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ABSTRACT: Aging is associated with reorganization of brain in both structure and function.  In recent 

years, graph theoretical analysis of brain organization has drawn increasing attention, and reorganization 

of brain in aging has been investigated in terms of connectivity and networks in topology such as modular 

organization, global and local efficiency, and small-worldness.  Beyond studying on abnormity in local 

brain regions, connectivity quantifies alternations of correlation between two regions that may be spatially 

far separated, and graph theoretical analysis of brain network examines the complex interactions among 

multiple regions.  This article reviewed complex brain networks of human in normal aging or with age-

related diseases such as stroke and Alzheimer’s disease after a technical introduction of brain networks 

and graph theoretical analysis.  We further discussed the relationship between the functional and the 

structural brain networks of subjects in aging or with age-related diseases.  Finally, we proposed several 

interesting topics for future research in this field. 
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Brain is organized with two fundamental principles, i.e., 

segregation and integration [1]. According to these two 

principles, the connectivity in local regions is important 

for specialized functions, the global interactions among 

multiple spatially separated regions play important roles 

in advance cognitive function.  Brain connectivity has 

been extensively investigated at various temporal and 

spatial scales for decades, providing new insights of 

human brain and evidences and implications for 

neurological diseases [2].  Since the introduction of 

small-world network and scale-free network [3, 4], 

investigation on human brain has gone beyond the scope 

of pair-wise relation between regions, and therefore 

advanced into the concept of networks [5, 6].  

The word “network” in literature has different 

meanings.  In graph theory and complex networks, 
‘‘network’’ explicitly implies a set of nodes and pair-

wise edges that connect the nodes.  Graph theoretical 

analysis of brain networks refers to this sense.  In 

neuroimaging field, ‘‘network’’ may denote: 1) a group 

of voxels or regions of interest (ROIs), which have 

similar activity at resting state or under certain cognitive 

task [7, 8]; 2) the component map derived by 

independent component analysis or principal component 

analysis [8-10]; or 3) the seed correlation map formed 

with voxels, which have high correlation with the time 

course of a selected seed ROI [8, 11].  Both component 

map and seed correlation map could demonstrate spatial 

features of correlated fMRI voxels, but they also have 

inherent limitations.  For the method of component map, 

voxels within component map only share variance to 

some extent, and the meaning of each component map 

and the interactions among the component maps of the 

same subject are not explicit.  In addition, comparison of 
component maps from multiple cohorts (e.g., adults and 

elderly subjects) would be much computationally 
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complicated and with no explicit meaning.  For the 

method of seed correlation map, a map should be 

generated for each selected seed region, and a single or 

several seed maps cannot give a full view of all 

interactions among ROIs.  In the following content, we 

mainly review brain networks with graph theoretical 

analysis, and “network” therefore mainly refers to a 

collection of nodes and edges.  

Clustering coefficient and characteristic path length 

are two basic metrics of network.   Clustering coefficient 

measures how densely nodes in local regions connected 

to each other, and can be considered as an index of 

segregation.  Characteristic path length generally 

quantifies how long one node is connected to other nodes 

in topology, that is, the average number of the edges in 

the shortest paths that connect nodes over the whole 

networks, and could reflect the integration among 

multiple brain regions [3, 5].  Compared to matched 

random networks, the network with small characteristic 

path length and large clustering coefficient is called 

small-world network [3].  Various studies have reported 

that both structural and functional brain networks are 

small-world networks [5, 6].  Small-world brain network 

is an optimal organization in the aspect of information 

transmission in both local and global efficiency [5, 12].  

For example, graph theoretical analysis to structural 

brain networks of healthy young adults showed that high 

intelligence group has higher global efficiency than the 

general intelligence group [13].  In addition, the network 

measures have significant correlations with Intelligence 

quotient scores across all subjects.  High global 

efficiency of structural brain network may imply that 

parallel information transfers more efficiently over brain 

network, and thus the corresponding subjects are with 

high intelligence [13]. 

 

Brain Network Construction 

 

Nodes of neural networks can be defined in multiple 

scales: single neuron (micro-scale), neuronal ensembles 

(meso-scale), sub-cortex (macro-scale), regions of 

interest (ROIs), and edges are defined as functional or 

structural connectivity in brain units [5, 6].  There are 

two ways to define nodes for brain network at macro-

scale: 1) brain regions where sensors located are defined 

as nodes; 2) the whole brain cortex is divided into a set 

of ROIs according to predefined atlas templates and each 

ROI is defined as a node (Figure1) [6, 13-15].  There are 

three different types of brain networks, i.e., functional 

brain network, effective brain network, and structural 

brain network, which are constructed with different types 
of connectivity.  

Functional brain networks can be constructed with 

electroencephalography (EEG), magnetoencephalo-

graphy (MEG), or functional magnetic resonance 

imaging (fMRI) data measured at resting state or under 

specific cognitive task.  There are two different ways to 

construct functional brain network: 1) the first way is 

based on multichannel EEG/MEG, where pair-wise 

association between the time series measured by sensors 

is considered as the respective connectivity (Figure 1a); 

2) the second way is based on fMRI, where a 

representative time series for each ROI defined 

according to atlas templates is extracted via a certain 

way, and the association between the representative time 

series is defined as the connectivity of that node pair 

(Figure 1b).  Association matrix can be constituted by 

associations of all possible node pairs.  With a selected 

threshold, association matrix could be converted into a 

binary adjacent matrix by setting the cells to be 1 when 

their association strength is bigger than the threshold or 

otherwise 0.  With adjacent matrix, various measures 

developed in complex networks can be applied to 

investigate the properties of brain network such as small-

worldness [3, 16], scale-free degree distribution [16], 

hubs [17], modularity [18, 19], and hierarchical structure 

[20, 21]. Association strength can be set as the weight of 

corresponding edge, and then brain network can be 

investigated in the aspect of weighted complex network 

[22].  

Effective brain network is constructed with effective 

connectivity, which reveals not only association strength 

but also influence direction in nodes, that is, how one 

node exerts influence to the other node. Various methods 

such as Granger causality [23-25], structural equation 

modeling [26], dynamic causal modeling [27] have been 

proposed to infer effective connectivity. Since effective 

connectivity is estimated from functional brain signals 

such as EEG, MEG, and fMRI signals, effective brain 

network can be considered as a specific case of 

functional brain network with directed edges [5, 6].  At 

present, studies of brain networks are mainly based on 

binary or weighted networks and less directed networks. 

This may be due to well established tools for undirected 

binary/weighted networks while tools for directed 

networks are still under development.    

Generally, there are two ways to construct structural 

brain network. The first type of structural brain network 

is based on diffusion tensor imaging (DTI) or diffusion 

spectrum imaging (DSI). Structural connectivity is 

determined by axonal fiber tracts or probabilistic 

tractography in ROIs [28-31]. Axonal-fiber tracts are 

traced by the deterministic “streamline” tractography 

which could infer the continuity of axonal fiber bundles 

in brain units (Figure 1c) [29].  In contrast, the 
probabilistic tractography computes the connectivity 

probabilities in brain units [30].  The second type of 

structural brain network is based on structural MRI.   
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Figure 1. Schematic paradigm of graph theoretical analysis of brain networks. Investigation on brain networks includes data-driven 

brain network analysis [5, 6] and model-based brain network computation [42, 43]. With neuroimaging data, different types of data-

driven brain networks can be constructed. (a) For EEG/MEG, multichannel time series are measured with an array of sensors, and the 

scalp region where each sensor located is defined as one node respectively. Pair-wise association between nodes can be quantified with 

time series at the corresponding locations [44]. For fMRI and DTI/DSI data, regions of interesting (ROIs) are first defined with 

predefined anatomical templates [6, 14].  (b) The representative fMRI time series of each ROI is extracted from all the voxels in that ROI 

via a certain way (e.g., by averaging). Pair-wise association between ROIs can be estimated from the representative time series. (c) For 

DTI/DSI data, pair-wise association can be traced with axonal-fiber tracts [29]. (d) Morphometric variables can be estimated for each 

ROI from individual structural MRI images, and then multivariate morphometric (e.g., cortical thickness) time series over subjects can be 

obtained. Pair-wise association between these multivariate time series can be used as a measure of anatomical connectivity [18]. With 

association matrix constituted by connectivity in all possible node pairs, graph theoretical analysis can be performed to complex brain 

network. This figure is organized with our data and others [16, 21, 45-47]. 

 

 

Interregional co-variation of morphometric 

measurements across subjects is taken as structural 

connectivity (Figure 1d) [20, 32]. The rationale behind is 

that mutually trophic effects on the development of 

connected brain regions could result in strong 

correlations in morphometric measurements of those 

regions [33].  In addition, connectivity suggested by 

interregional co-variation of gray matter in structural 

MRI is highly consistent with that revealed by 

tractographic analysis of DTI or DWI [34].  Note that for 
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the first type of structural brain network, one network is 

constructed for each subject; while for the second type of 

network, only one structural network is generated for a 

group of subjects.   

With increasing average age of human, brain aging 

and age-related diseases are drawing increasing attention 

from basic research, clinical research, and rehabilitation 

engineering. Various modern biological theories of aging 

have been proposed, and can be classified into two main 

categories, i.e., programmed theories and error theories.  

However, none of these theories could fully explain the 

mechanisms of aging, and no consensus on this issue has 

been reached yet [35, 36].  These theories may work 

together to reveal the mysteries of aging.  In this paper, 

we mainly review the studies on brain networks of aging 

subjects or patients with age-related diseases.  More 

information on methodology aspects of complex 

networks can be found in [37-39], and general topics of 

brain networks have been reviewed in [5, 6, 40, 41].  

 

 

 

 
 
Figure 2. Development of task control networks. (a) 7-9 year-Children, (b) 10-15 year-adolescents, and (c) 21-31 

year-adults. In each group, only the 75 strongest correlations were chosen for network analysis. The correlation 

coefficients were combined across matched subjects with the Schmidt-Hunter method [55, 56].  The nodes in the 

fronto-parietal and the cingulo-opercular networks are colored in yellow and black, respectively.  IPS: intraparietal 

sulcus; dF: dorsal frontal; IPL: inferior parietal lobule; dlPFC: dorsolateral prefrontal cortex; aI/fO: anterior 

insula/frontal operculum; dACC/msFC: dorsal anterior cingulate cortex/medial superior frontal cortex; aPFC: anterior 

prefrontal cortex; aT: anterior thalamus; TPJ: temporoparietal junction; vmPFC: ventromedial prefrontal cortex.  (d) 

The fit LOWESS curves of connectivity strength versus age.  (e) The significant changes (∆r) of connectivity strength 

between the adults group and the children group are plotted with respect to the Euclidean distance (millimeters) in the 

corresponding ROIs. The connectivity with significantly increased/decreased strength across development is displayed 

in blue/red dots respectively.  The mean of strength differences and Euclidean distance for each group are plotted as 

black circles. Adapted from Fair and et al. [49]. 
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Development of Human Brain Networks  

 
Children and adults differ both in behavior and brain 

networks during perform tasks [48, 49]. Recently, the 

development of task control network, constituted with 39 

ROIs, was investigated with resting state fMRI measured 

from subjects of different ages [49]. It has been reported 

that the task control network can be divided into two 

distinct networks with different functions. One is labeled 

as fronto-parietal (FP) network, which plays an 

important role in initiating and adjusting control on a 

rapid time scale.  The other is termed as cingulo-

opercular (CO) network, which acts to maintain brain 

state in cognitive tasks over a longer time scale (Figures 

2 and 4) [49-52].  For Children, the task control network 

was a connected network with the node of dorsal anterior 

cingulate/medial superior frontal cortex (dACC/msFC) 

embedded within the FP network and the node of 

bilateral anterior prefrontal cortex (aPFC) linking the FP 

and the CO networks (Figure 2a). For adolescents, as the 

link between FP and CO decreased, the 39 ROIs 

organized as two separate networks with the 

dACC/msFC node still in FP (Figure 2b). For adults, the 

39 ROIs appeared as two distinct networks with the 

dACC/msFC node shifted into CO (Figure 2c). The 

connectivity strength of aPFC-dlPFC and dACC/msFC-

frontal decreased, while the connectivity strength of 

aPFC-aI/fO and dACC/msFC-aI/fO increased during 

brain development (Figure 2d). In addition, the strength 

of connectivity linking regions with short spatial distance 

was larger in children and tended to decrease over 

development. While strength of connectivity with long 

spatial distance was smaller in children and tended to 

increase over development (Figure 2e).  This trend of 

connectivity strength is consistent with results reported 

by others [53, 54].  

 

 

 

 

 

Figure 3. Correlation of aging with respect morphometric variables and network metrics of brain. (a) Correlations 

between age and cortical thickness of cuneus (p<0.005) and pericalcarine (p= 0.06).  (b) Correlation between age and cuneus 

volume (p <0.05). (c) Correlation between integrated network cost and age. (d) Correlation between integrated local efficiency 

and age.  (e) Correlation between integrated global efficiency and age.  In (c), (d), and (e), the results were obtained from 

structural brain networks, in which, the integrals of network metrics over the range of sparsity* 8-27% were used as 

accumulative metrics for network topology.  In each subfigures, one symbol (circle or triangle) denotes the result of one 

subject. (a) and (b) are adapted from Gaetz and et al. [60], and (c), (d), and (e) are adapted from Gong and et al. [31].  

*Sparsity is defined as the ratio between the number of existed edges and the number of all possible edges that fully connect all 

nodes. 
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Brain Networks of Normal Aging Subjects  
 

During brain development and aging, both gray and 

white matter changes in structure, and function [57].  

Human brain reaches maximum weight at the age of 20 

years, and begins to decline at the age of 55 years [58], 

while white matter volume increases until the mid-40s 

[59]. Comparison with healthy adults and children 

showes that age demonstrates negative correlations with 

cortical thickness of the cuneus and pericalcarine areas, 

and positive correlation with cuneus volume (Figures 3a 

and 3b) [60]. To investigate the mechanisms of brain 

aging, many age-related studies on both functional [7, 

19, 61] and structural [18, 31, 60, 62, 63] brain networks 

have been performed from various aspects, including 

regional connectivity [64], modular organization [18, 

19], global and local efficiency [61, 62, 65, 66], and etc. 

[8, 11, 67-74]. 

The large-scale brain networks of subjects in normal 

aging have been examined from various aspects [31, 61, 

62, 66].  In a study of normal subjects with diffusion 

MRI, the connectivity between 78 ROIs was quantified 

by probabilistic tractography [31].  Graph theoretical 

analysis to these networks showed that the structural 

brain networks have small-world topology over the 

sparsity range of 8-27%.  Age showed significant 

positive correlation to the integrated cost (Figure 3c) but 

significant negative correlation to the integrated local 

efficiency (Figure 3d), while showed no significant 

correlation to the integrated global efficiency (Figure 3e) 

[31].  These results imply that structural brain networks 

become less economical in aging.  The less optimal 

organization of structural brain network, as well as 

degeneration of white matter in aging brains [75, 76], 

may impair brain function.  Similar small-world 

characteristic has also been observed in other studies on 

both structural and functional brain networks of aging 

subjects [61, 62, 66]. In another study of structural brain 

networks, structural MRI (T1-weighted) of 1483 normal 

aging subjects was collected. These data were assigned 

to the young adult group (18-50 years), the middle age 

adults (41-60 years), and the old age group (61-80 

years), and 350 subjects were random selected from 

them for each group.  One structural brain network was 

constructed for each group with the Pearson correlation 

coefficient between gray matter volumes of 90 ROIs [14] 

across 350 subjects in that group. Structural brain 

networks of all three age groups demonstrated small-

world properties.  In particular, the integrated local 

efficiency of the middle age group was smaller than 

those of both the young age group and the old age group. 
In contrast, the integrated global efficiency showed a 

inverse alternation trend of integrated local efficiency 

with respect to three groups [62].  Changes of functional 

brain networks with respect to age have been examined 

with fMRI measured from younger and older subjects 

during memory encoding and recognition.  Results 

showed that the older adults had longer characteristic 

path length compared with the younger adults.  In 

addition, the older adults showed reduced regional 

centrality in frontal areas, but the younger subjects 

demonstrated increased regional centrality in several 

default-mode regions [61].   

Modular organization of brain networks also 

changes during aging [18, 19, 62, 77]. In a study with 

structural MRI of healthy young adults and normal older 

adults, structural brain networks were constructed with 

78 ROIs and the absolute Pearson correlation 

coefficients between regional cortical thicknesses across 

subjects [18].  Graph theoretical analysis revealed that 

the structural networks of two cohorts possessed 

modularity at the executive and auditory/language 

processing regions. But compared to young adults, the 

older subjects exhibited reduction of modularity and 

decrease of intra-/inter-module connectivity related to 

both executive and default mode networks. These results 

may imply that age-related alternations in large-scale 

structural brain networks are the substrates of 

degeneration of brain cognitive function [18]. Changes 

of modularity in functional brain networks have also 

been reported. Functional brain networks of healthy 

young and older subjects have been compared with fMRI 

[19]. Both young and older subjects showed significantly 

non-random modularity, with reduced inter-modular 

connections to frontal modular regions and increased 

number of connector nodes in posterior and central 

modules.  The brain networks of two groups showed no 

significant difference in maximal modularity, which 

implied that modular organization was retained but with 

changes in the composition and topological roles of 

modules.  It has been argued that modular organization 

had “the advantage of allowing evolutionary or 

developmental adaptation”, with no too much risk of 

function loss in one module while other modules were 

damaged [19, 78]. 

In summary, during development and normal aging, 

brain experiences changes in both structure and fucntion.  

The organization of structural brain network 

demonstrates alternations in both global and local 

efficiency.  Correspondingly, functional connectivity and 

functional network also change. The strength of 

connectivity linking regions of short/long Euclidean 

distance decreases/increases respectively during 

development.  And modular organization or sub-

networks show different patterns during development 
and aging.  Generally, the local efficiency of structural 

brain networks decreases during development, and the 

global efficiency of both structural and fucntional brain 
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networks decreases in aging.  But some non-consistent 

results of brain networks in aging have also been 

reported, and further studies are needed.  

 

Brain Networks of Stroke Patients 
 

In previous section, we reviewed changes of the FP and 

the CO networks over brain development. Here, we 

provided strong evidence for the existence of the 

functionally dissociable FP and CO networks by a study 

on functional brain networks of patients with focal brain 

lesions and healthy subjects (Figure 4) [52].  The 

strength of connectivity within the FP and within the CO 

networks was significantly higher than the strength of 

connectivity between the FP and the CO networks for 

both patients and healthy controls. The relative strength 

of connectivity within FP or CO was negatively 

correlated with the degree of damage in that network 

(Figure 4c). The damage in one network of FP or CO 

only affected the connectivity within itself and not 

influenced the connectivity within the other undamaged 

one. The local changes due to focal lesions were 

examined by analyzing within-ROI network, which was 

constructed with voxels within ROI as nodes and the 

correlation between the voxels as connectivity.  The 

relative average small-worldness of these within-ROI 

networks was negatively correlated with the amount of 

within network damage, but showed no significant 

correlation to the amount of damage in the other network 

(Figure 4d). With these results, it was concluded that 

“anatomical damage to one network has a specific 

detrimental effect on the remaining undamaged nodes in 

that network but no effect on the other network” [52].  

 

 

 

 
 

Figure 4.  Alternation of dual cognitive control networks with focal brain lesions. (a) The selected ROIs in the FP and the 

CO networks [50, 51]. (b) The damaged ROIs of each patient. Subjects 5–8 had no lesions in both the FP and the CO networks 

but had lesions elsewhere. (c) Relative functional connectivity (i.e., the difference of average connectivity strength between 

the CO and the FP networks) versus relative anatomical lesion in the CO and the FP networks. (d) Relative small-worldness of 

within-ROI networks (i.e., the difference of the average within-ROI small-worldness between the CO and the FP networks) 

versus relative anatomical lesion in the CO and the FP networks. Adapted from Nomura and et al. [52].  
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Plasticity, the changes of synaptic connection 

induced by stimulus or alteration of synaptic activity, is 

the main mechanism for brain function recovery after 

stroke [79].  Therefore, revealing how to engage optimal 

reorganization of surviving neural networks will provide 

encouraging treatment strategies for function recovery 

after stroke. A mass of studies have provided evidence 

that abnormality of connectivity between local or remote 

cortical regions were correlated with function recovery 

after stroke [80-84]. For examples, study with resting 

state fMRI of stroke patients showed that the strength of 

inter-hemispheric functional connectivity was 

significantly correlated with patients’ performance in 

detection of visual stimuli, while alternations of intra-

hemispheric connectivity were not correlated with 

patients’ motor performance [81]. Another study based 

on positron emission tomography examined the 

relationship between functional connectivity and 

language performance of patients with aphasic stroke, 

and showed that preservation of inter-hemispheric 

connectivity was associated with better performance in 

language tasks [82]. Stroke patients with neglect have 

also been examined, and results showed that the strength 

of functional connectivity between the frontal and 

parietal cortices was positively correlated with degree of 

neglect [84].  Alternations of effective connectivity for 

stroke patients have been reported extensively as well 

[85-87]. More information on reorganization of 

connectivity of stroke patients can be found in reference 

[80].   

Recently, a study on reorganization of functional 

brain network of stroke patients with motor deficits gave 

new insights for brain network plasticity after stroke. 

Longitudinal fMRI were measured at five time points 

from 1 week to 1 year after stroke [22]. The motor 

execution network of each subject was constructed with 

21 selected ROIs for each follow-up time point. Graph 

theoretical analysis showed that clustering coefficient 

significantly decreased, whereas the characteristic path 

length showed no significant change during the recovery 

process after stroke. This implied that the motor 

execution network became less segregated in function. 

The topology of brain networks shifted towards a 

random mode during function recovery, which may be 

due to random outgrowth of new connections [88]. In 

addition, connectivity with gradually increase in strength 

over time was mainly between ipsilateral primary cortex 

and contralateral key motor areas, while connectivity 

with gradually decrease in strength mainly between 

ipsilateral subcortical areas and cerebellum. Correlation 

analysis showed that clustering coefficient and 
connectivity between some ROIs were significantly 

correlated with different clinical scores of patients, 

which may be used to predict function recovery after 

stroke [89]. Studies of the dynamics of brain networks 

after stroke are rare. More research based on longitudinal 

fMRI or EEG/MEG data are needed to provide more 

evidences and implications for treament of stroke 

patients. 

 

Brain Networks of Patients with Alzheimer’s Disease 
 

Alzheimer’s disease (AD) is age-related disease. Most 

studies on AD examined atrophy or other abnormality in 

isolated brain regions using structural MRI, but 

neglected the fact that brain not only functioned in local 

cortex (i.e., segregation) but also as an integrated 

network of multiple spatially separated regions. 

Therefore, investigation on the connectivity or network 

abnormality may give new insights on functional 

impairment of AD patients [7, 8, 11, 17, 73, 90-96].  

AD patients and normal controls have been 

compared via structural MRI analysis [97]. Structural 

brain networks were constructed by co-variation of 

regional cortical thickness across subjects. Compared to 

the controls, AD patients showed abnormal small-world 

architecture and altered nodal centrality in some regions 

[97]. In another study, structural brain networks of AD 

patients and healthy controls were constructed by DTI 

tractography, and graph theoretical analysis revealed that 

both structural brain networks of AD patients and 

controls had a small-world topology. Compared with 

control subjects, AD patients had larger shortest path 

length, reduced nodal efficiency in the frontal regions. In 

addition, several network metrics were significantly 

correlated with the memory-related performance scores 

of AD patients [89]. 

The alternations in functional brain network of AD 

patients have been reported as well [98, 99]. AD patients 

were compared to healthy control subjects based on 

functional brain networks constructed with pair-wise 

synchronization likelihood of beta waves of 

multichannel EEG signals. Graph theoretical analysis 

demonstrated that AD patients had a significant longer 

characteristic path length than control subjects over a 

wide range of thresholds [98], which is consistent with 

that revealed by the study on structural brain networks of 

AD patients [89].  However, another study on functional 

brain networks of AD patients demonstrated different 

results [99].  In that study, functional brain networks of 

mild AD patients and healthy control subjects were 

constructed with resting state fMRI.  Results showed that 

characteristic path length of AD patients was 

significantly smaller than that of healthy controls for a 

wide range of sparsity.  The topology of AD patient 
networks shifted towards the matched random networks, 

while cluster coefficient of AD patients demonstrated no 

significant differences from control subjects [99].  These 
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results may imply that alternations in topology of 

networks are related to functional impairment of AD 

patients.  However, further investigation is still needed to 

get more reliable and consistent results for clinical 

applications.  

Brain networks of other neuropsychiatric disorders 

such as schizophrenia [20, 100, 101], epilepsy [102], 

depression [103, 104], and mild cognitive impairment 

[105] have also been investigated by graph theoretical 

analysis.  The topology of functional brain network 

shifted towards matched random networks has been 

observed in patients with other brain related diseases 

including brain tumors [106] and traumatic brain injury 

[107].  Alternations of brain nentworks in spectific 

aspects such as modular organization, and global and 

local efficciency may be different for different brain 

related diseases.  Thus, we should take brain related 

diseases case by case, and examine their specific 

organization of brain networks, so as to reveal network-

based biomakers which are consistent across subjects 

with the same disease, but specific and sensitive across 

different brain related diseases.      

 

Discussion and Future Direction  
 

In summary, both functional and structural brain 

networks were small-world networks, and alternations 

occurred in brain networks of subjects during aging or 

with age-related diseases. In particular, organization of 

brain networks during aging or with age-related diseases 

shifted towards that of matched random networks in 

topology, and showed changes in modular organization 

and regional centrality at specific brain regions. In 

addition, some changes in brain network organization 

have been demonstrated to be significantly correlated to 

clinical scores of age-related diseases, which implies that 

metrics of brain networks are with potential to be used as 

biomarkers.  

We believe that several topics on brain networks of 

subjects in aging or with age-related diseases are needed 

further exploration as follows:  

 

1) Relationship between functional and structural 

brain networks at multiple temporal and spatial 

scales.  As introduced previously, almost all studies 

on age-related brain networks were based on one 

single modality of neuroimaging, and only one type 

of functional or structural brain networks were 

investigated. Presently, the relationship between 

functional and structural brain networks is mainly 

compared with results obtained from different aging 
cohorts. Therefore, direct comparison of functional 

and structural brain networks with multiple modality 

neuroimaging of same subjects may provide new 

information on brain networks in aging.  Study has 

demonstrated varying relationship between 

functional and structural brain networks at multiple 

time scales [108]. So exploring the relationship 

between functional and structural brain networks at 

multiple temporal and spatial scales may reveal new 

insights. 

2) Joint study of brain networks by data-driven brain 

network analysis and model-based network 

computation.  There are two different strategies in 

brain network investigation (Figure 1).  One is data-

driven brain network analysis, and the other is 

model-based network computation.  Presently, only 

few joint studies with these two strategies have been 

reported [42, 43, 109]. Model-based network 

computation can help to explore the mechanisms of 

neural networks at multiple scales where data-driven 

brain network analysis cannot treat with.  New 

insights are expected to be revealed if real 

neuroimaging is taken into consideration of model-

based network computation.  However, no joint 

study of brain networks in aging has been reported 

yet. 

3) Network-based biomarkers for normal aging or 

age-related diseases. Some alternations of 

connectivity or brain network metrics have been 

demonstrated to be significantly correlated to 

clinical scores of age-related diseases [89], which 

implies that specific metrics of brain networks may 

be used as biomarkers, but more studies are needed 

before they can be applied clinically. 
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