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Abstract

When plastids are transferred between eukaryote lineages through series of endosymbiosis, their environment changes
dramatically. Comparison of dinoflagellate plastids that originated from different algal groups has revealed convergent
evolution, suggesting that the host environment mainly influences the evolution of the newly acquired organelle. Recently
the genome from the anomalously pigmented dinoflagellate Karlodinium veneficum plastid was uncovered as a conventional
chromosome. To determine if this haptophyte-derived plastid contains additional chromosomal fragments that resemble
the mini-circles of the peridin-containing plastids, we have investigated its genome by in-depth sequencing using 454
pyrosequencing technology, PCR and clone library analysis. Sequence analyses show several genes with significantly higher
copy numbers than present in the chromosome. These genes are most likely extrachromosomal fragments, and the ones
with highest copy numbers include genes encoding the chaperone DnaK(Hsp70), the rubisco large subunit (rbcL), and two
tRNAs (trnE and trnM). In addition, some photosystem genes such as psaB, psaA, psbB and psbD are overrepresented. Most
of the dnaK and rbcL sequences are found as shortened or fragmented gene sequences, typically missing the 39-terminal
portion. Both dnaK and rbcL are associated with a common sequence element consisting of about 120 bp of highly
conserved AT-rich sequence followed by a trnE gene, possibly serving as a control region. Decatenation assays and
Southern blot analysis indicate that the extrachromosomal plastid sequences do not have the same organization or lengths
as the minicircles of the peridinin dinoflagellates. The fragmentation of the haptophyte-derived plastid genome K.
veneficum suggests that it is likely a sign of a host-driven process shaping the plastid genomes of dinoflagellates.
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Introduction

The dinoflagellates are a diverse group of protists comprising

both heterotrophic and phototrophic lineages. Most of the

phototrophic species harbor a plastid of red algal origin

characterized by the carotenoid peridinin, chlorophyll a and c2
[1,2]. The peridinin-containing plastid is most likely the ancestral

plastid in dinoflagellates. As a result of a massive loss of plastid

genes from the endosymbiont, only 18 different genes have been

identified in total among all investigated genomes. These are

found on minicircles [3] of typically 2–3 kb length rather than on

a single chromosome. On the other hand, some dinoflagellate

species have differently pigmented plastids that have evolved

through replacement of the ancestral plastid either by endosym-

biosis of an alga with a primary plastid or by an alga with

a secondary plastid [1,4,5,6]. Algae that gave rise to plastid

replacements (serial endosymbiosis; see [7] for a review) in

dinoflagellates include cryptophytes, haptophytes, diatoms and

green algae [8,9,10,11,12,13,14,15,16,17]. It is currently not

known whether serial endosymbiosis in dinoflagellates in one way

or another also involves desintegration of the endosymbiont

genome into minicircles as seen in the peridinin plastids.

Among dinoflagellates that have been involved in serial transfer

of plastids, we find the family Kareniaceae, consisting of Karenia,

Karlodinium and Takayama [18], harboring haptophyte-derived

plastids with fucoxanthins as accessory pigments [2,4,6,19]. The

fucoxanthin-plastid of Karlodinium veneficum is well integrated into

the host [2,20]. Recently, the plastid genome of K.veneficum was

sequenced and demonstrated to be organized conventionally as

a genome of minimum 143 kb [21]. However, the genome has

undergone extensive gene loss and expanded in size compared to

its homolog in the haptophyte Emiliania huxleyi. Particularly,

ancestral gene clusters are broken up, and intergenic regions are

extended [21]. Several genes exhibit unusual features such as lack

of conserved regions and reading frames distorted by stop codons

or frame shifts.

In the present study, we have examined whether the Karlodinium

plastid genome has undergone fragmentation similar to what is
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known for the peridinin-containing plastid. We have investigated

the K.veneficum plastid genome by in-depth sequencing using 454

pyrosequencing technology, PCR and clone library analyses. The

data indeed reveal massive variation of copy number and many

variants of the genes present in the plastid. Most likely, these genes

are extrachromosomal fragments organized in complex structures,

revealing that genome reduction, re-arrangements and fraction-

ation among dinoflagellates plastids have taken place indepen-

dently in at least two different types of plastid lineages. This

suggests that the evolutionary process is host-related and

a characteristic feature of the dinoflagellate host.

Results

High Throughput Sequencing Shows High Copy
Numbers of Certain Plastid Genes
The data set generated by 454 pyrosequencing of plastid

enriched DNA (see methods) was used to analyze gene abundance

and gene variability in K. veneficum. Since the plastid genome is of

haptophyte origin, blast searches using the haptophyte Emiliania

huxleyi protein encoding genes against K. veneficum pyrosequencing

reads were performed. The results displayed in Figure 1 show that

as much as 49% of the hits were dnaK, and 10% were rbcL.

Together with 4 photosystem-associated genes (psaA, psaB, psbB,

and psbD), dnaK and rbcL comprised 75% of the sequences

analyzed. Sequence analysis of clones containing dnaK and rbcL

revealed that these genes were to a large extent incomplete.

Analysis of the K. veneficum plastid clone library showed a similar

result (not shown).

The rbcL Gene Sequences Occur in Variants of Different
Lengths
Since some genes were found in high copy numbers, we

proceeded by testing for the presence of minicircles in K. veneficum.

Using outwards-directed primers specific for dnaK and rbcL (see

Table S1), PCR yielded strong bands on agarose gels. The PCR

products were cloned and sequenced, revealing fragmented or

incomplete gene sequences for both genes.

Figure 2 presents all the rbcL sequences derived from the PCR

clones, the clone library and the pyrosequencing data, revealing

that the sequences fall into three groups based on structural

organization. The first group of rbcL sequences (A) contains only

the coding region for the first 47 amino acids, followed by

conserved non-coding sequence motifs and tRNA genes (trnE and

trnM). The second group (B) contains both longer coding regions

of the rbcL protein, up to amino acid 304–306, and the same short

rbcL version as in A). All clones in B) have a frame shift due to an

extra T between the base triplets encoding amino acids 292 and

293, indicating that RNA editing is needed for correct expression

of the gene.

A complete rbcL sequence coding for 486 amino acids, without

frameshifts, was found in the clone library (C). Noticeably, the

tRNA genes trnE(uuc) and trnM(cau) are found interspersed with

rbcL; the PCR cloned sequence ms3 contains as many as three

trnE genes and two trnM genes.

Parts of the rbcL Locus are Highly Overrepresented in the
Pyrosequencing Data
A coverage analysis giving the number of occurrences per base

in the assembled rbcL locus is presented in Figure 2C. The

number of pyrosequencing reads found for the different parts of

the rbcL gene corresponds remarkably well with the library and

PCR clones that were shown in Figure 2A–C. The first part of the

rbcL gene is present at high copy numbers, whereas the middle

part of the gene sequence has intermediate occurrence. The end of

the gene, which is missing in most clones, has low occurrence in

the plastid data set. Two motifs that are found upstream of the

gene, High copy motif 1 and High copy motif 2, show the highest

peak of sequence occurrence. These elements were recognized as

common elements among all rbcL clones.

Southern Blot Analysis Confirms the Coverage Analysis of
the rbcL Locus
We hybridized different parts of the rbcL sequences to

a Southern blot containing pooled fractions of uncut and

EcoRI-digested DNA from the CsCl gradient. The hybridization

patterns shown in Figure 3, which were obtained with the rbcL

probes, are consistent with the gene structures found in Figure 2.

The first probe, corresponding to the middle part of the rbcL gene

(probe 1), hybridizes to four bands. The second probe, the end

part of rbcL missing in most clones (probe 2), only hybridizes to

two bands. The third probe, containing the 59 coding region of

rbcL hybridizes to at least seven bands, and the fourth probe, with

common non-coding elements, hybridizes to at least eight bands.

At high stringency conditions (at 70uC washing temperature), only

one target band is detected with the 59 coding probe. Probe 4,

containing putative common regulatory elements, hybridizes

equally strong to all bands, indicating that this probe sequence

has regulatory elements common to several gene targets.

Notably, a high molecular weight DNA smear is observed in the

lanes containing uncut DNA, showing that the hybridization

targets are distributed over a large size range rather than forming

a distinct band.

K. Veneficum Contains Shortened and Fragmented dnaK
Gene Sequences
A diverse collection of library clones and PCR cloned sequences

(see methods) is presented in Figure 4A, including two partial

dnaK genes which could be mapped to the conventional plastid

genome [21]. The dnaK versions are either fragmented or

truncated. The dnaK fragments are of the plastid version of the

gene; i.e. related to the cyanobacterial dnaK gene. PCR

amplification using dnaK-specific outwards-directed primers pro-

duced abundant products of 1800–2000 bp length. We were able

to clone products of length 1489 bp, 1741 bp and 2059 bp,

respectively (PCRout clones of Figure 4A). Inwards directed

Figure 1. Result of a tblastn search using 119 plastid proteins
from Emiliania huxleyi against the K. veneficum 454 GS FLX data
set. The E-value cut-off was 1025.
doi:10.1371/journal.pone.0038809.g001

Genome Fragmentation in a Tertiary Plastid
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primers generated a product of 882 bp. If these sequences are part

of circular molecules or repeat units in the case of tandem

arrangements, the cloned sequences mentioned above would

correspond to units of ca. 2300, 2600 and 2900 bp in size. The

coding sequences end at amino acid position 548 or 587,

compared to 623 amino acids in the E. huxleyi plastid (Figure 4B).

Similar to the short rbcL sequences, there are separate occurrences

of the 59 coding region of dnaK (corresponding to aa 4–79 in E.

huxleyi). One clone differs from another only by lacking the

separate occurring 59 coding region; the sequences are otherwise

identical, suggesting that one sequence is derived from the other.

Southern blot hybridization with dnaK coding sequence shows

two strongly hybridizing bands of approx. size 2300 and 3000 bp,

probably corresponding to the cloned putative minicircles or

putative repeat units, each sequence containing one site for the

restriction enzyme EcoRI (Figure 4C). One of the conserved

upstream motifs identified in rbcL sequence variants, the highly

abundant motif 2, is recognized upstream of most dnaK variants.

Figure 2. Schematic overview of rbcL sequences found in K.veneficum. Sequences are either library clones or PCR-clones generated with
outwards directed primers. A. Sequences containing a short rbcL gene fragment, corresponding to the first 47 amino acids. B. Sequences containing
the incomplete rbcL gene sequences, corresponding to amino acids 1–306. C. Sequence containing the complete rbcL gene. A copy number analysis
of pyrosequencing reads mapping to the rbcL gene is displayed below. The analysis shows number of read occurences per base of the cloned rbcL
sequence.
doi:10.1371/journal.pone.0038809.g002

Genome Fragmentation in a Tertiary Plastid
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The situation for dnaK resembles that of rbcL, suggesting an

organization of these genes in high copy numbers outside of the

conventional plastid genome.

Occurrence of a Common Upstream Motif in rbcL and
dnaK Gene Sequences
A closer look at the pyrosequencing reads sharing the ca.

120 bp long conserved motif 2 shows that the sequence is highly

conserved, depicted in graphical form as a Sequence Logo (Figure

S1A). We find that just a handful of 895 analyzed sequences

corresponds to the conventional plastid genome of K. veneficum.

The conventional genome contains a complete rbcL gene in this

position. However, most motif 2 sequences display a downstream

trnE gene, followed by sequence divergence into different groups.

We identified two of the groups as non-coding rbcL and dnaK

sequences. Within each group of sequences, we observe numerous

point mutations and evidence of slipped strand mispairing. The

motif forms elaborate secondary structures (not shown). By sorting

the 454-generated sequences in forward and reverse reads it can

be shown that around 95% of the forward reads terminate at the

start of trnE (Figure S1B), whereas the reverse reads traverse this

sequence. The PCR polymerase used for 454 sequencing

apparently responds to trnE as a termination signal in the in vitro

situation.

Since one of the two pyrosequencing experiments was

performed on DNA that was first amplified by RCA, we also

examined sequences generated by direct PCR, without the use of

RCA. A sequence alignment of the conserved element is shown in

Figure S2. Notably, this data set does not differ from the 454

pyrosequencing data. The figure also includes Sanger sequenced

library clones, where RCA was used in library construction. We

are well aware that a data set generated by using RCA prior to

sequencing could potentially contain artifacts of such character.

We are therefore reassured by finding the same type of sequence

variation in data generated without the use of RCA and in Sanger

sequences from the clone library and from the PCR-out clones.

Figure 3. Southern blot analysis of rbcL. Two filters containing pooled CsCl fractions of K. veneficum DNA, either undigested (2) or digested (E)
with EcoRI, were prepared. Probe 1 and 2 contain rbcL coding sequence, whereas probe 3 and 4 are derived from the PCR cloned sequence ms3
displayed in Figure 2B. Filter I was first hybridized with probe 1, stripped, and rehybridized with probe 4. Filter II was hybridized with probe 2,
stripped and rehybridized with probe 3 (filter II). Filter I was finally hybridized with the Lambda/HindIII marker shown to the left in the figure.
doi:10.1371/journal.pone.0038809.g003

Genome Fragmentation in a Tertiary Plastid
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Concatenated DNA Circles not Found
The absence of minicircle bands on Southern blots with

undigested DNA may potentially be caused by minicircles

organized in complex structures. Using a Topoisomerase of type

II (E.coli DNA topoisomerase IV) on CsCl-fractionated DNA, we

tested if the extrachromosomal genes exist as concatenated gene

minicircles in K.veneficum plastid DNA. The enzyme is capable of

decatenating linked circular molecules by producing transient

double strand breaks [26]. We could not detect any bands using

the non-coding rbcL probe with the putative regulatory element

(Figure 5) or a plastid LSU probe (Figure 6B). Positive controls for

the assay included successful decatenation of kDNA and relaxation

of a supercoiled plasmid. These results suggest that higher order

DNA structures similar to the interlocked DNA circles of

trypanosomatid protozoa [27] do not exist in K. veneficum.

Organization of Plastid Ribosomal Genes
The plastid LSU rRNA gene probe was hybridized to

a Southern blot containing pooled fractions of the CsCl gradient

DNA. An agarose gel image of the DNA is shown in Figure 6A. In

this gradient, the plastid-enriched DNA is mainly located in the

pooled fractions 6–10, whereas the nuclear DNA is found in the

denser fractions 16–19. The plastid LSU probe somewhat

unexpectedly hybridized to fractions 11–15; i.e. close to the

nuclear DNA fractions (Figure 6B). In Figures 6C and 6D, copy

numbers of pyrosequencing reads are plotted against GC content

for the fractions 6–10 and 11–14. The plastid ribosomal genes are

highly overrepresented in fractions 11–14, co-located with nuclear

ribosomal genes and mitochondrial sequences (Table S3). The

overall GC content of the conventional plastid genome is 27.1%,

but the part containing the ribosomal genes has 38.1% GC. A GC

plot of the entire plastid genome is shown in Figure S3.

The presence of the majority of plastid ribosomal DNA in

denser fractions than the plastid genome, suggests that the

ribosomal genes may additionally occur in different genomic

contexts such as nuclear DNA or as an extrachromosomal

fraction. One unit of the ribosomal genes consists of the genes

rrf-rrs-rrl, and the copy number of this unit in the plastid genome

of K. veneficum has not been exactly determined [21]. Using the

RunViewer program to connect contigs, only tandem copies of the

rDNA unit were found in the data set from the chloroplast-

enriched fractions, whereas in the denser fraction (richer in

ribosomal genes), head-head and tail-tail connections were mostly

found (data not shown). Our data demonstrate the existence of at

least two different versions of a sequence connecting units of the

complete ribosomal genes in direct repeats, as shown in Figure S4.

One sequence variant, less abundant than the published sequence

[21], carry an 18 bp deletion in the junction between the units of

the ribosomal genes. Hence, the ribosomal genes occur in multiple

copies most likely in different genomic locations.

Figure 4. Schematic overview of dnaK sequences found in K.veneficum. PCR-clones generated with outwards directed primers; library clone
contigs; and plastid genome contigs assembled from pyrosequencing reads. A. Partial dnaK sequences found in K.veneficum. B. The complete gene
(aa 623) from E. huxleyi. C. Southern blot analysis of dnaK. Hybridization was performed with filter II (see Figure 3). The filter II was hybridized with
a radiolabelled dnaK probe generated by PCR, using inwards-directed primers. The probe contains the coding sequence for amino acids 145–437.
doi:10.1371/journal.pone.0038809.g004
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Discussion

The K. Veneficum Contains a Conventional Plastid
Genome and a Satellite Fraction of Fragmented Genes
The K.veneficum plastid genome has previously been shown to

exist as a conventional genome comprising genes of haptophyte

origin [21]. The finding of high copy numbers of certain

sequences combined with a remarkably high diversity of gene

variants, lead us to conclude that parts of the plastid genome

most likely exist in a fragmented form outside the conventional

plastid genome. This applies to fragmented or shortened

versions of rbcL and dnaK, with interspersed trnE and trnM

genes. The photosystem genes psaA, psaB, psbB and psbD,

shown to be on minicircles in peridinin dinoflagellates [3,28],

are also found in high copy numbers in the 454 pyrosequencing

data. Interestingly, the photosystem gene psbA, as well as other

related genes to rbcL and dnaK such as rbcS and groEL were

not found among the amplified genes. rbcS and groEL are

shown to be present within the conventional plastid genome

[21]. The plastid ribosomal genes were also mapped to the

conventional plastid genome [21]. By analyzing pyrosequencing

reads derived from CsCl gradient fractions of different densities,

we were able to show that the bulk of the plastid LSU rRNA

gene was separated from the conventional plastid genome. In

dinoflagellate nuclear genomes, many genes occur as tandem

repeats [29] or sometimes as clusters of tandem repeats [30,31].

If the plastid rRNA operon of ca. 6 kb per unit occurred in

tandem repeats, a number of units in the order of magnitude 10

tandem repeats would explain the separation we observed on

the density gradient. Alternatively, the repeating units of rRNA

genes could be located in the nuclear genome. As far as we

know, none of these possibilities have been observed before. A

further option would be that the plastid rDNA is present

extrachromosomally in the organelle, similar to the situation in

peridinin dinoflagellates. The most likely scenario here would be

repeats on larger circles. Such circles could even be localized in

the nucleus, as has been shown for plastid-derived single gene

minicircles in the dinoflagellate Ceratium horridum [32].

All genes found in high copy numbers are of haptophyte origin,

indicating that the process of transferring genes to extrachromo-

somal fragments seen in peridinin-plastid dinoflagellates, has also

occurred in K.veneficum. The extrachromosomal sequences appear

to have variable sizes, and the genes rbcL and dnaK occurring in

highest copy numbers in K.veneficum are not among the minicircle

genes of peridinin dinoflagellates. The high molecular weight

smear observed with uncut DNA on Southern blots, was probably

not due to higher order structures of interlocked circles, as shown

by the topoisomerase experiment. The peridinin minicircles of

Heterocapsa triquetra did not contain catenated minicircles either

[33]; hence these structures are probably absent among the

dinoflagellates. The plastid DNA structures found in H. triquetra

were rather shown to contain rolling circle replication (RCR)

intermediates [33], suggesting that the minicircles of peridinin

dinoflagellates replicate via a RCR mechanism. The intermediates

had variable form and size, as observed by imaging studies and

Southern blot analysis. One possible scenario explaining our

Southern blot results with rbcL and dnaK, not showing

hybridization for low molecular bands, would be an organization

in tandem repeats in the conventional plastid genome. On the

other hand, the large number of rbcL and dnaK variants, does not

support this alternative. As argued for the location of the

ribosomal genes, a possible organization of the fragmented and

highly variable plastid genes would be a location on larger

extrachromosomal DNA structures, but this has to be investigated

further.

Plastid Localization of the Amplified Genes
If the amplified plastid genes were localized in the nuclear DNA

of K. veneficum, plastid targeting signals would be expected to be

present. We were unable to find any evidence for such targeting

sequences. The amplified plastid genes are found in the same

fractions (in the CsCl gradient) as the conventional plastid

genome, and these sequences are highly AT-rich, unlike nuclear

DNA. It should be emphasized that our data do not definitely

prove that the high copy number plastid genes are localized to the

photosynthetic organelle, but given the current data we strongly

favor this scenario.

Essential Plastid Genes Present in High Copy Numbers
The genes occurring in high copy numbers of highly variable

sequence in K. veneficum, are among the plastid genes being

retained in non-photosynthetic organisms. [34]. It has previously

been shown that the gene encoding a subunit of the enzyme

responsible for the first major step of carbon fixation in

photosynthesis, rbcL, is essential in non-photosynthetic organ-

isms [35]. The dnaK gene has also been shown to be retained

in plastids that have become non-photosynthetic [36]. Both gene

products are used in connection with oxidative stress; the N-

terminal end of rbcL, present in the short versions of rbcL

Figure 5. Southern blot analysis of DNA treated with Topoi-
somerase IV. The filter contains pooled CsCl fractions of K. veneficum
DNA, undigested (2), treated with Topoisomerase IV (To), and digested
with EcoRI (E). The hybridization probe is identical to probe 4 of
Figure 3, containing the highly conserved motif 2 and a partial
sequence of motif 1. The location of the plastid genome is indicated by
green shade above the lanes.
doi:10.1371/journal.pone.0038809.g005

Genome Fragmentation in a Tertiary Plastid
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identified in K.veneficum, has been shown to have an additional

function in binding to RNA [37,38], and dnaK contributes in

refolding of proteins [36,39]. The two tRNAs encoded by trnE

and trnMf, tRNAGlu and the initiator tRNAMet, are predicted to

be retained in plastid genomes of non-photosynthetic organisms

according to the ‘essential tRNA hypothesis’ [34]: tRNAGlu is

needed as precursor in the biosynthesis of haem, chlorophyll

and other tetrapyrroles in plants, algae and most bacteria [40],

while tRNAMet plays a role as initiator tRNA in organellar

protein synthesis, as formylated methionyl-tRNA [34,41]. The

main part of the K. veneficum plastid genome contains a full set

of tRNA genes, except for trnMf [21]. A possible advantage of

organizing the essential genes outside of a conventional plastid

genome is that the copy number can be used as a part of the

gene regulation. This is supported by a study of Amphidinium

operculatum, in which minicircle copy numbers were shown to be

regulated in response to growth conditions [42]. Here, we have

shown that the trnE gene is likely to function as a termination

signal (see Fig. S1), and propose that the conserved element

may be a control region for replication of extrachromosomal

plastid gene fragments.

Evolutionary Implications
A common feature of the apicomplexan and dinoflagellate

lineages is the reduction of plastid gene numbers [28,41]. The

K.veneficum plastid genome has lost more than one third of the

genes found in the haptophyte donor [21], indicating massive loss

of genes throughout the integration of the plastid to the new host.

A similar massive gene loss is also observed for the alveolate

Chromera velia, a photosynthetic sister lineage to parasitic apicom-

plexa. C. velia has retained only 56 protein-coding genes in the

plastid genome [43]. Notably, other dinoflagellate organelles have

Figure 6. LSU hybridization and ribosomal gene coverage. The location of the plastid genome is indicated by green shade above the lanes. A.
Agarose gel corresponding to blot in panel B. B. Southern blot analysis using a plastid LSU probe (same filter as in Figure 5). C. Read depth of
pyrosequenced data from plastid-enriched DNA, pooled fractions 6–10 (corresponding to the FLX data set), plotted against GC content. D. Read
depth of pyrosequenced data from pooled fractions 11–14, enriched in LSU sequences (Titanium data set) plotted against GC content. Colour code
for pyrosequenced reads: Green, plastid ribosomal genes; red, nuclear ribosomal genes; blue, all other reads.
doi:10.1371/journal.pone.0038809.g006

Genome Fragmentation in a Tertiary Plastid
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been subject to drastic changes. Dinoflagellate mitochondrial

genomes have, unlike their apicomplexan homologs, their genes

scattered on many small chromosomes [44,45]. Intriguingly, the

fragmentation process apparently happening in the haptophyte-

derived plastid in K. veneficum resembles this fragmentation of

dinoflagellate mitochondrial genes. The haptophyte origin of the

genes as well as the presence of dnaK and rbcL of type I – not

found as minicircles in the peridinin plastid –indicate that the

plastid genome fragmentation in K. veneficum has occurred

independently of the fragmentation of the peridinin plastid

genome. The host environment, however, seems to work in

a convergent fashion on genes of both Karlodinium and peridinin

plastid genomes. In Heterocapsa triquetra five closely related

minicircles were characterized that share a common element,

9G-9A-9G, and contain fragments of four different genes [46].

Here, a model is proposed explaining the generation of the five

minicircles from a common ancestor by means of recombination,

deletions and duplications. In two species of Alexandrium, A.

tamarense and A. catanella, several differentially rearranged versions

of psbA and psbD are found in addition to the standard gene

copies [47]. The rearrangements were comprised of insertion and

deletion mutations, indicating that replication-based repeat-

mediated recombination was responsible for generation of the

variants [47]. Both cases resemble the variable gene versions found

in K. veneficum. We find variants of rbcL and dnaK that differ only

by insertions/deletions. The relationship between the rearranged

gene sequences and the corresponding standard genes is unclear.

The rearranged genes could be signs of a plastid genome breaking

down, and consequently – as a final stage – could lead to loss of the

plastid (and subsequently uptake of a new endosymbiont – i.e.

serial transfer). Altogether, it seems that dinoflagellates have

a unique ability to evolve unusual fragmented organelle genomes.

The involvement of the host replication system in the process and

the role that the fragmented plastid genomes are playing are key

issues to address in future.

Materials and Methods

Generation of Karlodinium Veneficum Plastid Sequences
Karlodinium veneficum, strain UIO 083 was originally isolated by

Karl Tangen from Oslofjorden, Norway. Culturing, plastid DNA

isolation and sequencing have been described elsewhere [21]. In

short, plastid DNA was isolated from total DNA by CsCl gradient

separation. Plastid DNA was identified in collected fractions by

Southern blot hybridization with rbcL, psaA and psbA gene

probes. Pooled plastid-rich fractions (fractions 6–10 of 40 fractions)

were amplified by rolling circle amplification (RCA) and used for

generation of a clone library. Plastid-containing clones (9600

clones) were sequenced by Sanger sequencing. In addition, the

RCA-amplified, plastid-rich fractions were sequenced at the

454 GS FLX platform at the Norwegian High-Throughput

Sequencing Centre (NCS; www:sequencing.uio.no) at CEES,

University of Oslo, generating approx. 250,000 reads of average

length 195 bp. Since the large subunit (LSU) rRNA gene was

shown to be mainly located to later gradient fractions, another

round of pyrosequencing (using the Titanium upgrade) was

performed on non-amplified DNA (fractions 11–14) at the 454

platform, generating ca. 625,000 sequences of average length

290 bp.

Sequence Analysis
Assembly of the plastid contigs has been described in [21].

Analysis of sequences not mapped to the genome contigs was

performed using Sequencher 4.9. Genes were identified by Blast

searches (http://blast.ncbi.nlm.nih.gov/) and tRNA genes ana-

lyzed using the tRNAscan-SE 1.21search server (http://selab.

janelia.org/tRNAscan-SE/). Sequence alignments were made

using the Mafft program [22] and MacClade 4 [23].

PCR Cloning of Putative Minicircles
Plastid DNA-rich fractions were used as template for PCR with

outwards-directed primers for amplification of dnaK and rbcL to

test for the presence of minicircles. For this purpose, we used the

DNA polymerase enzymes Phusion DNA polymerase (Finnzymes,

Finland) and BD Advantage (Clontech, CA, USA). Primer

sequences are given in Table S1. Notably, the DNA used in

PCR had not been subjected to RCA. PCR products for the genes

dnaK, rbcL and psaA were cloned using the TOPO TA Cloning

Kit (Invitrogen, Carlsbad, CA, USA) and sequenced by the Sanger

method.

Southern Blot Analysis
A pooled fraction of DNA from the CsCl gradient was

applied either undigested or digested with EcoRI on an agarose

gel. From one agarose gel run, duplicate blots were prepared

and hybridized with fragment probes that are specific to the

LSU rRNA gene or distinct regions of rbcL and dnaK [24,25].

All fragments were generated by PCR (primer sequences are

given in Table S2) using cloned sequences in pSMART-HCKan

(Lucigen Corporation, Middleton, WI) or in pCR2.1-TOPO

(Invitrogen Corporation, Carlsbad, CA) and were purified using

the Wizard SV Gel and PCR Clean-Up System (Promega

Corporation, Madison, WI) prior to labeling. The rbcL and

dnaK fragments were labeled using the DecaLabelTM DNA

Labeling Kit (Fermentas, Burlington, ON, Canada), whereas the

1844 bp LSU rDNA fragment was labeled and detected with

the random primed labeling kit DIG-High Prime DNA

Labeling and Detection Starter Kit I (Roche Diagnostics

Corporation, Indianapolis, IN). The blots were prepared for

the next hybridization by washing them with boiling 1 mM

EDTA, pH 8.0. All hybridizations with plastid probes were

performed at 63uC, whereas hybridization with the Lambda

marker was carried out at 68uC. To increase the stringency

condition (see Figure 4), the washing temperature was raised to

70uC for another 2 h of washing before a new exposure.

Hybridization signals arising from radioactive probes were

detected with the Typhoon Variable Mode Imager (GE

Healthcare, Chalfont St. Giles, United Kingdom).

Topoisomerase II Assay
To test whether the putative minicircles were entangled together

in complex stuctures, we treated the K. veneficum DNA fractions

with Topoisomerase IV (Topogen, Port Orange, FL, USA). Per

10 ml sample containing 3.75 ml of combined CsCl fractions in the

kit assay buffer, 5 U Topoisomerase IV were added. The reactions

were incubated at 37uC overnight and then stopped with 1% SDS

and Proteinase K digestion (50 mg/ml, 15 min. at 56uC). kDNA

was used as positive control for decatenation. The Southern blot

was prepared and hybridized as described, but ethidium bromide

was omitted in the agarose gel.

Supporting Information

Figure S1 The conserved upstream element Motif 2: 895
copies from pyrosequencing data (blasting with E value
cut-off of 10225). A. Graphical representation (Sequence Logo,

[48]) of 895 aligned sequences of the conserved Motif 2 identified

in K. veneficum plastid sequences. B. 895 aligned DNA sequences
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containing Motif 2 and trnE in putative minicircles shown in

MacClade (pretty print matrix). Left panel; forward and

complementary reads aligned together. Right panel; forward

reads and complementary reverse reads aligned in separate blocks.

(TIFF)

Figure S2 Aligned sequences of Motif 2 in library
clones. The gene structures of the library clones are shown in

Figures 2 and 4.

(TIFF)

Figure S3 GCView [49] of the conventional plastid
genome [21] of Karlodinium veneficum.

(TIFF)

Figure S4 Aligned sequence connecting units of plastid
ribosomal genes. The location the sequence in the plastid

genome of K. veneficum is indicated above the sequences.

(TIFF)

Table S1 PCR primers used for outwards directed
amplification of putative minicircle genes.
(DOCX)

Table S2 PCR primers used for amplification of probes
used in Southern blot hybridization.
(DOCX)

Table S3 Sequence coverage in 454 sequences generat-
ed from pooled CsCl fractions 11–14. The coverage is

calculated as the read depth for each base, averaged over the

contig.

(DOCX)
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