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Abstract

In this paper, we consider the family of total Bregman divergences (tBDs) as an efficient and
robust “distance” measure to quantify the dissimilarity between shapes. We use the tBD based §-
norm center as the representative of a set of shapes, and call it the ~center. First, we briefly
present and analyze the properties of the tBDs and #centers following our previous work in [1].
Then, we prove that for any tBD, there exists a distribution which belongs to the /iffed exponential
family of statistical distributions. Further, we show that finding the maximum a posteriori estimate
of the parameters of the lifted exponential family distribution is equivalent to minimizing the tBD
to find the #centers. This leads to a new clustering technique namely, the total Bregman soft
clustering algorithm. We evaluate the tBD, £center and the soft clustering algorithm on shape
retrieval applications. Our shape retrieval framework is composed of three steps: (1) extraction of
the shape boundary points (2) affine alignment of the shapes and use of a Gaussian mixture model
(GMM) [2], [3], [4] to represent the aligned boundaries, and (3) comparison of the GMMs using
tBD to find the best matches given a query shape. To further speed up the shape retrieval
algorithm, we perform hierarchical clustering of the shapes using our total Bregman soft clustering
algorithm. This enables us to compare the query with a small subset of shapes which are chosen to
be the cluster £centers. We evaluate our method on various public domain 2D and 3D databases,
and demonstrate comparable or better results than state-of-the-art retrieval techniques.

Index Terms

total Bregman divergence; £center; lifted exponential families; hard clustering; soft clustering;
Gaussian mixture model; 3D shape retrieval

1 Introduction

As the number of images on the Internet, in public databases and in biometric systems grows
larger and larger, efficient and accurate search algorithms for retrieval of the best matches
have become crucial for a variety of tasks. Therefore, image retrieval becomes more and
more fundamental in computer vision and plays an indispensable role in many potential
applications. In contemporary literature, there are mainly two types of algorithms for image
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retrieval, key-words based and content based. Key-words are an important and easy to use
features for representation and retrieval of images. However, though efficient, key-words are
very subjective, since different people may use different key-words to index the same image.
Therefore, the accuracy of key-words based retrieval is very limited. Hence there is interest
in the idea of retrieval based on image features [5], [6], [7], [8], [9] such as texture, color,
shape, and so on. Of these, shape is considered more generic and is one of the best for
recognition as studies [10] have shown. Shape comparison and classification is very often
used in the areas of object detection [11], [12] and action recognition [13]. Therefore many
researchers [14], [15], [16], [17], [18], [19], [20], [21], [22] have been developing
algorithms for improving the performance of shape retrieval. An efficient modern shape
retrieval scheme has the following two components: an accessible and accurate shape
representation, and an efficient as well as robust distance/divergence measure. There are
many ways to represent shapes, for example, axial representation [23], [24], primitive-based
representation [25], constructive representation [26], reference points and projection based
representation [27], cover-based representation [28], histograms of oriented gradients [29]
etc. Of these, contour based representation in object recognition methods [30], [31], [32],
[33], [34], [35], [36] have shown great performance. Probability density function (pdf) has
emerged as a widely used and successful representation for shape contours [1], [5], [37]. It is
known to be mathematically convenient and robust to rigid transformations, noise,
occlusions and missing data. Bearing this in mind and following our previous work in [1],
we choose to represent shapes by pdfs in this paper.

The large size of image/shape databases today need faster retrieval algorithms (e.g., TinEye
reverse image search and Google image retrieval, both require real-time response). In this
paper, we present a fast and accurate shape retrieval method, which represents shapes using
Gaussian mixture models (GMMs) [2], [3], [4]- The shapes are divided into smaller groups
using a total Bregman divergence soft clustering algorithm, where each cluster is
represented by a tBD based &-norm center, called the £center [1], [38]. As shown in [1],
[38], the £center is a weighted combination of all elements in the cluster. Moreover, it has a
closed form expression, and is robust to noise and outliers. For the readers’ convenience, we
will revisit all of these points in Section 3.

This paper is a significant extension of our conference paper on shape retrieval using tBD
[1]. tBD is derived from total least squares [39] that has been used in linear regression to fit
a line/plane to a set of points. Total least squares based linear regression seeks to minimize
the orthogonal distance from every point to the line/plane, whereas ordinary least squares
linear regression seeks to minimize the ordinate distance from each point to the line/plane.
Fig. 1(a) and (b) show the difference between total least squares and least squares before and
after transforming the coordinate system. In Fig. 1, the dotted green lines represent least
squares and the solid red lines correspond to total least squares. We can see that when the
coordinate system is rotated, least squares solution will change, but total least squares will
remain the same. Therefore, it easy to see (and prove) that least squares regression is
coordinate-system dependent. One of the motivations for defining and using the tBD is to
remove this dependence on the coordinate system.

In [38], we defined tBD along with its induced §-norm based #center, and derived some of
its properties, e.g. statistical robustness to noise and outliers, and a closed-form expression
for the £center. We introduced the tBD hard clustering algorithm in [1], and used this
algorithm to divide a large database into hierarchical clusters, where the objects in the same
cluster are more similar than objects from different clusters. In this paper, we will introduce
other tBD-based centers, including the arithmetic center, and its special cases: the geometric
center and the harmonic center. Further, we show that to every tBD, there corresponds a
lifted exponential distribution and prove that estimating the parameters of this distribution
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using the MAP estimator is equivalent to finding the t-center by minimizing the tBD. Based
on this theoretical result, we present the tBD soft clustering algorithm for use in shape
retrieval.

We evaluate the soft clustering algorithm on synthetic data sets and real image databases,
and compare it to total Bregman hard clustering, as well as Bregman hard and soft clustering
algorithms. Additionally, we apply tBD soft clustering to the task of shape retrieval applied
to several shape databases. For this, we divide the database into smaller clusters and use the
Ecenter to represent each cluster. The only thing that needs to be stored are the £centers,
which is achieved using a -tree, (a hybrid of the B-trees and A-means) [40], [41]. During
retrieval, we only need to compare the query with the #centers, and prune the clusters whose
tcenters have large dissimilarity with the query. This process significantly reduces the
number of unnecessary comparisons, and greatly speeds up the retrieval. We show that this
method also performs well on various 2D shape databases such as the MPEG-7 database
[42], the Brown database [14] and the Swedish leaf data set [43], as well as on 3D shape
databases such as the Princeton Shape Benchmark (PSB) database [44].

The rest of this paper is organized as follows. In Section 2 we review the conventional
Bregman divergence and the newly proposed tBD along with their properties. Section 3
briefly introduces different types of tBD centers, the ég-norm arithmetic center along with its
special cases (geometric center, harmonic center). We will mainly focus on the #center,
which is the §-norm based tBD median, and delve into its properties. In section 4, we
present the key theoretical result namely, we show that for every tBD, there corresponds a
lifted exponential distribution, and using the maximum a posteriori (MAP) estimation to
estimate the parameters of this distribution corresponds to minimizing the tBDs and finding
the #centers. This naturally leads to the tBD soft clustering algorithm, which is presented in
Section 5. Section 6 describes the detailed shape retrieval experimental design, and the
application of tBD and the #center on the classical 2D shape databases, including the
MPEG-7, Brown and Swedish leaf databases, and also on the 3D PSB database. We
quantitatively compare our results with those from other techniques. Finally, we draw
conclusions in Section 7.

2 Total Bregman Divergences

In this section, we first recall the definitions of BD [45] and tBD [38]. Both divergences are
dependent on a convex and differentiable function 7 X — R that generates the divergences.
It is worth pointing out that if fis not differentiable, one can mimic the definition and proofs
of properties with gradient substituted by any of its subdifferentials [46], and the gradient
can be any value contained inside the interval of the subderivatives. Using this subderivative
will retain the properties of tBD.

Definition 2.1—[45] The Bregman divergence dassociated with a real valued strictly
convex and differentiable function 7defined on a convex set X between points x, y € Xis
given by,

di(e,)=f(x) = fO) = (x =y, V), @)

where V1) is the gradient of fat yand (-, -) is the inner product determined by the space on
which the inner product is being taken.

d{:, ¥) measures the error using the tangent function at y'to approximate 7 and can be seen
as the distance between the first order Taylor approximation to fat y’and the function
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evaluated at x. As shown in Fig. 2, Bregman divergence measures the ordinate distance, the
length of the dotted green line which is parallel to the y~axis. It is dependent on the
coordinate system, for example, if we rotate the coordinate system, the ordinate distance will
change (see the dotted lines in Fig. 2(a) and (b)). This coordinate dependent distance has
great limitations because it requires a fixed coordinate system. This is unrealistic in the cases
where a fixed coordinate system is difficult to build. With the motivation to overcome this
shortcoming and free ourselves from choosing coordinate systems, we proposed total
Bregman divergence.

Definition 2.2—[1] The total Bregman divergence 6 associated with a real valued strictly
convex and differentiable function Fdefined on a convex set X between points x, y € Xis
defined as,

J&) = fO) == VIO

Or(x, y)= =
L+{|[Vrol|

@

(-, -Y is inner product as in Definition 2.1, and ||V {))||2 = {(VA}), VA))) generally.

As shown in Fig. 2, tBD measures the orthogonal distance, and if we translate or rotate the
coordinate system, &(, ) will not change.

Compared to the BD, tBD contains a weight factor (the denominator) which complicates the
computations. However, this structure brings up many new and interesting properties and
makes tBD an “adaptive” divergence measure in many applications. Note that, in practice, X
can be an interval, the Euclidean space, the Riemannian space, functions [47]. Also tBD is
not symmetric i.e., 8¢(x, ) # 6¢(), X), but we can make it symmetric very easily in many
ways, e.g. total Jensen-Bregman divergence [48]

Ors=(07(x, (x+y)/2)+0£(y, (x+y)/2)/2  (3)
or

0rs=(0f(x, y)+07(y, )/2  (4)

or

OFs= 4 léf(x, ) X6y, x). (5)

Table 1 lists some tBDs with various associated convex functions.

3 Total Bregman divergence based centers

In many applications of computer vision and machine learning such as image and shape
retrieval, clustering and classification etc., it is common to seek a representative or template
for a set of objects having similar features. This representative normally is a cluster center,
thus, it is desirable to seek a center that is intrinsically representative and easy to compute.
In this section, we will introduce the tBD-based centers, including the &,—norm mean, the
geometric and harmonic means respectively. Specifically, we will focus on the §-norm
cluster center that we call the total center (#-centerfor short) and explore its properties.
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Some of these centers were introduced in [1], [38] but are included here to make this paper
more self contained.

Definition 3.1—Let £ X— R be a convex and differentiable function and £= {xy, X, -+,

Xn} be a set of 7 points in X then, the Qg—norm distance based on tBD, ﬂfp, between a point x
€ Xand Ewith associated fand the Qo-norm is defined as

n 1/p
1
14 -1 = .
Ay (x, E)—(n 21 (05 (x, x;))?P J (6)
The l;-norm mean X, of £is defined as

x= arg mjn;szp(x, E). @)

It is well known that the conventional geometric, harmonic and arithmetic means (in the
Euclidean case) have a strong relationship. This is also the case for the tBD centers. When p
=1, the tBD center is the arithmetic mean of &5 and when p= -1, the tBD mean becomes
the harmonic mean, and when p— 0, the mean becomes the geometric mean [49].

These means also bear the name of circumcenter (p — ©0), centroid (p = 2) and median (p =
1) respectively [50]. In this paper, we call the median (o= 1) the £center and we will present
an analytic form for the #center and focus on its applications to shape retrieval. We would
like to mention that the &-norm center for tBD is not in closed form and is not as robust as
-norm counterpart, thus motivating us to seek the &-norm #center.

3.1 84-norm t-center

Given a set £={xq, X, -, X}, we can obtain the &-norm £center xof £by solving the
following minimization problem

n

x=arg miné}(x, E)=arg minZé (X, X)) (8)

i=1

Using the &-norm £center x has advantages over other centers since it has a closed form
which makes it computationally attractive. The advantage is evident in the experiments
presented subsequently.

The £center is closely related to other kinds of tBD-based centers, like the geometric mean
and harmonic mean. We will show in the next section that, based on tKL, the £center of a

set of pdfs is a weighted geometric mean of all pdfs, and the #center of a set of symmetric

positive definite matrices is the weighted harmonic mean of all matrices.

3.2 Properties of t-center

In [38], we proved that the #center exists, is unique and can be written in an explicit form.
The proof made use of the convexity of fand the the Legendre dual space of tBD. We will
now illustrate this result using examples. But prior to doing that, we present some
definitions which are used in the example illustrations.

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 February 05.
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Definition 3.2—Let x € X, (X'can be R", R”, or the set of probability distributions in R”,

i.e. Ziﬂxi:ly xi>0) and fx) be a convex function. We then have the dual coordinates
through the Legendre transformation

xX'=Vf(x), ()

and the dual convex function

Fr(x=sup ((x*, x) — f(0)}.  (10)

For the Legendre transformation, the derivative of the function fbecomes the argument to
the function 7. In addition, if fis convex, then £ satisfies the functional equation

LV f)=(x, V() = f(x). (1)

The Legendre transformation is its own inverse, i.e. #~ = £ If fis a closed (lower-
continuous) convex function, then 7" is also closed and convex.

We already know that the gradient at the §-norm tcenter xis a weighted Euclidean average
of the gradient of all the elements in the set £= {x1, X, -, X} [38], as in

ViG)= [waVf(xi)) / [Zw,-] . w
i=1 =1

with the weights w; = (1 + ||V Ax))||2)"Y/2. Utilizing the Legendre dual transformation, and let
f be the Legendre dual function of £ i.e.

£ =sup{yx - f(x)}, (13)

then

=V (), (14

and

Yo= [Zn:wl'Vf(xi)] / (Zn:wiJ . (15
=1

i=1

which is the weighted average of gradients. For example, if x) = X2, then

2
FO=suplt. 0 — f@)=5, 19)

and
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X=y0, (17)
where
Yo= (22147)@] / (Zm] . (18)
i=1 i=1
and

1
W= ———.
e @Y

The £center has a closed form expression, which is a weighted average, and the weight is
inversely proportional to the magnitude of the gradient of fat the corresponding element.
Table 1 lists the £centers corresponding to various associated (commonly used) convex
functions. Obviously, this list is not exhaustive and there are convex functions for which the
tcenters are not in closed form and for certain classes of convex functions, the computation
of the inverse can be intractable [51]. In fact computation of the inverse in this context is the
focus of many machine learning algorithms [52], [53]. Table 1 also contains a column (# 5)
showing the &-norm centers derived using the BD [45] corresponding to the given convex
functions in column 2. Note that regardless of the chosen convex generating function, BD
center is the same for all of them. This is in sharp contrast to the #centers, which we believe
are a richer class.

Also, as an §-norm mean, the £center is closely related to the geometric mean and the
harmonic mean. The relationship is obvious when using the tKL between two pdfs. Let fg)
= [ g(X) log g(x)dx, which is the negative entropy [54], and £= {1, ¢, -, g} be a set of
pdfs, the £center is then given by

— - Wi 3 wj - 1
g=c| |a"*"", wi= ; © @)
; Y1+ [(+oggi(0) gi(x)dx

where cis a normalization constant to make ga pdf, i.e. | g(X)dx= 1. gis a weighted
geometric mean of {g;}_, which belongs to the exponential family generated by gy, -, g
This is very useful in order two tensor interpolation, where the order two tensor is a
symmetric positive definite (SPD) matrix. The tBD between two such tensors @;and Q;
(which can be considered as the covariances of two distinct normal distributions) can be
taken as the tKL between two normal distributions

1.,
p(x:0)= —5% Q;‘x), 1)

A 2m)ddetQ;

q(x;0/)=

1 1.
——exp (— —X Q_-lx) s
J@n)ldetQ; 2 @
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and

IKL(Qi, Qj)=tKL(p, q)
log(det(Q; ' Q)+1r(Q;' Qi)

(log(@et0))® (1 +10g2
2\/c+74 L 0ot 160 (det))

)

where .3 P woen?, and ¢'is the number of rows/columns of Q,. The £center Q for
SN . !
{Q:}!_, is the weighted harmonic mean:

— [ a\!
Q= Z Wy ,
= 1
5(det0))” 2
[2 \/ﬁw_wlog(det@)] (23)

wi= -
(log(detQ /) o
2/[2 \/C’fL e —L—M“f"z")IOg(detQ_f))

Besides the closed form expression, another fundamental property of the £center is that it is
provably robust to outliers (see [38] for the analysis of the influence function). We will state
its theoretical robustness here in the form of a theorem that was proved in [38] and depict its
robustness property in practice through examples in the experimental section.

Theorem 3.1—[38] The £center is statistically robust to outliers. The influence function of
the £center from outliers is upper bounded.

Using the &-norm tcenter x has advantages over other centers resulting from the norms with
p>1in the sense that, besides robustness, xhas an analytic form which makes it
computationally attractive. This advantage is explicitly evident in the applications of
clustering described later.

4 tBDs and lifted exponential families

In this section, we will elucidate a stochastic aspect of tBD by proving a relationship
between tBD and lifted exponential family distributions. The 4-norm £center corresponds to
the Bayesian Maximum a posteriori estimation (MAP) estimator of the associated
probability distribution.

In probability theory and statistics, a family of probability density functions or probability
mass functions is said to be an exponential family (EF) if it can be expressed in the
following standard form,

p(x;0)=h(x)exp ((6, %) — g(60)) (24)

where @is called the natural parameter, which is a vector lying in the natural parameter
space, Ax) > 0 is a dominating measure, X is a vector-valued random variable, {6, x) is the
inner product Z; 8;x;and g(6) is a convex function of 6. g(6) is called the log partition
function or cumulant generating function. There are two common types of exponential
families [55], including the continuous families (e.g. normal, Gamma, Beta, Log-normal,
Weibull and inverse Gaussian distributions), and discrete families (e.g. Poisson, Binomial,

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 February 05.
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and Multinomial distributions). In the case of discrete families, /(x) is a counting measure
and [ will be replaced by .

A multivariate parametric family of distributions p(x, 6) in (24) is said to be a regular
exponential family, when x is a minimal sufficient statistic [56], [57] and g(6) is convex and
strictly differentiable. In this paper, we will use the regular exponential family distributions.

Banerjee et al. [45] have shown that there is a bijection between the regular exponential
family distributions and BDs such that

px;0)=b(x)exp (—ds(x,1(0))), (25)
where fis the Legendre conjugate function of g, n=Vg(6), and H(x) = A(x) exp (—AX)).

There is a bijection between BD and tBD such that every BD corresponds to a unique
convex differentiable function fand every convex differentiable 7Fcorresponds to a unique
tBD and vice versa. According to the bijection transitivity, we can recover the exponential
family distribution (25) as

p(x;0)=b(x)exp (—(5f(x, RV 1+||Vf(/1)||2 ' (26)
since 87(x, y)=ds(x.3)/ 1 +|VFO)[’.

In order to find the distribution induced by tBD &¢(x, J), we consider a probability
distribution of the form

Ps(X:0)=h(x)exp (=67(6,%) — 2(60))  (27)
where gis a normalization term depending only on 6. We call this the tBD distribution,
since x are distributed according to the tBD values. This is not an exponential family but is a

lifted exponential family. Given an exponential family (24), we define its lift by a curved
exponential family

pexsO)=h(x)exp ((6.%) - 2(6)), (28)

where

(fO 1 (1
6L( 9 )’ X_w(x)(x) (29)

2
with W)= VIV . Here, A(x) is adequately defined such that the integration of (28)
converges and g(6) corresponds to the normalization factor. We lifted p(x; 6) to the space
having one extra dimension and embed it (29) as a hyper-surface.

Theorem 4.1—Any tBD distribution corresponds to a lifted exponential family
distribution.

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 February 05.
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It is easy to prove the theorem since &¢(6, X) is written as

8¢(6,%)= — (6,%) — % (30)

However, we may choose /(x) adequately such that

f h(x)exp (-6 7(6,x))dx  (31)

converges. A typical choice is Gaussian

h(x)=cex (—M]
=cexp 202 | (32)

o

We show that the arbitrariness of /7 does not affect the stochastic inference given a data set £
= {le A Xﬂ}'

Theorem 4.2—The tcenter of £ is the Bayesian MAP estimator in the lifted exponential
family (28) with a prior distribution

n(0)=exp (—ng(9)). (33)

Proof: The Bayesian MAP is the maximizer of

log []_[nw)m (i 9)] = logh(x)) = Y 57 (6.x), (34)

which is the minimizer of Z6¢(6, x)).

2
When f(x)zﬁ, (2) becomes a special radial basis function, whose general form is

2
0 7(Xi, Xj)=€xp —M . (35)
2 1+||Xj

Therefore, the tBD distribution is

Ps(x:0)=h(X)exp (-57(6,X) — (6)), (36)

where g(6) is given from

[ps(x:0)dx=1. (37)

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 February 05.
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When we use the Bayesian prior 7z(6) = exp (9(6)), the MAP for £'is the maximizer of T1;
(O)ps(X;; 6), which is the minimizer of Z; 56, x,). In the next section, we use the £center
which is the result of the aforementioned minimization to develop a soft clustering
algorithm.

5tBD hard and soft clustering

When performing retrieval from a small database, it is possible to apply the brute-force
search method by comparing the query shape with each shape in the database one by one.
However, in the case of retrieval from a large database, it becomes impractical to use this
brute-force search method because of the extremely high computational cost. To achieve
real-time retrieval in a large database, we turn to a far more computationally efficient
strategy, namely a divide-and-conquer strategy. First, utilizing the top down approach, we
split the whole database into sub-clusters, and repeat recursively the same approach on the
sub-clusters. Ideally, the divergence between shapes from the same cluster should be less
than the divergences between images from different clusters, so that we choose a
representative for each cluster, and assign each shape to the nearest cluster. There are two
ways of assigning a shape to a cluster, assign it to a cluster deterministically, or assign the
shape to a cluster according to some probability. The former corresponds to hard clustering,
while the later case is soft clustering. These clustering algorithms were described in
Banerjee et al. [45] for Bregman divergences (BDs), where the hard clustering chooses the
centers of mass, and the soft clustering is shown to be equivalent to the celebrated
Expectation-Maximization algorithm (EM) for learning mixtures of dual exponential
families (EFs). In this paper, we consider tBDs instead of BDs and the tBD clustering
algorithms are adapted accordingly. For hard clustering, the cluster centers are no longer
centers of mass but barycenters with weights inversely depending on the norm of the
gradient of the tBD generator. Similarly, the tBD soft clustering can be interpreted as the
expectation-maximization algorithm for learning mixtures of lifted exponential families
(IEFs) based on the bijection described in Section 4. We now summarize the soft clustering
algorithm in the algorithm block below.

Algorithm 1
Total Bregman Soft Clustering Algorithm

Input: X:{xi}?il, number of clusters c.
Output: M= {m}r1 and @={q}z1, /myis the cluster center for the J cluster with probability q;
Initialization: Randomly choose ¢ elements from Xas Mand set Q to the uniform probability.
repeat

{assign x;to clusters}

for /=1to Ndo

forj=1to cdo

o qjcxp(—df(mi,x[))
q(-/|'xl) A x5 aqs exp(f(if(m D)
F=1 i
end for
end for

{update cluster centers}

for j=1to cdo

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2013 February 05.
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N
qj = ), aUlx)
mj < t-center for cluster j
end for

until The change of the results between two consecutive iterations is below some sensitivity threshold.

For clustering data sets, one has to first choose an appropriate divergence. Banerjee et al.
[45] showed experimentally that the clustering result is best when the divergence is chosen
according to the underlying generative process of data. That is, for a data set drawn from a
mixture of exponential families, the hard clustering algorithm performs experimentally best
if we choose the corresponding dual Bregman divergence [45] (p. 1737). The same
experimental phenomenon holds for tBD clustering as described below. Further, we present
comparative results for clustering using Bregman and total Bregman divergences on a
synthetic data set. We see that the total Bregman divergences outperform the usual Bregman
divergences in all experimental scenarios because of its inherent statistical robustness. In
section 6 we further demonstrate that similar experimental results are obtained for shape
retrieval applications on real-world data sets. We did four experiments using the same data
sets as Banerjee et al. [45]. The first one is based on several 1D data sets of 300 samples
each, generated from mixtures of Gaussian and Binomial models respectively. Both mixture
models had three components with equal priors centered at 10, 20 and 40. The standard
deviation of the Gaussian distribution was set to 5 and the number of trials of the Binomial
distribution was set to 300 so as to make the two models somewhat similar to each other, in
terms of the variance which is almost the same for all the models. We also use the same
method to generate 2D and 5D data sets and compare the algorithms on them.

The accuracy of clustering was measured by using the normalized mutual information
(NMI) [58], [59] between the predicted clusters and the original clusters that generated the
samples, and the results were averaged over 30 trials.

Table 2 lists the NMI resulted from soft clustering using BD® and tBD. Gaussian mixture
and Binomial mixture represent the models that generated the data sets. dgayssian and
Ainomial epresent the Bregman divergences for Gaussian and Binomial distributions while
SGaussian ANd 8gjnomias represent the tBD for Gaussian and Binomial distributions. More
specifically,

:f(xl) — f(x2) = (x1 — x2, Vf(x2))
14|V )|

6(}uusxiun (x1,x2) (38)

Fx)=Lx2and g(x)=—1—exp (—<4"). 8ginomiaris in the same format as (38) but

g="|pra-py . - ,
X , and pis the probability for a single success.

For Table 2, in ((a), (b), and (c)), rows 1 and 2 correspond to the NMI between the original
and the predicted clusters obtained by applying the Bregman clustering algorithm using the
Bregman divergences dgayssian @nd dgjnomias [45] respectively. Rows 3 and 4 correspond to

For the implementation of BD soft clustering, we used the public domain jMEF library [55] from http://www.lix.polytechnique.fr/

~nielsen/MEF/
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the NMI yielded by the tBD clustering algorithm using 8gaussian @nd 8gjnomiar respectively.
The numbers in Table 2 demonstrate that using 8gzyssian to cluster data sets generated by
Gaussian mixture and using &gjnomias to cluster data sets generated by Binomial mixture
gives better NMI than using dgaussian @nd dgjnomiar More importantly, using 8gaussian t0
measure the data sets generated by Binomial mixture gives much better NMI than using
UGaussian 10 perform the same task. This is also true with 8g;,0mia7aNd dBjnomiar THIS is very
useful in the real applications, because often, one does not know the model that generates
the data, and instead we have to blindly choose some divergence measure. But what we are
sure now is that tBD is always better than Bregman divergence when using the same
generating functions.

From Table 2, we can see that with the increasing dimension, tBD soft clustering becomes
more accurate than BD clustering, and the performance difference between tBD clustering
and BD clustering becomes larger.

Also, if we fix the dimension of data and the original number of clusters ¢, and let the
predicted cluster number ¢approach to ¢, the NMI of tBD clustering increases faster than
that of BD clustering. This is illustrated in Table 3. The data set for Table 3 is generated
using the Gaussian generative model and the original number of clusters is ¢= 3. From
Table 3, we can see tBD soft clustering behaves consistently better than BD soft clustering
for which even the predicted number of clusters is incorrect. This is fundamental in image
segmentation applications where it is necessary to partition an image into multiple regions or
sets, and also can typically be used to locate objects and boundaries.

6 Shape retrieval using t-centers

The task of shape retrieval is to find the best match from a database of shapes given a query
shape. In this section, we propose an efficient and accurate method for shape retrieval that
includes an easy to use shape representation, and an analytical shape dissimilarity
divergence measure. Also, we present an efficient scheme to solve the computationally
expensive problem encountered when retrieving from a large database. The scheme is
composed of clustering and efficient pruning, which will be elaborated on in Section 6.3.

6.1 Shape representation

A time and space efficient shape representation is fundamental to shape retrieval. Given a
segmented shape (or a binary image), we use a Gaussian Mixture Model (GMM) [2], [3], [4]
to represent it. The procedure for obtaining the GMM from a shape is composed of three
steps. First, we extract the points on the shape boundary or surface (to make it robust, for
each point on the boundary, we also picked its closest 2 neighbors off the boundary), since
MPEG-7 shapes are binary, the points that have nonzero gradient lie on the boundary (this
step uses one line of MATLAB code). After getting the boundary points for every shape, we
use the affine alignment proposed by Ho et al. [60] to align these points to remove the effect
of rigid transformations (note that other alignment methods [22] will also be good). Given

two sets of points {x;}”, and {yj};f: 1 Where {x;} are from a query and {)} from the database,
we can find affine alignment (A, 6), A€ GL(2)2, b€ R?, such that g(A, b) = Zimin; {(Ax;
+b- yj)z} achieves minimum, and then we use the aligned {x;[x;=Ax;+b}}., to represent the
original point set {x;}i~,. This step is also very simple due to the explicit solution of (A, 4),
and it only takes several lines of MATLAB code to implement. Finally, we compute the

2G L(2): The set of 2 x 2 invertible matrices.
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GMM from the aligned boundary points. A parametric GMM is a weighted combination of
Gaussian kernels, which can be written as

m

P(x)=ZaMV (s, Zi),O <a; <1, ia[-:l, (39)

i=1

where mis the number of components; ~ (x; w;, Z)) is the Gaussian density function with
mean p, variance Z; and weight &;in the mixture model. The mixture model is obtained by
applying the EM algorithm and iteratively optimizing the centers and widths of the Gaussian
kernels. The number m of components in the GMM model should be as small as possible,
but makes the determinant of the covariance for each component not large (we found that m
=10 is a good compromise for MPEG-7 database). The above process is portrayed using the
flow chart shown below.

[Simpc —}‘ Boundary extraction and alignment ‘—:» GMM

Some concrete examples of the application of the flow chart are shown in Fig. 3.

6.2 Shape dissimilarity comparison using total square loss (tSL)

Total square loss (tSL) is a special class of tBD. As shown in Table 1, the generator function
fon the scalar space for tSL is fx) = x2, and the tSL between two elements xand yis

—?
1+4

1SL(x, y)= \‘/=2 Furthermore, tSL can be generalized to the space of vectors as well as
functions. In our experiment, we use tSL to measure the difference between GMMs.

After getting the GMM representation of each shape, we use tSL to compare two GMMs,
and take the difference as the dissimilarity between the corresponding shapes. Note that one
could also use tKL to compare the difference between distributions. However, to compare
the difference between GMMs, tSL gives closed form solution, but tKL does not and this
motivates us to use tSL. Suppose two shapes have the following GMMs p; and p,

m

M
pr@=> a0, o)

i=1

m
2 > (2)
pa()= ) a? A (el ),Zi ). (41)
=1

Since
JA Copr, T oz, To)dx=A 01 = pa, T1+30),
we can arrive at

f([’l - P2)2dx_d1 +dy —di2
\/1+f4p%dx Vi+ady

tSL(p1, p2)= (42)
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where

m
(1 (D 1) (1 (1)
d]:Za[ a; N O = ,Zj .,.Zj ) @y
i,j=1

d _Zm: 2) (2)/1/(0_ @ _,© Z(Z)+ (2))
2—“ lai aj SM; #] P j i (44)
l,j:

m
_ DO e D @ D, @
di2=2 ) a D Ou” =D s
i,j=1

1 1 /-1
N O, ) )Jm————— -= ,
O Z) o) _det(z)eXp( FH ,u) (46)

. . . . mo n O,
and eis the dimension of . Given a set of GMMs {p;}}.,, P1=Zi=1“§)f/’/(x?ﬂ§ g Zi )its ¢
center can be obtained from equation (14), which is

—_ Y
P=5mwe
wi=(1+4d))™1/2, )
Zow i i i i
di= 3 &) N O = i D+ 2.
ij=

We evaluate the dissimilarity between the GMM of the query shape and the GMMs of the
shapes in the database using #SL, and the smallest dissimilarities correspond to the best
matches.

6.3 Shape retrieval in MPEG-7 database

The proposed divergence is evaluated on the shape retrieval problem using the MPEG-7
database [42], which consists of 70 different objects with 20 shapes per object, for a total of
1400 shapes. This is a fairly difficult database to perform shape retrieval because of its large
intraclass variability, and, for many classes, small interclass dissimilarity, and furthermore,
there are missing parts and occlusions in many shapes.

We cluster the database into hierarchical clusters, calculate their #centers and compare the
query shape with the #centers hierarchically. For the clustering part, we applied both hard
clustering and soft clustering.

For hard clustering, we apply a variation of &-tree method by setting A= 10 at the first level
of clustering, 7 at the second level, 5 at the third level and 2 at all following levels, so the
average number of shapes in each cluster is 140, 20, 4, 2, and 1.

In the A-tree, every key is represented by a mixture of Gaussians, every inner node
(including the root) has 1 to k keys, each of which is the #center of all keys in its child
nodes, and the key for a leaf node is a mixture of Gaussians for an individual shape. The 4
tree illustration is shown in Fig. 4.
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During retrieval, we only need to compare the query with the representatives, and once the
best match representative is obtained, we compare the query with the £centers of the relative
sub-clusters, recursively doing so, until the required number of best matches are found.

For soft clustering, we append a semi-hard assignment to the soft clustering algorithm, i.e.,
after the soft clustering converges, we will assign the shape x;to cluster C;, if ((Clx) = a.
We use a = 1/2, so that one shape can be assigned to at most 2 clusters at the tree leaf level,
but a cluster center may be dependent on x;even though x;is not assigned to this cluster
finally.

The clustering process is a coarse to fine procedure, which greatly enhances efficiency while
guaranteeing accuracy. Also, we compare the clustering accuracy of ¢SL, y2 3 and SL soft
and hard clustering by a reasonable measure, which is the optimal number of categories per
cluster (denoted by |CI", | (] represents the cardinality of C, i.e., the number of categories in
C) divided by the average number of categories in each cluster (denoted by Avg(|C))). For

example, at the first level clustering, there are 10 clusters {Ci}}flz, with an average of 140
shapes per cluster, and thus, the optimal number of categories per cluster |C]" = 140/20 = 7;

AVNCD:%. The smaller the number of categories per cluster, the higher is the clustering
accuracy, and the more accurate will be the categories separation. Note the optimal
clustering accuracy is 1. Fig. 5 compares the clustering accuracy of #SL, y? and SL soft and
hard clustering, which shows that £SL soft clustering has a striking clustering accuracy,
implying substantial capability to detect outliers, occlusion, missing parts, and strong ability
to distinguish shapes from different categories.

We include here several groups of retrieval results in Fig. 6, which show that our method
can deal very well with scale, rotation, pose, occlusion, missing parts, great intraclass
dissimilarity and large interclass similarity.

The evaluation of accuracy for retrieval in the whole MPEG-7 database is based on the well
recognized criterion, recognition rate [5], [9], [61], [42]. Each shape is used as a query and
the top 40 matches are retrieved from all 1400 shapes. The maximum possible number of
correct retrievals for each query is 20, and hence there are a total of 28,000 possible matches
with the recognition rate reflecting the number of correct matches divided by this total.

Table 4 lists the recognition rate we obtained and comparisons with some of the existing
techniques. Note that our method gives high recognition rate, even though it is not as good
as [15], [62], however, our method does not need any preprocessing of the shapes or any
post-processing of the similarities. Simplicity and efficiency of our method are the key
salient features distinguishing it from other methods.

6.4 Brown database

Additionally, we apply our proposed method to the Brown database [14], which contains 9
shape categories, where each shape category has 11 different segmented binary shapes and
99 shapes in total. We use GMM to represent each shape, the number of components for
each GMM is decided using the same way as in the MPEG-7 experiment, and compare the
difference of shapes using the tSL between their corresponding GMMs. We tested our
method using the criteria as in [8], [61], [14], [15], [16]: every shape is taken as the query,
and compared with all the shapes in the database. We then find the best 10 matches, and
check the number of correct matches, i.e., the number of shapes which belong to the same

3 x*d(p.g)=

P-gw)?2 7
X (px)+q(1)*
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category as the query shape. This process is repeated by taking each one of the 99 shapes in
the whole data set as the query shape. Then we check the total correct matches for the /%
found shapes, /=1, 2, -, 10 (the maximum number of correct matches is 99), which are
shown in Table 5. We can see that our method performs quite well.

6.5 Swedish Leaf Data Set

The Swedish leaf data set [43] contains isolated leaves from 15 different Swedish tree
species, with 75 leaves per species, and 1125 shapes in total. We use the classification
criteria as in [7], [15], [19], [61], which used the 1-nearest-neighbor approach to measure the
classification performance. For each leaf species, 25 samples are selected as a template and
the other 50 are selected as targets. We use GMM to represent each shape, and use tBD soft
clustering algorithm to cluster the shapes into different clusters. Shape classification results
on this data set are shown in Table 6, from which we can see that our accessible shape
representation plus tBD soft clustering algorithm yields very good results.

6.6 3D Princeton Shape Benchmark

Our method performed very well in the domain of 2D shape retrieval and it can be extended
very easily to higher dimensional space. Here, we evaluate our method on the Princeton
Shape Benchmark (PSB) [44] containing 1814 3D models, which is divided into the training
set (907 models in 90 classes) and the testing set (907 models in 92 classes). We evaluate
our method on the testing set, and compare our results with others in three ways, Nearest
Neighbor (NN), Discounted Cumulative Gain (DCG) and Normalized DCG (NDCG) using
the software provided in PSB [44]. Our method outperforms the other methods when using
NN criteria, and can find the first closest matches that belong to the query class more
accurately.

7 Conclusions and future work

In this paper, we defined and investigated properties of total Bregman divergences (tBD).
We introduced the tBD-based @D-norm centers, and report closed-form expressions for the §-
norm tcenter that is provably robust to outliers. We extend the work of Banerjee et. al [45]
by proposing both tBD hard and soft clustering algorithms that exhibit experimental
robustness compared to conventional Bregman divergences. We also developed a simple
and efficient shape retrieval approach, using shape alignment to remove rigid motion effects
(translation, rotation, scale), then using a GMM to represent shape boundaries (contour or
boundary surface) followed by an application of the tBD clustering algorithm to cluster the
shapes into sub-clusters and store the shapes using a A-tree. The clustering has low
computational cost, because the cluster center is in closed form and is only dependent on the
GMM means and variances. The A-tree makes retrieval very efficient which takes
logarithmic comparisons. Furthermore, each comparison is very fast because the tBD
between two GMMs also has an explicit form. In summary, our method is efficient,
invariant to rigid transformations, robust to outliers, and yields better or similar results
compared with the state-of-the-art techniques.

For future work, we plan to apply our method to real-world image data set classification and
video retrieval, with the existence of clutter and motion, which will be more challenging and
interesting.
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(a) (b)

Fig. 1.
In each figure, the dotted green line is least squares, and the bold red

Page 23

line is total least

squares, and the two black orthogonal lines indicate the coordinate system. (a) shows least
squares and total least squares before rotating the coordinate system. (b) shows least squares

and total least squares after rotating the coordinate system.
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Fig. 2.

In each figure, df(x, y) (dash dotted green line) is BD, &¢(x;, )) (bold red line) is tBD, and
the two orthogonal arrows indicate the coordinate system. The length of the yellow dash line
is (x— y, VA)). (a) shows dr(x, ¥) and &¢(x, J) before rotating the coordinate system. (b)
shows df(x, y) and &¢(x, ) after rotating the coordinate system. Note that dr(x, ) changes
with rotation unlike &¢(x, ) which is invariant to rotation.
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Fig. 3.

Left to right: original shapes; aligned boundaries; GMM with 10 components, the dot inside
each ellipse is the mean of the corresponding Gaussian density function, and the transverse
as well as the conjugate diameter for each ellipse correspond to the eigen values of the
covariance matrix.
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k-tree diagram. GMM: Gaussian mixture model. Each key is a mixture of Gaussians as
explained in the experimental part. Each key in the inner nodes is the #center of all keys in
its child nodes. The key of a leaf is a mixture of Gaussians corresponding to an individual

shape.
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Average number of shapes per cluster log2(n)

Comparison of clustering accuracy of ¢SL, ;(2 and SL, versus average number of shapes per

cluster.
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Fig. 6.

Retrieval results using our proposed method: the first shape in each figure is the query, and
the other shapes are shown from left to right, up to down according to the ascending order of
the divergence to the query.
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TABLE 2

(@), (b) and (c) present the clustering results for the 1D, 2D and 5D data sets. Columns 2—3 correspond to the
NMI between the original and predicted clusters (original number of clusters is 3, predicted number of clusters
is 5) obtained by applying the Bregman soft clustering algorithm corresponding to the dgayssian and dginomial
and tBD soft clustering algorithm corresponding to Sgayssian @nNd 8gjnomiar respectively.

[€)]
Measure | Gaussian Mixture | Binomial Mixture
Gaussian 0.73660+0.00142 0.64998+0.00035
Binomial 0.64307+0.00066 0.72982+0.00379
SGaussian 0.75076+0.00193 0.65089+0.00018
SBinomial 0.67899+0.00773 0.74450+0.00218
(b)
Measure | Gaussian Mixture | Binomial Mixture
Gaussian 0.43922+0.03577 0.38246+0.05020
inomial 0.36805+0.05513 0.42987+0.04747
SGaussian 0.59385+0.11910 0.50518+0.07280
SBinomial 0.52136+0.09187 0.57063+0.05173
(©)
Measure | Gaussian Mixture | Binomial Mixture
Gaussian 0.39869+0.00049 0.38246+0.05020
Binomial 0.19765+0.00025 0.14205+0.05619
SGaussian 0.52360+0.00018 0.41516+0.05320
SBinomial 0.36883+0.00035 0.52164+0.04173
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NMI between the original clusters and the clusters obtained from tBD and BD soft clustering algorithms

TABLE 3

respectively. ¢) is the predicted number of clusters. The original number of clusters is 3

t | daussian | Scaussian

10 | 0.65627+0.00020 | 0.656364+0.00034
8 0.68417+0.00122 0.68554+0.00109
6 0.69958+0.00112 0.70202+0.00154
5 0.73660+0.00142 0.75076+0.00193
3 0.86115+0.00141 | 0:98658 + 0:00120
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Recognition rates for shape retrieval in the MPEG-7 database. Soft clustering using total Bregman tSL
divergence performs well, gaining 16% increase over ordinary Bregman SL divergence.

TABLE 4

Technique

Recognition rate (%)

GMM+soft clustering+ tSL
GMM+soft clustering+SL
GMM-+hard clustering+tSL [1]
GMM-+hard clustering+SL [1]
Shape-tree [61]

IDSC + DP + EMD [7]
Hierarchical Procrustes [9]

IDSC + DP [6]

Shape L’Ane Rouge [5]

Generative Models [16]

Curve Edit [63]

SC + TPS [64]

Visual Parts [42]

CSS [65]

Perceptual Strategy + IDSC + LCDP [15]
IDSC + Mutual Graph [66]

IDSC + LCDP + unsupervised GP [19]
IDSC + LCDP [19]

IDSC + LP [8]

Contour Flexibility [17]

Perceptual Strategy + IDSC [15]
SC + IDSC + Co-Transduction [62]
AIR[18]

ASC + LCDP [20]

AIR + DN + TPG Diffusion [21]

93.41
76.48
89.1
65.92
87.7
86.56
86.35
85.4
85.25
80.03
78.14
76.51
76.45
75.44
95.60
93.4
93.32
92.36
91.61
89.31
88.39
97.72
93.67
95.96
99.99
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Recognition rates for shape retrieval from the Swedish leaf database.

TABLE 6

Technique

recognition rate(%o)

GMM+soft clustering + tSL
GMM+hard clustering + tSL

GMM+soft clustering+SL

GMM-+hard clustering+SL

Perceptual Strategy + IDSC + LCDP [15]
IDSC + LCDP [19]

Shape-tree [61]

IDSC [7]

98.33
97.92
94.21
90.89
98.27
98.20
96.28
94.13
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