future research in
this area.
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Introduction
Two of the biggest threats to world health come from the negative effects of using tobacco
and alcohol. It has become clear over the last few decades that heavy use of tobacco and/or
alcohol leads to serious health consequences such as development of cardio- and cerebro-
vascular diseases, gastric ulcers, various cancers, particularly those of the head, neck,
esophagus, and even liver (Castellsagué et al. 1999; Franceschi et al. 1990; Johnson and
Jennison 1992; Ko and Cho 2000; Koob and Le Moal 2006; Mitrouska et al. 2007; Olsen et
al. 1985; Pelucchi et al. 2008). The high use of alcohol and tobacco products likely stems in
part from their abundant and legal availability, but also from other factors that can lead to
users’ abusive and addictive use. In recent years it has been elucidated that abuse of alcohol
and nicotine (from tobacco products) can be attributed in part to genetic, rewarding, and
possibly the analgesic effects the drugs have. Furthermore, high incidence of co-morbidity
can be linked by these same factors, as well as possible pharmacokinetic and
pharmacodynamic interactions (e.g., enhancement of the rewarding and analgesic effects)
and counteracting mechanisms that co-use affords the consumer. This article first reviews
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and evaluates current evidence of these contributory factors to co-use, then looks at how
dosing should be considered when evaluating the impacts of these drugs. The main focus
will be on central effects of alcohol and nicotine, and how dosing level and combination of
these drugs can alter the effects of both drugs. Finally, we will comment on how these
research findings potentially impact suggestions for cessation treatment for addicts and
general heath management, and suggest lines of study that need to be pursued.

Contributory Factors to Alcohol and Tobacco Co-morbidity
Epidemiological studies have demonstrated that in adolescents and adults high rates of
smoking correlate highly with alcohol use, with smoking rates in alcoholics estimated to be
at least two times higher than the general population (Falk et al. 2006), and the rate of
cigarette consumption to be higher in alcoholic smokers than nonalcoholic smokers
(Dawson 2000). Research involving this phenomenon has given rise to four prominent
explanations for the high incident rate of alcohol and tobacco co-use. The depth of research
in each field is varied, but begins to paint a picture of how alcohol and nicotine possibly
interact to contribute to their co-morbidity.

Genetic Influence
In recent years studies have focused on the nature side of addiction over the nurture, by
following addiction rates in twins (mono- vs. dizygotic) and siblings raised in different
environments (Ball 2008; Enoch and Goldman 2001). It has become clear that there is a
strong genetic component to addiction, which may account for addictive behavior more than
environmental influences. Current estimations for heritability of all major addictive
disorders range between 40 and 80% (Goldman et al. 2005). This suggests strongly that
there is an underlying genetic vulnerability for alcohol–nicotine co-morbidity. It is estimated
that genetic factors account for about 50% of nicotine or alcohol dependence (Maes et al.
1999; Sartor et al. 2010; True et al. 1999), but this number can vary with gender, race,
culture, and religion. The influence of genetic factors on addiction to these drugs appears to
vary with the age that drinking or smoking was initiated (Rose 1998), hinting on a possible
epigenetic influence. Alcohol–nicotine co-morbidity appears to be equally dependant on
genetic factors in men and women, but the same does not appear to be true in nonaddicted
users (males more genetically predicated: Han et al. 1999; Kendler et al. 1994, 2000).

Genetic studies of addiction have focused on dysfunctions of several neurotransmitter
systems that in some way contribute to alteration of the reward (e.g., dopaminergic) or mood
(e.g., glutamatergic, opioidergic, serotonergic, or cholinergic) pathways in the brain. The
hypothesis being that alteration to these systems could alter an individual’s experience or
tolerance to a drug, and therefore change the likelihood that the person becomes addicted to
or have difficulty quitting. However, the search for candidate genes in these pathways (via
various methods such as Whole Genome Association) has turned up many genes on various
chromosomes that act on and alter a variety of functions including enzymatic activity,
protein translation, transcriptional regulation, and receptor function. Changes in these
functions could alter susceptibility to alcohol, nicotine, or drug addiction in general (Ducci
and Goldman 2008; Uhl 2004; Uhl et al. 2008). Still the genetic basis of alcohol and
nicotine addiction is unknown. Some studies suggest that even subtle changes in genetic
makeup (different strains of rats) can alter sensitivity to drugs and the rewarding release of
dopamine (see “Reward Pathway Activation” section: Cadoni et al. 2009). However, the
most promising have been studies of mutations of genes involved in alcohol metabolism
(e.g., ADH/ALDH: alcohol/aldehyde dehydrogenase), nicotine metabolism (e.g., CYP2A6:
cytochrome P450 2A6) or nicotinic receptor.
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It is the belief of some scientists that polymorphisms in ADH/ALDH are the only ones that
truly alter the risk of alcoholism (Crabbe et al. 2006). ADH and ALDH are enzymes that
metabolize alcohol to acetaldehyde and then to acetate, respectively. Isoform variation of
either gene appears to reduce the risk of alcoholism, with additive effects when both vary
(Ball 2008; Dick and Foroud 2003; Köhnke 2008). It is unclear why variations cause
decreased alcohol abuse and alcoholism, but it might be in part due to increased negative
side effects of the alcohol consumption. These side effects are likely tied to accumulation of
acetaldehyde, leading to acetaldehyde syndrome-like symptoms, including palpitations, skin
flushing, nausea, and severe hangovers (Ball 2008; Luczak et al. 2002; Müller et al. 2010;
Tu and Israel 1995). These polymorphisms appear most predominantly in East Asian
populations, but studies are finding similar mutations in ADH and ALDH that likely alter
rates of alcoholism in non-Asian populations (Liu et al. 2011).

CYP2A6 is part of an enzyme subfamily involved in the oxidative metabolism and
detoxification of various compounds. Therefore, polymorphisms within this subfamily can
dramatically alter drug effects (Johansson and Ingelman-Sundberg 2011). CYP2A6
specifically, is the primary enzyme responsible for the oxidation of nicotine to cotinine
(Benowitz and Jacob 1994; Messina et al. 1997; Nakajima et al. 1996a, b). Polymorphisms
of CYP2A6 alters nicotine metabolism resulting in increased or decreased smoking rate
depending on the mutation. For example, individuals with inactivated CYP2A6 are less
likely to smoke or smoke very little (Messina et al. 1997; Pianezza et al. 1998; Rao et al.
2000), whereas duplication of the gene increases smoking (Rao et al. 2000). This suggests
that length of time nicotine is bioavailable in the system due to CYP2A6 mutations can
dramatically influence smoking rates and possibly age of smoking initiation and cancer risk
(Ariyoshi et al. 2002; Thorgeirsson et al. 2010).

Recent exciting discoveries emanating from genome wide association studies have identified
polymorphisms localized to chromosome 15q24 (gene cluster encoding α3, α5, β4 nicotinic
acetylcholine receptor (nAChRs) subunits) variants of which are associated with nicotine
dependence as well as risk for lung cancer and peripheral arterial disease (Berrettini et al.
2008; Thorgeirsson et al. 2008). Moreover, emerging evidence suggest that nAChRs
containing α5, α6, β3, and β4 subunits regulate nicotine intake (Fowler et al. 2011; Frahm
et al. 2011; Hoft et al. 2009b). Interestingly, polymorphisms within the cluster encoding for
nAChRs are also associated with alcohol dependence and early initiation of alcohol use
(Hoft et al. 2009a; Schlaepfer et al. 2008; Wang et al. 2009). See below for more detailed
discussion of nicotinic receptors.

Nicotinic Receptors
Nicotinic receptors belong to ionotropic class of receptors. These receptors act by regulating
directly the opening of a cation channel in the neuronal membrane (see Changeux et al.
1998; Gotti and Clementi 2004; Rathouz et al. 1996; Wu and Lukas 2011 for reviews).
Considerable information on interaction between these receptors and other neurotransmitter
systems is now available. Indeed, therapeutic potentials for selective nicotinic receptor
agonists in various neuropsychiatric and neurodegenerative disorders have been suggested.
Various subtypes of these receptors with distinct anatomical, physiological, and
pharmacological characteristics have been identified (see reviews by: Albuquerque et al.
1995; Changeux et al. 1998; Clarke 1995; Conti-Fine et al. 1995; Gotti and Clementi 2004;
Lukas and Bencherif 1992; Miwa et al. 2011; Olale et al. 1997; Picciotto 2003; Wu and
Lukas 2011). The most predominant and most extensively studied subtype in the brain has a
high affinity for cytisine, nicotine or acetylcholine and is formed from α4 to β2 subunits
(see Clarke et al. 1985; Flores et al. 1992; Pabreza et al. 1991). This subtype is commonly
referred to as high-affinity binding site. The other major class with a high affinity for α-
bungarotoxin but low affinity for nicotine is formed from α7 subunits and can be labeled by
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[125I]α-bungarotoxin. This subtype is commonly referred to as low-affinity binding site. It
should be noted that [125I]α-bungarotoxin also binds with high affinity to neuro-muscular
nicotinic receptors and in some cases to ganglionic nicotinic receptors (Zigmond and Loring
1988). However, the subunit structures of the nicotinic receptors in the muscle are different
from those in the ganglia which are different from those in the CNS.

Further distinction between nicotinic receptor subtypes is evident in their central distribution
as well as their physiological roles. For example, [125I]α-bungarotoxin binding sites in the
brain are most abundant in hippocampus (see Clarke et al. 1985 for detailed distribution) and
are believed to have a prominent role in neuronal growth and survival (De Fiebre et al.
1995). Furthermore, these receptors appear to be involved in cognitive functions,
particularly attentional processes (Freedman et al. 1997; Matsuyama et al. 2001; Miwa et al.
2011). A role for α7 receptor subtype in central reward pathway has also been suggested
(Schilström et al. 1998; Jones and Wonnacott 2004). High-affinity nicotinic receptors (e.g.,
α4–β2 or α3 containing receptors), on the other hand, are more prominent in mesolimbic or
nigro-striatal pathways and appear to be more involved in rewarding or addictive behavior,
locomotor activity and antinociception (Changeux et al. 1998; Damaj et al. 1998; Lindstrom
1997; Olale et al. 1997; Stolerman et al. 1997). Both receptors appear to be involved in
neuroprotection as well (Belluardo et al. 2000; Picciotto et al. 2000; Tizabi et al. 2003,
2004). Studies with Flinders and WKY rat models of depression and Fawn-Hooded rat
model of alcoholism and depression also suggest involvement of high-affinity nicotinic
receptor subtypes in these behavioral characteristics (Tizabi et al. 1999, 2000, 2009).

Epigenetic Influence
Another consideration is that changes are not occurring within the genes themselves, but
through activation or deactivation of more than one gene. In other words, it is possible that
environmental factors are causing modulation of gene activation through epigenetic changes
(i.e., change in gene expression controlled by alteration of DNA methylation and/or
chromatin structure). Strong evidence supports the idea that epigenetic mechanisms exist
that can alter gene expression in neurons that can lead to changes in behavior including
psychiatric disorders such as depression, schizophrenia, and drug addiction (reviewed
Tsankova et al. 2007). In terms of drug addiction, these epigenetic changes may provide
reasons for why addictive behaviors arise, persist long after drug cessation, and have high
rates of relapse. Epigenetic effects of drug abuse has been extensively studied in cocaine
(Renthal and Nestor 2008; reviewed Tsankova et al. 2007), but poorly studied in alcohol and
nicotine. Nicotine has been shown to have longterm effects after intrauterine exposure: both
immediate (Dickson et al. 2011; Lotfipour et al. 2009; Toledo-Rodriguez et al. 2010) and
transgenerational (Holloway et al. 2007). Furthermore, it has been seen in humans that
nicotine has lasting effects on demethylation of monoamine oxidase-B promoters (altering
serotonin metabolism: Launay et al. 2009), and is associated with high CYP2A6 activity due
to full demethylation of the gene site (Al Koudsi et al. 2010). Recent studies, using a mouse
model to study nicotine abuse in schizophrenics, have demonstrated the likelihood of
nicotine playing a role in regulating epigenetic alterations of GABAergic neurons seen in
this disease (Maloku et al. 2011). The link may be through activation or alteration of the
α4β2 nicotinic receptor subtype (Maloku et al. 2011). Ethanol has been more directly
studied, with both chronic and acute exposure causing chromatin changes (Bönsch et al.
2005; Kim and Shukla 2006; Mahadev and Vemuri 1998). Chronic alcohol exposure leads
to changes in protein expression in astrocytes and neurons (Mahadev and Vemuri 1998), and
withdrawal from chronic exposure can cause chromatin remodeling that leads to withdrawal
related anxiety (Pandey et al. 2008; Moonat et al. 2010). In one study no changes were seen
in the brain after acute alcohol exposure, but other tissues did show epigenetic changes via
histone modification (Kim and Shukla 2006). Another study showed anxiolytic effects of
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alcohol, possibly in relation to chromatin modification (Pandey et al. 2008). Studies in
Drosophila have shown that acute exposure to alcohol caused gene regulation changes that
altered drug sensitivity (Ghezzi et al. 2004; Wang et al. 2007). Collectively, these findings
suggest epigenetic/genetic mechanisms by which drug tolerance and dependence may
develop.

Pharmacokinetic Interactions
There are several pharmacological interactions between alcohol and nicotine that may
explain how use of one drug might lead to increased co-use of the other. For example,
nicotine and alcohol interact to alter the effect either drug has alone, and chronic use of
either or both drugs alters this interaction (reviewed Lajtha and Sershen 2010). Aside from
the pharmacokinetic interactions between these two drugs, where either drug may alter the
peripheral metabolism of the other (Parnell et al. 2006; Yue et al. 2009), a primary
contributory factor to co-use of alcohol and nicotine, is likely the additive or synergistic
activation of the reward system. In addition, the analgesic properties of the combination and
possible counteraction of adverse effects when the drugs are used together may also promote
co-use of alcohol and nicotine.

Reward Pathway Activation
A number of animal and some human studies, provide strong evidence that alcohol and
nicotine are interacting to potentiate the rewarding effects of one another through activation
of the dopamine reward pathway. In short, this pathway is comprised of dopaminergic
neurons in the ventral tegmental area (VTA) which possess nAChRs, that when stimulated
cause release of dopamine in several brain areas including the nucleus accumbens (NAcc).
Activation of the NAcc has been implicated in changes in emotional and cognitive
behaviors, especially in relation to regulation of reward-induced addiction (reviewed in
Ikemoto and Panksepp 1999; Willuhn et al. 2010). Specifically, nicotine and ethanol have
been shown to increase dopaminergic neuron firing (Kleijn et al. 2011; Mereu et al. 1984,
1987), and dopamine release (Kleijn et al. 2011; Löf et al. 2007; Nisell et al. 1994a, b;
Tizabi et al. 2002, 2007).

Nicotine appears to activate mesolimbic reward pathway through nAChRs (especially α4/
α6 β2 and α7 subunits: Exley et al. 2011; Gotti et al. 2010; Mansvelder and McGehee 2000;
Maskos et al. 2005; Pidoplichko et al. 1997; Pons et al. 2008). Moreover, the sensitivity to
nicotine reward may be modulated by dopamine signaling through its interactions with D1
and D2 receptors (Laviolette et al. 2008). However, the exact pre- or post-synaptic nicotinic
receptors that activate dopamine release are not known.

Alcohol (ethanol) may influence the reward pathway by a number of mechanisms including
interactions with nicotinic receptors (Blomqvist et al. 1993, 1996; Jerlhag et al. 2006;
Larsson and Engel 2004). Co-administration of alcohol and nicotine produces an additive
release of dopamine in the NAcc (Tizabi et al. 2002, 2007) which may reflect additive
rewarding effect and hence a possible mechanism contributing to the co-use of alcohol and
nicotine. It is also conceivable and likely that interactions of alcohol and nicotine with other
transmitter systems may influence their individual as well as their combined rewarding and
addictive nature.

In humans it has been reported that smoking of normal nicotine cigarettes versus
denicotinized cigarettes increased alcohol consumption (Barrett et al. 2006), and that alcohol
consumption can increase self-reported pleasure derived from cigarette smoking (Rose et al.
2004). The strength of this effect is dynamic and can be altered by a number of factors
including age and gender (Acheson et al. 2006; Grant et al. 2006). These influences may

Hurley et al. Page 5

Neurotox Res. Author manuscript; available in PMC 2012 June 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stem from alteration of nAChR activation as the brain ages and after long-term smoking
(Hellström-Lindahl and Court 2000; Teaktong et al. 2003, 2004), especially if changes occur
in the dopamine reward pathway. Chronic smoking globally increases nAChRs, probably
due to desensitization to repeated nicotine exposure instead of enhanced receptor function
(Grady et al. 1994; Ke et al. 1998; Marks et al. 1993; Sabbagh et al. 2002; Wonnacott 1990),
although in some unique cases the up-regulation of receptors may also be associated with an
increase in function (Nguyen et al. 2004). One theory postulates that desensitization occurs
to protect neurons from uncontrolled excitation, as mice with mutated α7 receptor show
decreased desensitization and an increased rate of mortality (Mudo et al. 2007; Wang and
Sun 2005). Further research is needed to understand this phenomenon, as desensitization and
alteration in numbers vary with receptor subtype and location (Buisson and Bertrand 2001;
Fenster et al. 1997; Gentry and Lukas 2002; Olale et al. 1997; Perry et al. 2007; Picciotto et
al. 2008; Teaktong et al. 2003, 2004; Yu and Wecker 1994).

It has been shown in rats with moderate ethanol preference that consumption of ethanol
increases after nicotine treatment (Blomqvist et al. 1996), and application of a nicotinic
antagonist reduces ethanol intake (Bell et al. 2009). This response may be from the fact that
ethanol and nicotine together appear to increase and sustain dopamine release significantly
over that seen when they are administered alone (Tizabi et al. 2002, 2007). However, pre-
treatment with mecamylamine, a nicotinic receptor antagonist, blocked the additive effect of
combined alcohol and nicotine on dopamine release (Tizabi et al. 2007), and decreased
ethanol intake in rats (Blomqvist et al. 1996; Ericson et al. 1998; Le et al. 2000). Similarly,
in some human studies it was shown that use of mecamylamine caused a decrease in
euphoric effects of alcohol and the desire to consume it (Chi and de Wit 2003; Young et al.
2005). More recently it has been demonstrated that the FDA approved varenicline, a
nicotinic partial agonist at α4–β2 subtype, for smoking cessation may also be effective in
reducing alcohol intake as suggested by preclinical as well as limited clinical trials (Ericson
et al. 2009; Fucito et al. 2011; Hendrickson et al. 2010; Kamens et al. 2010; McKee et al.
2009; Steensland et al. 2007). Thus, further elucidation of the roles of specific nicotinic
receptors in pathways involved in reward enhancing effects of alcohol–nicotine co-use could
lead to novel interventions in drinking–smoking co-morbidity (see also Chatterjee and
Bartlett 2010).

Analgesia
Pain is a broad term that now refers to both a physical and emotional experience (Price
2000). Beyond the activation of nAChRs and possible dopamine re-enforced pleasure in
alcohol–nicotine co-use another contributory factor could be the analgesic (or
antinociceptive) effect of such a combination. Nicotine in itself appears to be effective as a
reducer of pain and inflammation in many situations (Decker et al. 2001; Yagoubian et al.
2011; Yoshikawa et al. 2006). Nicotine’s analgesic ability was first demonstrated before the
identification of nAChRs (Davis et al. 1932), but the activation of the nAChRs has long
been suggested as a key component in mediation of analgesic effects of nicotine and other
nicotinic agonists (e.g., epibatidine, see below: Damaj et al. 1999; Khan et al. 1998; Simons
et al. 2005; Vincler 2005). Many brain nuclei express a diverse number of nAChR subtypes,
and areas regulating pain are no exception (Millar and Gotti 2009; Tracey and Mantyh
2007). Nicotine activation of nAchRs containing α4, β2, and possibly α7 subunits appear to
be a key part to regulating pain (Damaj et al. 2000; Flores 2000; Gao et al. 2010). In support
of this idea, mice with α4 and β2 mutations demonstrate no analgesic effect to nicotine
administration (Marubio et al. 1999). Treatment with α4 and β2 agonists show similar,
although not complete, analgesic effects to nicotine administration (Flores 2000; Gao et al.
2010), but administration of epibatidine and ABT-594, both α4β2 agonists, produce effects
200 times more potent than morphine (Bannon et al. 1998; Spande et al. 1992). Although it
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has been suggested that the analgesic effect that comes from activation of the nAChR
receptors by nicotine may be due to opioid release (Galeote et al. 2006), the majority or
finding suggest that it is independent of the opioid system when given alone (Campbell et al.
2006; Cooley et al. 1990; Damaj et al. 1999; Khan et al. 1998; Rogers and Iwamoto 1993;
Tripathi et al. 1982).

Alcohol has historically been used to dull central nervous system responses to pain before
development of more sophisticated pain medications. Basic pain tolerance studies have
shown that even low doses of alcohol work to alleviate physical pain (James et al. 1978;
Perrino et al. 2008; Woodrow and Eltherington 1988). This antinociceptive effect of alcohol
appears to be primarily regulated by the opioid system (Boada et al. 1981; Campbell et al.
2006), and may be influenced by factors such as family history of alcoholism and
personality (Ralevski et al. 2010). In fact, individual history of alcohol use may be key in
how it works as an analgesic, as continued alcohol use may affect pain modulation by
altering dopamine and opioid function (Cowen et al. 2004; Cutter and O’Farrell 1987; Koob
et al. 1998; Vanderah et al. 2001). This contention is supported by human studies showing a
positive relationship between chronic pain and substance abuse, and that alcoholics are more
sensitive to pain—especially when sober—compared to non-alcoholics (Askay et al. 2009;
Brown and Cutter 1977; Rosenblum et al. 2003). The altered analgesic effect in those that
are addicted to nicotine or alcohol, may contribute to co-use of both drugs for their analgesic
properties.

Simultaneous administration of alcohol and nicotine causes additive or synergistic analgesic
effects (Franklin 1989, 1998), and appears to occur primarily—but not exclusively—by
activation of the opioid system (Campbell et al. 2006). Alleviation of pain—emotional and
physical—may be what leads to increased use and co-abuse of nicotine and alcohol. This
increased use combined with developing tolerance—especially if the user becomes fully or
partially cross-tolerant (i.e., the chronic use of one substance resulting in tolerance to effects
of the other: Burch et al. 1988; Collins et al. 1988; de Fiebre and Collins 1993)—may be a
key component in making the user vulnerable to addiction. Co-use of alcohol and nicotine
(smoking) may therefore arise from a user seeking to find additional pain relief.

Counteracting Mechanisms
In addition to the above, one contributing factor to comorbid use of alcohol and nicotine
may be the counteracting of adverse effects of one drug by the other drug. Thus, certain
deleterious effects of alcohol (e.g., cognitive impairment, subjective intoxication, and
sedating properties) appear to be alleviated by tobacco’s nicotine (Ceballos 2006; Perkins et
al. 1995). Early studies of this interaction showed that smoking improved alcohol-induced
cognitive impairment by shortening temporal distortion in the form of overestimation of
time elapsed and improving decrements in divided attention tasks (Leigh and Tong 1976;
Leigh et al. 1977). This decrease in negative effects of alcohol by nicotine may actually lead
to an increase in alcohol consumption and dependence (Schuckit and Smith 2004). Specific
testing of alcohol-induced impairment shows that nicotine in the cigarette smoke is likely
what causes the amelioration of impairments or deficits (Al-Rejaie and Dar 2006; Dar et al.
1993, 1994; Gould et al. 2001; Taslim et al. 2011; Tracy et al. 1999). Chronic smokers
report feeling less intoxicated than non-smokers after consumption of the same dose of
alcohol (Madden et al. 2000). The beneficial effect of nicotine may be limited to acute
exposure dosing (Craddock et al. 2003; Ernst et al. 2001; Lawrence et al. 2002; Rezvani and
Levin 2001), and may be lost in chronic co-morbid users (Cervilla et al. 2000; Durazzo et al.
2010; Glass et al. 2006, 2009). Thus, chronic consumers of combination of alcohol and
cigarettes may show increased cognitive impairment (Durazzo et al. 2010; Glass et al. 2006,
2009). Even acute dosing of nicotine in some animal studies appears to work synergistically
with alcohol to cause impairment at doses where alcohol alone caused little to no deficit
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(Bizarro et al. 2003; Rezvani and Levin 2002). The variations seen in experimentation, and
between acute and chronic dosing, are likely due to differential pharmacokinetic interactions
causing cross-tolerance or sensitization (Gulick and Gould 2008). A recent study has
revealed that α4β2 and α7 nAChR subtypes are key in behavioral cross-tolerance between
nicotine and ethanol-induced ataxia, with nitric oxide signaling being a potential mechanism
to this effect (Taslim et al. 2011).

Dosing Consideration
Chronic smoking (the primary route of tobacco consumption) and drinking both have well
documented long-term impacts on cardiovascular system and smoking in particular, causes a
variety of obstructive airway diseases (Koob and Le Moal 2006; Mitrouska et al. 2007).
Both habits also have been attributed to cerebrovascular diseases such as transient ischemic
attacks and stroke, and can increase the risk of a number of cancers (Castellsagué et al.
1999; Franceschi et al. 1990; Johnson and Jennison 1992; Ko and Cho 2000; Koob and Le
Moal 2006; Mitrouska et al. 2007; Olsen et al. 1985; Pelucchi et al. 2008). The multitude
and severity of these detriments can be synergistically exacerbated when the two are
combined. However, the majority of the populations are not heavy alcohol and/or nicotine
consumers, and on average would have only low-level exposure to one or both compounds.
Recent evidence shows that alcohol or nicotine alone at low to moderate levels can have
health and therapeutic benefits. Specifically, both compounds at low concentrations have
demonstrated the ability to act as neuroprotectants (Belmadani et al. 2004; Collins et al.
2009; Ferrea and Winterer 2009; Quik et al. 2008; Ramlochansingh et al. 2011; Tizabi et al.
2003, 2005, 2007; see also below). However, when low doses of alcohol and nicotine are
combined this protection appears to be reversed in at least some in vitro studies
(Ramlochansingh et al. 2011; Smith et al. 2006). Although, further in vivo interactions
between these two compounds are necessary, it is noteworthy that a study in adolescent mice
did not detect toxicity by co-administration of alcohol and nicotine (Oliveira-da-Silva et al.
2009, 2010). Thus, it is important to elucidate the extent of acute and chronic interactions
between alcohol and nicotine in various in vitro and in vivo paradigms.

Nicotine in low doses has been seen in in vitro cell (primary and immortal) cultures to
protect against or attenuate damage induced by β-amyloid, lipopolysaccharide (LPS)-
induced inflammation, glutamate, alcohol, N-methyl-D-aspartate (NMDA), hypoxia, and
salsolinol (Copeland et al. 2005, 2007; Dajas-Bailador et al. 2002; Das and Tizabi 2009;
Guan et al. 2003; Hejmadi et al. 2003; Kihara et al. 1998; Liu and Zhao 2004; Park et al.
2007; Ramlochansingh et al. 2011; Stevens et al. 2003; Tizabi et al. 2003, 2004). The action
of this protection is unclear, but it appears to be mediated by activation of nicotinic receptors
(discussed above: Dajas-Bailador et al. 2002; Das and Tizabi 2009; Hejmadi et al. 2003;
Picciotto and Zoli 2008). The signal transduction mechanisms underlying the
neuroprotection may involve direct or indirect nicotinic receptor mediated modulation of
calcium and other antiapoptotic mechanisms (Donnelly-Roberts et al. 1996; Kihara et al.
2001; Liu and Zhao 2004; Ren et al. 2005; Stevens et al. 2003; reviewed in Buckingham et
al. 2009), but these potential pathways are still poorly understood.

Alcohol given in low to moderate doses also appears to provide neuroprotection.
Epidemiological studies show trends that light to moderate drinkers have reduced risk of
dementia and cognitive decline in comparison to nondrinkers (reviewed in Collins et al.
2009). Some of these benefits could be attributed to anti-oxidant polyphenols (e.g.,
resveratrol in red wine), but it is likely that alcohol in moderate levels has its own direct
neuroprotective effect. However, empirical data to support this claim is limited, especially in
in vivo models. Studies have shown that giving low doses of alcohol (ethanol) protects in
vitro and ex vivo neural cultures exposed to toxins that cause neurodegeneration such as
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HIV-1 glycoprotein gp120 (gp120: Collins et al. 2000), homoquinolinic acid (Cebere and
Liljequist 2003), and NMDA (Cebere and Liljequist 2003; Chandler et al. 1993; Wegelius
and Korpi 1995). Similarly, pre-treatment of SH-SY5Y cells, a cell line commonly used to
model nigral dopaminergic neurons for Parkinson’s disease with low ethanol concentrations
caused attenuated salsolinol-induced toxicity (Ramlochansingh et al. 2011). Salsolinol (1-
methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline) is an endogenous dopamine
metabolite that has structural similarity to MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine) which is especially toxic to nigral dopaminergic neurons, a cluster of
cells implicated in Parkinson’s disease (Maruyama et al. 2004; Naoi et al. 2004; Storch et al.
2002). Since many Parkinson patients show high levels of salsolinol in their cerebrospinal
fluid, it has been suggested that salsolinol might be involved in the etiology or loss of
dopamine neurons in at least some of these patients (Maruyama et al. 2004; Storch et al.
2002). SH-SY5Y cells, derived from human neuroblastoma cells express high level of
dopaminergic activity and are used extensively as a model to study nigral dopaminergic
neurons (Maruyama et al. 2004; Naoi et al. 2004; Storch et al. 2002). Although the exact
neuroprotective mechanism of low alcohol concentration is not fully understood, it appears
that several mechanisms may be at work.

Alcohol in low to moderate concentration has also been shown to dampen the inflammatory
processes within the brain or in culture (Belmadani et al. 2001; Collins et al. 2000), possibly
by influencing increased release of heat shock proteins (HSPs: Belmadani et al. 2004;
Sivaswamy et al. 2010; reviewed in Collins et al. 2010). Studies in ex vivo models have
shown that preconditioning with alcohol for more that 4 days provided significant protection
against neurodegeneration caused by gp120 and β-amyloid exposure (Belmadani et al. 2001,
2004). The current theory of how this preconditioning may work is that alcohol exposure
translates an upstream signal that causes an increase in select HSPs (reviewed in Collins et
al. 2010). Interestingly, HSPs increase differentially in neurons and astrocytes, with HSP70
primarily located in neurons and HSP27 diffusely elevated in both (Sivaswamy et al. 2010).
This suggests that alcohol is differentially interacting with each cell type, and/or affecting
the communication between them.

Future Considerations
The story of why there is such a high incidence of alcohol and nicotine co-morbidity is still
being unraveled, and there are still many gaps in our knowledge about how the interaction of
these two drugs may lead to this co-morbidity. Moreover, the full consequences of alcohol–
nicotine co-use—especially at low doses—are far from clear. We have discussed that studies
have found additive, synergistic, or contradicting effects of nicotine and/or alcohol on some
measures. Obviously, differences in models (in vivo vs. in vitro) and in between in vivo
(e.g., different species, age, sex, etc.) and in vitro models (e.g., different cell lines) have to
be taken into consideration. Thus, future studies are needed to: establish dose equivalency in
humans as compared to rodents; evaluate effects of acute versus chronic treatment in both
sexes and in different age groups; and address the mechanism of action (e.g., receptor
involvement). Moreover, epigenetic influences of the single or combined effects of alcohol
and nicotine have yet to be determined. It is expected that future findings will not only
enhance our understanding of basic mechanisms leading to co-use of alcohol and nicotine,
but also shine more light on possible therapeutic interventions in drug addiction in general
and co-morbid condition of alcoholism and smoking in particular.
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