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Abstract

Through distant crossing, diploid, triploid and tetraploid hybrids of red crucian carp (Carassius auratus red var., RCCR,
Cyprininae, 2n = 100) 6 topmouth culter (Erythroculter ilishaeformis Bleeker, TC=, Cultrinae, 2n = 48) were successfully
produced. Diploid hybrids possessed 74 chromosomes with one set from RCC and one set from TC; triploid hybrids
harbored 124 chromosomes with two sets from RCC and one set from TC; tetraploid hybrids had 148 chromosomes with
two sets from RCC and two sets from TC. The 5S rDNA of the three different ploidy-level hybrids and their parents were
sequenced and analyzed. There were three monomeric 5S rDNA classes (designated class I: 203 bp; class II: 340 bp; and class
III: 477 bp) in RCC and two monomeric 5S rDNA classes (designated class IV: 188 bp, and class V: 286 bp) in TC. In the hybrid
offspring, diploid hybrids inherited three 5S rDNA classes from their female parent (RCC) and only class IV from their male
parent (TC). Triploid hybrids inherited class II and class III from their female parent (RCC) and class IV from their male parent
(TC). Tetraploid hybrids gained class II and class III from their female parent (RCC), and generated a new 5S rDNA sequence
(designated class I–N). The specific paternal 5S rDNA sequence of class V was not found in the hybrid offspring. Sequence
analysis of 5S rDNA revealed the influence of hybridization and polyploidization on the organization and variation of 5S
rDNA in fish. This is the first report on the coexistence in vertebrates of viable diploid, triploid and tetraploid hybrids
produced by crossing parents with different chromosome numbers, and these new hybrids are novel specimens for
studying the genomic variation in the first generation of interspecific hybrids, which has significance for evolution and fish
genetics.
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Introduction

Polyploidization, the addition of an extra set (or sets) of

chromosomes to the genome, is a predominant mechanism for

speciation in plants and animals [1–2]. Polyploidization can occur

via somatic doubling, the fusion of unreduced gametes, and by

means of a triploid bridge or polyspermy [1–3]. The current

prevailing opinion is that hybridization plays an important role in

triggering polyploidization [1,4–6]. Polyploid species are particu-

larly frequent in the plant kingdom [2,7], and 40–70% of all plant

species are polyploids [3,8]. However, while it is generally

relatively rare in animals [9–10], polyploidy has occurred

extensively, independently, and is often repeated in many groups

of fish, from the sharks to the higher teleosts [11–13]. Further-

more, artificially induced polyploidy has been used in aquaculture

to produce sterility and to improve production [14].

Polyploidy in fish represents a useful model system with which

to test theories about the origin and consequences of polyploidy

that have been derived from work on plants [15]. Using RCC

(Carassius auratus red var.) and TC (Erythroculter ilishaeformis Bleeker),

three new types of different ploidy-level hybrid fish were

successfully obtained. This is the first report on the formation of

these viable diploid, triploid and tetraploid hybrids by crossing

different parents with a different chromosome number in

vertebrates.

In eukaryotes, the 5S rDNA multigene family occurs as several

thousands copies of tandem repeated units, comprising a highly

conserved coding sequence of 120 bp and a flanking region of

variable nontranscribed spacer (NTS) containing some regulatory

elements for the transcription of the coding sequence [16–18].

Studies of the structural and functional organization of the 5S

rRNA genes have been carried out in fungi [19–22], plants [23–

24], animals [25–26], and particularly fish [17–18,27–37].

Accumulation of molecular data from fish shows the occurrence

of two 5S rDNA arrays characterized by a distinct NTS

[18,28,30,33]. This seems to imply a general trend of possessing
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two 5S rDNA classes for the organization of the 5S rRNA gene in

the fish genome [38]. Moreover, in some bony fishes, oocyte- and

somatic-type 5S rRNA genes are expressed differently in oocytes

and somatic cells [26,39]. Nevertheless, there are also reports of

one or three 5S rDNA arrays in bony fishes [40].

To further reveal the influence of hybridization and poly-

ploidization on the 5S rDNA organization, we performed a study

of nucleotide sequences and molecular organization of 5S rDNA

in red crucian carp (RCC), topmouth culter (TC) and their hybrid

offspring.

Materials and Methods

Ethics Statement
Administration of Affairs Concerning Animal Experimentation

guidelines state that approval from the Science and Technology

Bureau of China and the department of wildlife administration is

not necessary when the fish in question are not rare or near

extinction (first-class or second-class state protection level).

Therefore, approval was not required for the experiments

conducted in this paper.

Animals and Crossing Procedure
Specimens of RCC and TC were obtained from the Engineer-

ing Research Center of Polyploid Fish Breeding and Reproduction

of State Education Ministry at Hunan Normal University. During

the reproductive seasons (from June to July) in 2009, 2010 and

2011, 10 mature females and 10 mature males of both RCC and

TC were chosen as the maternal and paternal parents, re-

spectively. The crossings were performed by two groups. In the

first group, RCC was used as the maternal, and TC as the

paternal, While in the second group this was reversed. Mature

eggs were fertilized and the embryos developed in the culture

dishes at the water temperature of 20uC–22uC. In each crossing,

2000 embryos were chosen at random for the examination of the

fertilization rate (number of embryos at the stage of gastrula/

number of eggs6100%), the hatching rate (number of hatched

fry/number of eggs6100%) and the adulthood rate (number of

adulthood/number of eggs6100%). By using the same methods,

the same-species mating of RCC and TC were used as controls.

The hatched fry were then transferred to a special pond for further

culture.

The cross between RCCR6TC= resulted in three ploidy-level

hybrid offspring: diploid, triploid and tetraploid hybrids. In the

reverse cross between TCR6RCC= no living progeny were

produced. Hereinafter, the diploid hybrids of RCCR6TC= are

abbreviated as 2nRT hybrids, the triploid hybrids of RCCR6TC=
as 3nRT hybrids, and the tetraploid hybrids of RCCR6TC= as

4nRT hybrids.

Preparation of Chromosome Spreads and Measurement
of DNA Content

To determine ploidy, chromosome counts were carried out on

kidney tissue from 10 RCC, 10 TC, 10 2nRT, 10 3nRT and 10

4nRT hybrids at 1 year of age. Preparations were made according

to the method of Liu et.al (2007) [12] with minor modifications.

After culture for 2–3 days at the water temperature of 20uC–22uC,

the samples were injected with concanavalin one to three times at

a dose of 6–10 mg/g body weight. The interval time of injection

Table 1. Examination of chromosome number in RCC, TC, 2nRT, 3nRT and 4nRT hybrids.

Fish type Distribution of chromosome number

,48a 48 ,100a 100 ,74a 74 ,124a 124 ,148a 148

TC 12 188

RCC 7 193

2nRT 32 168

3nRT 45 155

4nRT 14 186

aThe chromosome number is less than what they should be, owning to the loss of chromosomes in the procedure of chromosome preparation.
doi:10.1371/journal.pone.0038976.t001

Figure 1. Appearance of RCC, TC and their hybrid offspring. (A)
RCC. (B) TC. (C) 2nRT hybrids of RCCR6TC=. (D) 3nRT hybrids of
RCCR6TC=. (E) 4nRT hybrids of RCCR6TC=. Scale bar in A–E, 1 cm.
doi:10.1371/journal.pone.0038976.g001
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was 12–24 hours. 2–3 hours prior to dissecting, each sample was

injected with colchicines at a dose of 6–8 mg/g body weight. The

kidney tissue was ground in 0.9% NaCl, followed by hypotonic

treatment with 0.075 M KCl at 37uC for 40–60 min and then

fixed in 3:1 methanol-acetic acid for three changes. Cells were

dropped on cold, wet slides and stained with 4% Giemsa for 30–

45 min. The shape and number of chromosome were analyzed

under a light microscope. 200 metaphase spreads of chromosomes

were analyzed for each type of fish (20 from each sample).

Preparations were examined under an oil lens at a magnification of

6330 and good-quality metaphase spreads were photographed for

analysis of karyotypes. Lengths of entire chromosomes (long and

short arms) were measured. Chromosomes were classified on the

basis of their long-arm to short-arm ratios according to the

reported standards [41].

The DNA content of erythrocytes of RCC, TC and their hybrid

offspring were measured using a flow cytometer (Cell Counter

Analyzer, Partec, Germany). 1–2 ml of blood was gathered from

the caudal vein using a syringe containing ,200–300 units of

sodium heparin. Blood samples were then treated according to the

method outlined in Liu et.al (2007) [12], and measured under the

same condition. The DNA content of RCC and TC were used as

the controls. To calculate the ratios of the DNA content of the

hybrid offspring to the sum of that of RCC and TC, a x2 test was

used, with Yate’s correction applied to test for deviation from

expected ratio values.

Genomic DNA Extraction, PCR and Sequencing
Total genomic DNA of RCC, TC and their hybrid offspring

were extracted from the peripheral blood cells using a phenol/

chloroform extraction method as described in Sambrook et al.

(1989) [42]. A set of primers based on those described by Qin et al.

[40] (5S P1, 59-GCTATGCCCGATCTCGTCTGA-39: 5S P2R,

59- CAGGTTGGTATGGCCGTAAGC-39) were designed and

synthesized to amplify the 5S rRNA genes and their nontran-

scribed spacer regions directly from genomic DNA. PCR reactions

were carried out in a volume of 25 mL with approximately 20 ng

of genomic DNA, 1.5 mM of MgCl2, 250 mM of each dNTP,

0.4 mM of each primer, and 1.25 U of Taq polymerase (TaKaRa,

Dalian, China). The thermal program consisted of an initial

denaturation step at 94uC for 5 min, followed by 25 cycles (94uC
for 30 sec, 60uC for 30 sec, and 72uC for 1 min) and a final

extension step at 72uC for 10 min. Amplification products were

separated on a 1% agarose gel using TBE buffer. The DNA

fragments were purified using a gel extraction kit (Sangon Biotech

Co., Ltd., Shanghai, China) and ligated into the pMD18-T vector

(TaKaRa, Dalian, China). The plasmids were transformed into E.

coli DH5a and purified, and the inserted DNA fragments were

sequenced using an automated DNA sequencer (ABI PRISM

3730, Applied Biosystems, Carlsbad, CA). To determine sequence

homology and variation among the fragments amplified from

RCC, TC, 2nRT, 3nRT and 4nRT hybrids, sequences were

aligned using BioEdit [43] and Clustal W [44].

Fluorescence in situ Hybridization and Microscopy
Purified PCR products of 5S rDNA labeled with Dig-11-dUTP

(Roche, Germany) were used as probes, and hybridization was

performed according to the method described by Yi et al. (2003)

[45] with minor modifications. After treatment with 30 mg/ml

RNase A in 26SSC for 30 min at 37uC, the slides with

chromosome metaphase spreads were denatured in 70% deionized

formamide/26SSC for 2 min at 70uC, dehydrated in a 70%, 90%

and 100% ethanol series for 5 min each (16SSC is 0.15 M NaCl/

0.015 M sodium citrate, pH 7.6), and then air-dried. 4 ml of the

hybridization mixture (approximately 100 ng of labeled probes,

50% formamide, 10 mg dextran sulfate/ml and 26SSC) was

denatured for 10 min in boiling water, applied to the air-dried

slides carrying denatured metaphase chromosomes under

a 22622 mm coverslip, and sealed with rubber cement. The

slides were then put in a moist chamber and allowed to incubate

overnight at 37uC.

Following overnight incubation, the coverslips were removed

and the slides were rinsed at 43uC in: 26SSC with 50%

formamide, twice, 15 min each; 26SSC, 5 min; 16SSC, 5 min,

then air-dried. The spectrum signals were achieved by application

of 8 ml of 5 mg/ml FITC-conjugated antidigoxigenin antibody

from sheep (Roche, Germany) and a final incubation in the

humidity chamber at 37uC. After a series of washes with TNT

(containing 0.1 M Tris-HCl, 0.15 M NaCl, 0.05% Tween 20) at

43uC, the slides were mounted in antifade solution containing

2 mg/ml 4’,6-diamidino-2-phenylindole (DAPI) for 5 min. Slides

were viewed under a Leica inverted CW4000 microscope and

a Leica LCS SP2 confocal image system (Leica, Germany).

Captured images were colored and overlapped in Adobe Photo-

shop cs4. At least 30 metaphases from each sample were analyzed.

Figure 2. Chromosome spreads at metaphase and corresponding karyotypes of RCC, TC, and their hybrid offspring. (A) The 100
chromosomes of RCC, with no large submetacentric chromosome. (B) The 48 chromosomes of TC, with a pair of the largest submetacentric
chromosomes indicated (solid arrows). (C) The 74 chromosomes of 2nRT hybrids, with a piece of the largest submetacentric chromosome indicated
(solid arrow). (D) The 124 chromosomes of 3nRT hybrids, with a piece of the largest submetacentric chromosome indicated (solid arrow). (E) The 148
chromosomes of 4nRT hybrids, with a pair of the largest submetacentric chromosomes indicated (solid arrows). (F) The karyotype of RCC, in which no
large submetacentric chromosome is detected. (G) The karyotype of TC, which includes a pair of the largest submetacentric chromosomes (solid
arrow). (H) The karyotype of 2nRT hybrids, comprising one set of chromosomes from RCC and one set from TC. The solid arrow indicates a piece of
the largest submetacentric chromosome, which is similar to that of TC. (I) The karyotype of 3nRT hybrids, consisting of two sets of chromosomes from
RCC and one set from TC. The solid arrow indicates a piece of the largest submetacentric chromosome, which is similar to that of TC. (J) The
karyotype of 4nRT hybrids, consisting of two sets of chromosomes from RCC and two sets from TC. The solid arrow indicates a pair of the largest
submetacentric chromosomes similar to those of TC. Scale bar in A–J, 3 mm.
doi:10.1371/journal.pone.0038976.g002

Table 2. Mean DNA content of RCC, TC, 2nRT, 3nRT and 4nRT
hybrids.

Ratio

Fish
type

Mean DNA
contenta Observed Expected

RCC 101.29

TC 67.40

2nRT 84.19 2nRT/(0.5 RCC+0.5 TC) = 0.99b 1

3nRT 136.17 3nRT/(RCC+0.5 TC) = 1.01b 1

4nRT 163.01 4nRT/(RCC+TC) = 0.97b 1

aThe intensity of fluorescence (unit, channel).
bThe observed ratio was not significantly different (P.0.05) from the expected
ratio.
doi:10.1371/journal.pone.0038976.t002
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Results

Fertilization Rate, Hatching Rate and Adulthood Rate
In the cross of RCCR6TC= we observed a high fertilization

rate (83.6%) and hatching rate (74.6%) but relatively low

adulthood rate (28.6%). While in the same-species mating, the

fertilization rate, hatching rate and adulthood rate of RCC were

89.9%, 85.4%, 75.5%, respectively, and that of TC were 94.9%,

89.8%, 77.4%. There were no living progeny in the reverse crosses

between TCR6RCC=. Approximately 3000 2nRT, 2500 3nRT

and 20 4nRT hybrids were obtained each year.

At the age of 2 years, because of the few number of 4nRT

hybrids, only an artificial propagation of 2nRT and 3nRT hybrids

was conducted during the reproductive season of last year, and

neither 2nRT nor 3nRT hybrids were able to mate. According to

our previous studies [11–12], we supposed that 4nRT hybrids

were fertile though the confirmation of fertility or sterility requires

further study.

Chromosome Number and Karyotypes
The chromosome numbers were determined for the mitotic

metaphases of all samples. Table 1 shows the distribution of

chromosome number in RCC, TC, 2nRT, 3nRT and 4nRT

hybrids. For diploid RCC (Figure 1A), 96.5% of chromosomal

metaphases had 100 chromosomes with the karyotype formula of

22 m +34 sm +22 st +22 t (Figure 2A, F). For diploid TC

(Figure 1B), 94% of chromosomal metaphases possessed 48

chromosomes with the karyotype formula of 16 m +26 sm +6 st

(Figure 2B, G). In the hybrid offspring of RCCR6TC= without

barbels and with low body height (Figure 1C), 84% of

chromosomal metaphases had 74 chromosomes with the karyo-

type formula of 19 m +30 sm +14 st +11 t (Figure 2C, H). In the

hybrid offspring of RCCR6TC= without barbels but having high

Figure 3. Cytometric histograms of RCC, TC and their hybrid
offspring. (A) The mean DNA content of RCC (peak 1:101.29). (B) The
mean DNA content of TC (peak 1:67.40). (C) The mean DNA content of
2nRT hybrids (peak 1:84.19). (D) The mean DNA content of 3nRT hybrids
(peak 2:136.17). (E) The mean DNA content of 4nRT hybrids (peak
1:163.01).
doi:10.1371/journal.pone.0038976.g003

Figure 4. DNA bands amplified from RCC, TC and their hybrid
offspring.M: DNA ladder markers (50 bp increments); lane 1: two DNA
bands (,200 and 300 bp) from TC; lane 2: three DNA bands (,200, 350
and 500 bp) from RCC; lane 3: three DNA bands (,200, 350 and 500 bp)
from 2nRT hybrids; lane 4: three DNA bands (,200, 350 and 500 bp)
from 3nRT hybrids; lane 5: four DNA bands (,200, 350, 400 and 500 bp)
from 4nRT hybrids.
doi:10.1371/journal.pone.0038976.g004
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body height (Figure 1D), 77.5% of chromosomal metaphases had

124 chromosomes with the karyotype formula of 30 m +47 sm

+25 st +22 t (Figure 2D, I). In the hybrid offspring of

RCCR6TC= with barbels (Figure 1E), 93% of chromosomal

metaphases had 148 chromosomes with the karyotype formula of

38 m +60 sm +28 st +22 t (Figure 2E, J).

DNA Content
The distribution of DNA content of all samples is shown in

Table 2 and Figures 3A–E. The mean DNA content of 2nRT

hybrids was equal (P.0.05) to the sum of half of RCC and TC,

demonstrating that 2nRT hybrids had one set of chromosomes

from both RCC and TC. The mean DNA content of 3nRT

hybrids was equal (P.0.05) to the sum of RCC and half of TC,

suggesting that 3nRT hybrids had two sets of chromosomes from

RCC and one set of chromosomes from TC. The mean DNA

content of 4nRT hybrids was equal (P.0.05) to that of RCC and

TC, showing that 4nRT hybrids had two sets of chromosomes

from both RCC and TC.

Polymorphism of PCR Band Patterns
PCR amplification with 5S primers P1 and P2R for RCC, TC

and their hybrid offspring produced distinctive band patterns.

There were three bands (approximately 200, 350 and 500 bp) in

RCC, two bands (approximately 200 and 300 bp) in TC, three

bands (approximately 200, 350 and 500 bp) in 2nRT hybrids,

three bands (approximately 200, 350 and 500 bp) in 3nRT

Table 3. The results of sequences.

samples

Number of
sequenced
clones PCR bands

,200 bp ,300 bp ,350 bp ,400 bp ,500 bp

RCC 30 Ten clones of 203 bp Absent Ten clones of 340 bp Absent Ten clones of 477 bp

TC 20 Ten clones of 188 bp Ten clones of 286 bp Absent Absent Absent

2nRT 60 12 clones of 179 bp;
8 clones of 203 bp

Absent 20 clones of 340 bp Absent 20 clones of 495 bp

3nRT 60 20 clones of 188 bp Absent 20 clones of 340 bp Absent 20 clones of 495 bp

4nRT 80 20 clones of 203 bp Absent 20 clones of 340 bp 20 clones of 406 bp 20 clones of 477 bp

doi:10.1371/journal.pone.0038976.t003

Figure 5. Representative sequences of monomeric 5S rDNA and dimeric 5S rDNA. (A) Arrangement of eukaryotic 5S rDNA and the
illustration of the PCR amplification with 5S primers P1 and P2R; (B) Representative sequences of 5S rDNA Class IV and Class V from TC; (C) The dimeric
5S rDNA tandem arrays (NTS–I–N) of 4nRT hybrids. The gene sequences of 5S rDNA are underlined and the shaded regions show the 5S primers.
Dashes indicate alignment gaps; asterisks represent variable sites; TATA element (TAAA) is included in box.
doi:10.1371/journal.pone.0038976.g005
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hybrids, and four bands (approximately 200, 350, 400 and 500 bp)

in 4nRT hybrids (Figure 4).

A total of 250 clones were sequenced to examine the different

patterns of 5S rDNA, including 30 clones from RCC, 20 clones

from TC, 60 clones from 2nRT hybrids, 60 clones from 3nRT

hybrids and 80 clones from 4nRT hybrids (Table 3). Three

fragments were indentified in the PCR product of RCC (203, 340

and 477 bp), two fragments occurred in TC (188 and 286 bp),

four in 2nRT hybrids (179, 203, 340 and 495 bp), three in 3nRT

hybrids (188, 340 and 495 bp), and four in 4nRT hybrids (203,

340, 406 and 495 bp) (Table 3). Sequence analysis showed that

2nRT hybrids presented two similarly sized 5S PCR products of

179 and 203 bp that were not distinguishable on the agarose gel,

where they were seen as a single band of about 200 bp.

Nucleotide Sequence Analysis of 5S rDNA
Using BLASTn, all fragments of RCC, TC and their filial

generation were confirmed to be 5S rDNA repeat units, each

comprising a 3’ end of the 5S rRNA region (positions 1–21),

a whole NTS region, and a large 5’ flanking of the coding region of

the adjacent unit (positions 22–120) (Figure 5A). In RCC, three

fragments of 5S rDNA (designated class I: 203 bp; class II: 340 bp;

and class III: 477 bp) were characterized by different NTS types

(designated NTS–I, II, and III for the 83, 220, and 357 bp

monomers, respectively). In TC, there were two fragments of 5S

rDNA classes with the same coding region (designated class IV:

188 bp, and class V: 286 bp) but distinct NTS types (designated

NTS–IV and NTS–V, for the 68 and 166 bp monomers,

respectively) (Figure 5B). The sequence data demonstrated that

RCC and TC showed high conservation in 5S coding regions and

large variation in NTS regions. The mean G + C content of the

coding regions in RCC and TC were 55% and 55.8%,

respectively, both GC-rich. Comparative analysis of homology of

the 5S rDNA fragments between hybrid offspring and their

parents showed that the diploid hybrids (2nRT) had four 5S rDNA

classes, with three (class I, II and III) deriving from their female

Figure 6. Complete 5S rRNA genes of RCC, TC and their hybrid offspring. Dots indicate the identical nucleotides and ICRs are included in
the boxes.
doi:10.1371/journal.pone.0038976.g006
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parent (RCC) and one (class IV) from their male parent (TC). The

triploid hybrids (3nRT) inherited three 5S rDNA classes, with two

(class II and class III) from RCC and one (class IV) from TC. The

tetraploid hybrids (4nRT) inherited two 5S rDNA classes (class II

and class III) from RCC and presented a new 5S rDNA sequence

(designated class I–N: 203 bp) with a novel NTS sequence

(designated NTS–I–N: 83 bp). The specific paternal 5S rDNA

sequence class V was not found in the hybrid offspring. In

addition, the 406 bp DNA fragment from 4nRT hybrids was

a dimeric 5S rDNA tandem array consisting of two class I–N

sequences (Figure 5C). All the sequences, except the three that

were shorter than 200 bp, were deposited in GenBank with the

accession numbers JQ317900 to JQ317911.

All the internal control regions (including A box, internal

element and C box) were identified in the coding regions of

parents and their hybrid offspring. Although 5S rRNA genes were

highly conserved in RCC and TC, several species-specific

nucleotide variations were observed in the A box, positioned at

60, 61 and 63. Furthermore, among the hybrid progeny, several

nucleotide variations were found not only in the ICRs but also at

other four positions (Figure 6).

Figure 7. Alignment results of the NTS sequences from CC, RCC, TC and their hybrid offspring. (A) The 59 bp and 68 bp NTS sequences
(NTS–IV) of TC, 2nRT and 3nRT hybrids; (B) NTS–I from RCC, CC, 2nRT and 4nRT hybrids; (C) NTS–II from RCC, 2nRT, 3nRT and 4nRT hybrids; (D) NTS–III
from RCC, 2nRT, 3nRT and 4nRT hybrids. The NTS upstream TATA-like sequences are included in boxes. Dots indicate sequence identity and hyphens
represent insertions/deletions.
doi:10.1371/journal.pone.0038976.g007
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There were three NTS types in RCC (designated NTS–I,

83 bp; NTS–II, 220 bp; and NTS–III, 357 bp) and two NTS

types in TC (designated NTS–IV, 68 bp, and NTS–V, 166 bp).

Among the offspring, 2nRT hybrids had four types of NTS (NTS–

I, NTS–II, NTS–III and NTS–IV), 3nRT hybrids possessed three

types (NTS–II, NTS–III and NTS–IV), and 4nRT hybrids yet

harbored three (NTS–I–N, NTS–II and NTS–III). The TATA

box control element, upstream from the next array, was examined

within all the NTS sequences of RCC, TC and their hybrid

offspring, at positions 226 to 229 where it has been modified to

TAAA (Figure 7). The thymidine residues necessary for transcrip-

tion termination were also detected (Figures 6 and 7).

Chromosomal Location of 5S rDNA
Through in situ hybridization, the 5S rDNA fluorescent probes

prepared from the cloned 5S rDNA repeated units of TC (class IV

and class V) were hybridized to the mitotic metaphase chromo-

somes of RCC, TC and their hybrid offspring. As shown in

Figure 8, the probe from class IV of TC hybridized with the

metaphase chromosomes of TC, 2nRT and 3nRT hybrids, but

not with RCC and 4nRT hybrids; the probe from class V of TC

hybridized only with the metaphase chromosomes of TC. These

results and the data in Table 3 indicated the different heredity

characteristic of paternal-specific 5S rDNA.

Discussion

Formation of Diploid, Triploid and Tetraploid Hybrids
The different ploidy levels of hybrid fish were determined by

counting the chromosomes and examining DNA content using

flow cytometry. The former is a direct and accurate method for

determining ploidy of samples, and the latter is a rapid, simple and

equally accurate method.

Both chromosome number and karyotype formula of RCC

were similar to the results of previous studies [11–12]. 2nRT,

3nRT and 4nRT hybrids possessed 74, 124 and 148 chromosomes

respectively (Figure 2), in contrast to RCC (100) and TC (48).

Furthermore, it is apparent that a pair of the largest sub-

metacentric chromosomes in diploid TC can be used as marker

chromosomes for identifying TC from RCC. Possessing 74

chromosomes and a submetacentric largest chromosome, 2nRT

hybrids were proved to have obtained one set of chromosomes

from RCC and one set of chromosomes from TC (Figure 2C, H).

With 124 chromosomes and a submetacentric largest chromo-

some, 3nRT hybrids apparently contain two sets of chromosomes

from RCC and one set of chromosomes from TC (Figure 2D, I).

4nRT hybrids had 148 chromosomes and one pair of sub-

metacentric chromosomes and are suggested to harbor two sets of

chromosomes from RCC and two sets of chromosomes from TC

(Figure 2E, J). In addition, there was a significant relationship

between the sum of the mean DNA content of the hybrid offspring

and that of their parents (Figure 3, Table 2). These results indicate

the hybridization origin of the progeny of RCCR6TC=, rather

than gynogenesis or androgenesis.

Figure 8. Fluorescence photomicrographs of mitotic meta-
phase chromosomes of RCC, TC and their hybrid offspring.
Signals were detected with fluorescein isothiocyanate (FITC)-conjugat-
ed avidin and all the metaphase chromosomes were stained with DAPI.

A–E (mitotic metaphase chromosomes of RCC, TC, 2nRT, 3nRT and 4nRT
hybrids respectively) show the single-label FISH results hybridized with
a probe from the cloned repeated fragments of class IV; F–J (mitotic
metaphase chromosomes of RCC, TC, 2nRT, 3nRT and 4nRT hybrids
respectively) demonstrate the hybridization results after single-label
FISH with a probe from the cloned repeated fragments of class V. The
white arrowheads indicate the fluorescent signals (green) of 5S rDNA.
Scale bar in A–J, 3 mm.
doi:10.1371/journal.pone.0038976.g008
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Polyploidization is an important and frequent event in lower

vertebrate evolution, especially that of fish [46–47]. In our

previous studies, we successfully obtained two kinds of bisexual

fertile tetraploid hybrids (4 nAT and 4 nRB) [11–12]. In the case

of 4 nAT, there were only diploid hybrids with 100 chromosomes

in the F1–F2 generation, while the tetraploid hybrids with 200

chromosomes were found in F3 and the later generations, being

formed via the fusion of unreduced gametes. For 4 nRB, only

3 nRB and 4 nRB hybrids were formed, and no diploid hybrids

were found to survive past the first generation (although diploid

embryos were observed). 3 nRB hybrids resulted from the

retention of the second polar body, whereas 4 nRB hybrids

resulted from somatic doubling. Recently, the coexistence of

diploid, triploid and tetraploid crucian carp (Carassius auratus) in

natural waters has been reported [48]. In the present study, viable

2nRT, 3nRT and 4nRT hybrids were created for the first time by

crossing different parents (RCC and TC) belonging to distinct

subfamilies with different chromosome numbers. We hypothesize

that the different ploidy numbers of the hybrid offspring arose by

non-disjunctive or incomplete cell division during the first

doubling.

Molecular Organization of the 5S rDNA
Numerous studies have reported the retention of more than one

5S rDNA repeat class and the elimination of parental-specific 5S

rDNA following polyploidization in plants and fishes [40,49–55].

As previously reported by Qin et al. (2010), RCC was found to

have three types of 5S rDNA sequences owing to a probably

ancient polyploidization. 3 nRB and 4 nRB hybrids possessed four

and three types of 5S rDNA sequences, respectively, following

allopolyploidization, and a paternal-specific loss of 5S rDNA was

also observed in 4 nRB hybrids. A similar result was found in the

present study, with three types of 5S rDNA sequences observed in

RCC having high similarity (100%, 99.7% and 98.7%, re-

spectively) to sequences in GenBank (GQ485555, GQ485556 and

GQ485557) which were uploaded by Qin et al. (2009). Moreover,

only two types of 5S rDNA sequences were detected in TC,

favoring the hypothesis that the presence of two classes of 5S

rDNA is a general trend for the 5S rRNA gene organization in the

fish genome [38]. However, 2nRT, 3nRT and 4nRT hybrids had

four, three and three types of 5S rDNA sequences, respectively,

partially inheriting 5S rDNA classes from their parents. FISH

results (Figure 8) also confirmed the loss of paternal-specific 5S

rDNA classes. Moreover, the internal control regions (A box, IE

and C box), TATA-like control element and thymidine residues

which are necessary for the correct gene expression, were observed

in all the sequences of the parents and their hybrid offspring,

indicating that all sequences analyzed here were functional genes.

Hybridization can result in genomic changes including altera-

tions of gene expression, chromosomal structure, and genome size

[56]. In the present work, we detected several nucleotide

mutations in the coding regions of the hybrid progeny, even in

the ICRs (Figure 6). We also observed nucleotide polymorphisms

including base constitution and insertion-deletion in the NTS

sequences of the hybrid offspring (Figure 7).

It has been reported that the NTS sequence could be employed

as a molecular marker for species identification and phylogenetic

studies [17,35,40,57–60]. Here, three NTS types (NTS–I, NTS–II

and NTS–III) with different length and base constitutions were

detected in RCC. TC had two types of distinct NTS (NTS–IV and

NTS–V) (Figure 7). Four types of NTS (NTS–I, NTS–II, NTS–III

and NTS–IV) were detected in 2nRT hybrids, with types III and

IV resulting from an insertion in the NTS-III sequence and

a deletion in the NTS-IV sequence, respectively. The 3nRT

hybrids had three NTS types (NTS–II, NTS–III and NTS–IV),

and the same insertion was also detected in NTS–III. There were

three types of NTS (NTS–I–N, NTS–II and NTS–III) in 4nRT

hybrids, with NTS–I–N having several base mutations. These

variations in NTS sequences indicate that 5S rDNA can serve as

a suitable genetic marker for evolutionary studies and for the

genetic identification of hybrid fish and their parent species.

In previous studies, a minimum length (59 bp) of NTS sequence

was found to maintain the array and the expression/regulation

dynamic of 5S rRNA genes in the fish genome [38,61–62]. 2nRT

hybrids inherited nearly all the 5S rDNA classes from their parents

(with the exception of the class V 5S rDNA of TC). Furthermore,

almost all the 5S rDNA classes preserved the structural

organization characteristic of their parents (with the exception of

a deletion of a T at position 259 and a sequence of GAATACCT

at positions 230 to 237 in the NTS–IV sequences of TC)

(Figure 7). It’s the first time to describe this finding in F1 hybrids of

fish and provides further evidence that a 59 bp length of NTS

sequence is the minimum necessary to guarantee the array and the

dynamics of the 5S rRNA genes.

In this study, 4nRT hybrids lost all the paternal-specific 5S

rDNA classes (IV and V) and presented a newly formed

allopolyploid-special 5S rDNA sequence (class I–N). This novel

5S rDNA sequence showed a low similarity to that of their parents

but a high homology to that of common carp (Cyprinus carpio, CC,

Accession number: AB015590), even though this species belongs to

a different genus (Figure 7, Table 4). It’s the first report of this

phenomenon in the cross of RCCR6TC=. Similar findings have

previously been reported [12,40,63]. For example, the barbels and

the Sox gene, which were special traits for CC, presented in 4 nRB

hybrids but were absent in 3 nRB hybrids and their parents (RCC

and BSB). Importantly, there was also an allopolyploid-special 5S

rDNA sequence (Accession number: GU329957) of 4 nRB hybrids

with low similarity to that of their parents but high homology to

that of CC (Accession number: AB015590). The formation of CC-

specific DNA sequences and genes in allopolyploid hybrids imply

that hybridization and allopolyploidization could result in rapid

genomic changes in the hybrid offspring of RCCR6TC=. In

addition, it has been reported that a drastic elimination and

recombination of the parental-specific rDNA repeat units has

Table 4. Nucleotide homology of NTS sequences among CC, RCC, TC, 2nRT, 3nRT and 4nRT hybrids (percentage).

NTS types (bp) TC and 2nRT TC and 3nRT RCC and 2nRT RCC and 3nRT RCC and 4nRT CC and 4nRT

59, 68 80.8 100 Absent in both Absent in both Absent in both Absent in both

83 Absent in TC Absent in both 92.7 Absent in 3nRT 73.8 97.5

220 Absent in TC Absent in TC 97.2 97.2 96.3 Absent in CC

357, 375 Absent in TC Absent in TC 86.4 88.8 97.7 Absent in 4nRT

doi:10.1371/journal.pone.0038976.t004
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some relationship to the fertility of newly formed hybrids or

allopolyploids [55,64–65]. Thus, to improve fertility, rapidly

genetic recombination was required in 4nRT hybrids, which led

to the absence of parental-specific 5S rDNA and the presence of

a novel 5S rDNA. Consequently, we can assume that 4nRT

hybrids were fertile, although confirmation of fertility or sterility

requires further study. However, there was no data available to

allow interpretation of the possible evolutionary relationship

between CC and the allopolyploid hybrids.

In conclusion, this is the first report on the formation of these

viable diploid, triploid and tetraploid hybrids by crossing different

parents with a different chromosome number in vertebrates.

Results observed here confirmed the influence of hybridization

and allopolyploidization on the 5S rDNA organization, and

provided new information on the genetic variation of the 5S rDNA

multigene family in vertebrates. We will continue the comparative

study of genomic and phenotypic patterns in the hybrid offspring

in our future studies.
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