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Abstract
Epilepsy is the third most common chronic brain disorder, and is characterized by an enduring
predisposition to generate seizures. Despite progress in pharmacological and surgical treatments of
epilepsy, relatively little is known about the processes leading to the generation of individual
seizures, and about the mechanisms whereby a healthy brain is rendered epileptic. These gaps in
our knowledge hamper the development of better preventive treatments and cures for the ≈30% of
epilepsy cases that prove resistant to current therapies. Here, we focus on the rapidly growing
body of evidence that supports the involvement of inflammatory mediators—released by brain
cells and peripheral immune cells—in both the origin of individual seizures and the epileptogenic
process. We first describe aspects of brain inflammation and immunity, before exploring the
evidence from clinical and experimental studies for a relationship between inflammation and
epilepsy. Subsequently, we discuss how seizures cause inflammation, and whether such
inflammation, in turn, influences the occurrence and severity of seizures, and seizure-related
neuronal death. Further insight into the complex role of inflammation in the generation and
exacerbation of epilepsy should yield new molecular targets for the design of antiepileptic drugs,
which might not only inhibit the symptoms of this disorder, but also prevent or abrogate disease
pathogenesis.
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Introduction
Epilepsy is a brain disorder characterized by an enduring predisposition to generate seizures,
and by emotional and cognitive dysfunction.1 This disorder affects ≈50 million people
worldwide and, hence, is one of the most common neurological disorders. Despite the
availability of a wide range of antiepileptic drugs (AEDs), about one-third of individuals
with epilepsy still experience seizures that do not respond to medication.2 Thus, an urgent
need exists for effective therapies to be developed. This need is further increased by the fact
that currently available AEDs are mainly symptomatic:3 they block seizures but do not
affect the underlying pathology or the progression of the disorder.4 Understanding the
mechanisms that are involved in the generation of epilepsy should aid the development of
novel drugs that modify the epileptic process.2

Over the past 10 years an increasing body of clinical and experimental evidence has
provided strong support to the hypothesis that inflammatory processes within the brain
might constitute a common and crucial mechanism in the pathophysiology of seizures and
epilepsy.5–8 The first insights into the potential role of inflammation in human epilepsy were
derived from clinical evidence indicating that steroids and other anti-inflammatory
treatments displayed anticonvulsant activity in some drug-resistant epilepsies.9–11

Additional evidence came from febrile seizures,12 which always coincide with—and are
often caused by—a rise in the levels of pro inflammatory agents.13

Chronic brain inflammation—comprising activation of microglia, astrocytes, endothelial
cells of the blood–brain barrier (BBB), and peripheral immune cells, and the concomitant
production of inflammatory mediators—was first observed in patients with Rasmussen
encephalitis.14 Evidence of immune system activation in some patients with seizure
disorders, the high incidence of seizures in autoimmune diseases, and the discovery of
limbic encephalitis as a cause of epilepsy15–17 led to the suggestion that immune and
inflammatory mechanisms have roles in some forms of epilepsy.5,18

Evidence is emerging that inflammation might be a consequence as well as a cause of
epilepsy. Several inflammatory mediators have been detected in surgically resected brain
tissue from patients with refractory epilepsies, including temporal lobe epilepsy (TLE) and
cortical dysplasia-related epilepsy (Supplementary Table 1 online).5,8 The finding that brain
inflammation occurred in epilepsies that were not classically linked to immunological
dysfunction highlighted the possibility that chronic inflammation might be intrinsic to some
epilepsies, irrespective of the initial insult or cause, rather than being only a consequence of
a specific underlying inflammatory or autoimmune etiology. The mounting evidence for a
role for inflammatory processes in human epilepsy has led to the use of experimental rodent
models to identify putative triggers of brain inflammation in epilepsy, and to provide
mechanistic insights into the reciprocal causal links between inflammation and seizures
(Supplementary Table 2 online).5,7,19 Experimental studies have shown that seizure activity
per se can induce brain inflammation, and that recurrent seizures perpetuate chronic
inflammation. Seizure-associated cell loss can contribute to inflammation but is not a pre-
requisite for inflammation to occur. In addition, models of systemic or CNS infections
suggested that pre- existing brain inflammation increases the predisposition to seizures,
associated with alterations in neuronal excitability and enhanced seizure-induced
neuropathology. Additional mechanistic insights into the role of inflammation in seizures
and the development of epilepsy have been gained through use of pharmacological
approaches that interfere with specific inflammatory mediators (Supplementary Table 3
online), and from changes in seizure susceptibility in genetically modified mice with
perturbed inflammatory pathways.20–27
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In this article, we will review the clinical and experimental evidence supporting a role for
brain inflammation in epilepsy. We will critically analyze whether brain inflammation is a
cause or a consequence of seizures, and whether cell loss is related to such brain
inflammation. We will also examine the contributions of neurons, astrocytes, microglia and
peripheral immune cells to brain inflammation. Finally, we will address whether
inflammation contributes to the mechanisms involved in the generation of individual
seizures and/or the transformation of a normal brain into one that generates spontaneous
seizures (that is, epileptogenesis). The latter scenario predicts that pharmacological
interventions targeting inflammation should ameliorate seizures and epilepsy. Such
approaches to overcome pharmacoresistant epilepsies will be discussed.

Inflammation and immunity in the CNS
Inflammation consists of the production of a cascade of inflammatory mediators (a dynamic
process), as well as anti-inflammatory molecules and other molecules induced to resolve
inflammation, as a response to noxious stimuli (such as infection or injury), or immune
stimulation, and is designed to defend the host against pathogenic threats. Inflammation is
characterized by the production of an array of inflammatory mediators from tissue-resident
or blood-circulating immunocompetent cells, and involves activation of innate and adaptive
immunity (Box 1). Both innate and adaptive immunity have been implicated in epilepsy, and
microglia, astrocytes and neurons are believed to contribute to the innate immunity-type
processes that cause inflammation of the brain.

The brain has traditionally been considered an immunoprivileged site because of the
presence of the BBB, the lack of a conventional lymphatic system, and the limited
trafficking of peripheral immune cells. Nevertheless, both the innate and adaptive immune
responses are readily evoked within the CNS in response to pathogens, self-antigens, or
tissue injury of several etiologies. Microglia, astrocytes, neurons, BBB endothelial cells, and
peripheral immune cells extravasating into brain parenchyma can all produce
proinflammatory and anti-inflammatory molecules.28,29 The contribution of each cell
population to brain inflammation depends on the origin (for example, CNS versus systemic)
and the type (for example, infectious versus sterile) of the initial precipitating event.5,7,30

The BBB represents a key regulatory element of the communication between intrinsic brain
cells and peripheral immunocompetent cells (Box 2).

As noted above, an inflammatory response in the CNS can be induced in the absence of
infection. Brain inflammation has been reported following ischemic stroke or traumatic
brain injury (TBI), and during chronic neurodegenerative diseases. In all these conditions,
pronounced activation of microglia and astrocytes takes place in brain regions affected by
the specific disease, and these cells act as major sources of inflammatory mediators.
Recruitment of peripheral immune cells might also occur.30–33

The activation of innate immunity and the transition to adaptive immunity are mediated by a
large variety of inflammatory mediators, among which cytokines—polypeptides that act as
soluble mediators of inflammation—have a pivotal role.31,34 These molecules include
interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs) and growth factors (for
example, transforming growth factor [TGF]-β). Cytokines are released by
immunocompetent and endothelial cells, as well as by glia and neurons in the CNS, thereby
enabling communication between effector and target cells during an immune challenge or
tissue injury. Following their release, cytokines interact with one or more cognate receptors.
The most extensively studied prototypical inflammatory cytokines in the CNS are IL-1β,
TNF and IL-6.35–37 Cytokine activity can be regulated at multiple levels, including gene
transcription, cleavage of cytokine precursors (for example, pro-IL-1β, pro-TNF) by specific
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proteolytic enzymes, and cellular release, as well as through receptor signaling (discussed
below). All cell types in the brain seem capable of expressing cytokines and their receptors,
with low basal expression of these molecules being rapidly upregulated following CNS
insults. Chemokines comprise a specific class of cytokines that act as chemoattractants to
guide the migration of leukocytes from blood through the endothelial barrier into sites of
infection or injury.38 These cytokines also regulate microglial motility and neural stem cell
migration, provide axon guidance during brain development, and promote angiogenesis,
neurogenesis and synaptogenesis.39,40 the release of chemokines is often stimulated by
proinflammatory cytokines such as IL-1β.

Several mechanisms have been identified that attenuate the inflammatory response,
indicating the importance of such strict control for homeostasis and prevention of injury.
Regulatory mechanisms include production of proteins that compete with cytokines to bind
their receptors, such as IL-1 receptor antagonist protein (IL-1ra),41 and decoy receptors that
bind cytokines and chemokines but are incapable of signaling, thereby acting as molecular
traps to prevent such ligands from interacting with biologically active receptors.42 Proteins
that inhibit cytokine-induced signal transduction (for example, suppressor of cytokine
signaling proteins)43 or transcription (for example, Nurr1–CoREST or activity transcription
factor 3),44,45 as well as an array of soluble mediators with anti-inflammatory activities
(such as IL-10 and TGF-β),46 are produced concomitantly with proinflammatory molecules
to resolve inflammation. For example, glucocorticoids, via activation of glucocorticoid
receptors and, consequently, downregulation of nuclear factor-κB (NFκB) and activator
protein 1 activity, inhibit innate immune responses and, hence, act as an endogenous anti-
inflammatory feedback system. Proinflammatory cytokines are powerful enhancers of
glucocorticoid levels in adrenal glands via corticotropin-releasing hormone47,48 and
adrenocorticotropic hormone (ACTH). Glucocorticoids also elicit immunosuppressive
effects through inhibition of leukocyte extravasation from the vasculature, and through
regulation of T helper cell differentiation.49 The CNS can also negatively regulate the
inflammatory response in a reflexive manner, using the efferent activity of the vagus nerve
to inhibit release of proinflammatory molecules from tissue macrophages.50

Immunity and inflammation in epilepsy
Clinical evidence

Clinical evidence for an important causal role for autoimmune disorders as triggers for
seizures and epilepsy has emerged in several contexts. Identifiable autoimmune disorders
such as systemic lupus, vasculitis, multiple sclerosis, and paraneoplastic syndromes can all
cause recurrent seizures.51 Furthermore, catastrophic epilepsy can result from autoimmune
brain processes; for example, Rasmussen encephalitis—a devastating catastrophic epilepsy
of childhood that ultimately leads to hemibrain atrophy, hemiparesis and progressively
severe seizures—has been linked to the presence of autoantibodies, including glutamate
receptor 3 antibodies, although these antibodies are not present in all cases.52–54 Brains of
individuals affected by Rasmussen encephalitis contain reactive astrocytosis, activated
microglial cells and proinflammatory mediators, and are infiltrated by lymphocytes.8,55–59

Catastrophic epilepsy has also been associated with other disorders in which auto antibodies
attack brain tissue. These disorders include paraneoplastic limbic encephalitis, and the more
recently discovered nonparaneoplastic limbic encephalitis associated with antibodies against
N-methyl-D-aspartate (NMDA) receptors and glutamic acid decarboxylase, or against
voltage-gated potassium channels.15–17 These disorders often present with status epilepticus
and psychiatric disturbances, and often are followed by aggressive, treatment-resistant
epilepsy. In patients with such diseases, immune therapies are often more successful than
standard AED treatment at disease onset.60
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Clinical evidence suggests that inflammation is also an important factor in the onset and
perpetuation of epilepsy not caused by an autoimmune process. Proinflammatory
precipitants, such as fever, lead to and exacerbate seizures in patients with epilepsy.12 In
addition, evidence of brain inflammation has been found to be associated with diverse
pathological etiologies in patients with treatment-resistant epilepsy who underwent surgical
resection to remove the seizure focus. Proinflammatory molecules, reactive astrocytosis,
activated microglia, and other indicators of inflammation have been found in the resected
hippocampi of patients with TLE,61–64 in and around epileptic tubers in patients with
tuberous sclerosis,65–68 and in association with epileptic cortical dysplastic lesions.69,70

These inflammatory markers were not, however, found in specimens obtained from healthy
control patients.8, 61–68

Experimental evidence
Over the past decade, research using in vivo and in vitro experimental models has focused
on how inflammation is generated in the brain in the context of epilepsy, how inflammation
modulates epilepsy, and whether inflammation is always detrimental to cell survival or if it
can be neuroprotective. Such research has also sought to determine how inflammatory
mechanisms might be harnessed to develop therapies for epilepsy. Here, we discuss the
outcomes of this experimental work.

Do seizures cause inflammation?
In adult rats and mice, induction of recurrent short seizures or single prolonged seizures
(status epilepticus; defined as a seizure lasting >30 min) by chemoconvulsants or electrical
stimulation triggers rapid induction of inflammatory mediators in brain regions of seizure
activity onset and propagation (Supplementary Table 2 online).19,21,62,71–87

Immunohistochemical studies on rodent brains after induction of status epilepticus
demonstrated subsequent waves of inflammation during the epileptogenic process (that is,
the process underlying the onset and chronic recurrence of spontaneous seizures after an
initial precipitating event), involving various cell populations. Findings from these and other
studies show that proinflammatory cytokines (IL-1β, TNF and IL-6) are first expressed in
activated microglia and astrocytes, and cytokine receptor expression is upregulated in
microglia, astrocytes and neurons.5 These initial events are followed by the induction of
cyclooxygenase-2 (COX-2) and, hence, prostaglandins, and upregulation of components of
the complement system in microglia, astrocytes and neurons.62,83–85,88 In addition to the
molecules mentioned above, chemokines and their receptors are produced—predominantly
in neurons and in activated astrocytes—days to weeks after status epilepticus.87–91

An ensuing wave of inflammation is induced in brain endothelial cells by seizures, and
includes upregulation of IL-1β and its receptor IL-1R1,63 the complement system,62 and
adhesion molecules (P-selectin, E-selectin, intercellular adhesion molecule 1 [ICAM] and
vascular cell adhesion molecule 1).92,93 The presumed cascade of events leading to this
vascular inflammation involves seizure-induced activation of perivascular glia, which
produce and release cytokines and prostaglandins. Importantly, no peripheral immune cells
or blood-derived inflammatory molecules are required for vascular inflammation, as such
events have been replicated in vitro in isolated guinea pig brain undergoing seizure
activity.94

The presence of inflammation originating from the brain might promote the recruitment of
peripheral inflammatory cells. Indeed, chemokines expressed by neurons and glia and in the
cerebrovasculature following seizures might direct blood leukocytes into the brain,92 which
would be consistent with the reported emergence of granulocytes during

Vezzani et al. Page 5

Nat Rev Neurol. Author manuscript; available in PMC 2012 June 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



epileptogenesis,63,92 and sparse T lymphocytes in chronic epileptic tissue from TLE models
and humans.63,92

As in human epileptic brain specimens, brain tissue from rodents with experimental chronic
TLE contains both activated astrocytes and microglia expressing inflammatory
mediators.61,63,95 Evidence for brain vessel inflammation associated with BBB breakdown
is also prevalent.63,92,94,96–98

The findings discussed above show that brain inflammation induced by status epilepticus
develops further during epileptogenesis and, together with the human data, demonstrate that
this phenomenon persists in chronic epileptic tissue, thereby supporting the idea that
inflammation might be intrinsic to—and perhaps a biomarker of—the epileptogenic
process.79,95,99–101

Does inflammation cause seizures?
Three lines of evidence from rodent models suggest that brain inflammation promotes
neuronal hyper-excitability and seizures. First, although the functions of many inflammatory
mediators remain unresolved, clear evidence exists for an active role for IL-1β, TNF, IL-6,
prostaglandin E2 (PGE2; Supplementary Table 3 online) and the complement cascade102 in
seizure generation and exacerbation. Seizure activity leads to the production of
inflammatory molecules that, in turn, affect seizure severity and recurrence, and this action
takes place through mechanisms distinct from the transcriptional events traditionally known
to be activated during systemic inflammation (discussed below; Figure 1).

Second, fever is the most frequent cause of seizures in children worldwide.12,103 Fever
denotes an elevation of core temperature resulting from an increase in set point for body
temperature within specific cells of the hypothalamus,104 and is generated in the setting of a
systemic inflammatory response involving inflammatory mediators such as cytokines and
prostaglandins.105 Research has also shown that fever involves release of cytokines within
the brain;106 remarkably, elevating brain temperature per se seems to result in the release of
IL-1β within the hippocampus.107 Cerebrospinal fluid studies in children108–111 and animal
models107,112 have implicated the release of endogenous cytokines, especially IL-1β, in the
generation of febrile seizures6,12 and, possibly, in the development of epilepsy after febrile
seizures.95,113–115

Third, systemic injection of lipopolysaccharide, a prototypical inducer of inflammation both
in the periphery and in the brain, lowers seizure threshold in the short112,116 and long
term,117–119 and increases spike-and-wave discharges in a rat model of absence seizures.120

Lipopolysaccharide-induced changes in seizures threshold involve brain cytokines—namely,
IL-1β or TNF—and COX-2 activation.

Remarkably, while most of the observed effects of lipopolysaccharide in the adult brain
have been transient,116 exposure to lipopolysaccharide during specific developmental ages
in rats (postnatal day 7 or 14) can result in enduring changes in neuronal
excitability117–119,121 that are associated with lasting augmentation of stress-related gene
expression.121 Increased intrinsic hippocampal excitability and alterations in glutamate
receptor subunit expression were found in adult rats exposed to lipopolysaccharide during
infancy.117,122 Clues have recently emerged to the mechanism whereby lipopolysaccharide
—an activator of Toll-like receptor 4 (TLR4)—augments seizures.123 The probable scenerio
is that lipopolysaccharide mimics the actions of an endogenously released ‘danger signal’
produced by stressed or injured neurons, in the form of a protein called high mobility group
box 1 (HMGB1). On release from neurons, this protein interacts with TLR4 to promote
seizures, which, in turn, induce an additional wave of HMGB1 release from activated
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astrocytes and micro-glia, leading to a positive feedback cycle of seizures and inflammation.
This novel pathway could provide a crucial mechanism underlying recurrent seizures
(Figure 1).

Does inflammation cause cell loss?
Available studies suggest that seizure-related or injury-related inflammation might
contribute to cell loss and synaptic reorganization, which are important mediators of the
development of hyperexcitable circuits that lead to epilepsy after insults such as status
epilepticus or TBI in the adult rodent brain.4,35,124 Inflammation is induced rapidly
following such insults, preceding neurodegeneration in lesional models of seizures.73,125,126

This finding is consistent with the idea that inflammation augments cell death, which is
further supported by data from studies involving injection of inflammatory mediators
together with excitotoxic stimuli.33

Activation of microglia and astrocytes and production of cytokines and PGE2 can occur in
seizure models where cell loss is not detected in immature95,125 or adult
rodents.21,72,120,127,128 Such observations suggest that rather than being a consequence of
cell loss, seizure-induced brain inflammation can contribute to cell death.6 Additional
interactions between inflammation and cell death in the context of epilepsy have been
observed. Brain injury, such as TBI, causes tissue inflammation that seems to contribute to
both cell death and long-term hyperexcitability.129–131

In the context of CNS injury (for example, in chronic neurodegenerative diseases or acute
stroke), inflammation can have a neuroprotective role.132,133 Indeed, whether microglia,
macrophages and/or T cells are destructive or neuroprotective seems to depend on their
activation status, which is orchestrated by the specific inflammatory environment.49,132 This
balance, together with the specific brain regions in which inflammation develops (for
example, white matter in multiple sclerosis), might account for the relatively low incidence
of seizures in other neurological disorders associated with brain inflammation.134

Mechanistic insights
Several established and novel mechanisms could mediate the effects of inflammatory
mediators on neuronal excitability and epilepsy (Figure 1). Some of these mechanisms could
be involved in the precipitation and recurrence of seizures, while others are implicated in the
development of epileptogenesis.6 These mechanisms constitute potential molecular targets
for drug design, and are briefly summarized here.

As discussed above, IL-1β and HMGB1 activate convergent signaling cascade34,135,136

through binding to IL-1R1 and TLR4, respectively. The downstream pathways activated by
these ligands converge with the TNF pathways at the transcription factor NFκB, which
regulates the synthesis of chemokines, cytokines, enzymes (for example, COX-2) and
receptors (for example, TLRs, IL-1R1, and TNF p55 and p75 receptors).137 This
transcriptional pathway modulates the expression of genes involved in neurogenesis, cell
death and survival, and in synaptic molecular reorganization and plasticity138—processes
that occur concomitantly with epileptogenesis in experimental models.124,139

Interestingly, in addition to NFκB activation and gene expression changes, occupancy of
IL-1R1 or TLRs leads to the simultaneous activation of a second rapid, non transcriptional
pathway involving two kinase systems, namely ceramide-mediated activation of the tyrosine
kinase Src,140–144 and activation of the mitogen-activated protein kinases (extracellular
signal-regulated kinases).41,136,145 These two pathways result in phosphorylation of voltage-
dependent and receptor-coupled ion channels, thereby directly affecting neuronal
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excitability and seizure threshold.146 For example, the proconvulsant activity of IL-1β
depends on IL-1R1-mediated phosphorylation of the NMDA receptor 2B subunit via Src,
and, hence, neuronal calcium influx.140,141 Since the ceramide-activated Src system is a
major modulator of ion channel activity, inhibitors of this system (acting at the cytosolic
adaptor MyD88, the biosynthetic steps of ceramide, or the level of Src activity) should arrest
inflammation-mediated hyperexcitability. Of note, as the hippocampus is the second-richest
brain area in IL-1R1 (after the hypothalamus), IL-1β-mediated signaling might markedly
influence neuronal excitability and seizure threshold.

Additional mechanisms of hyperexcitability to those already discussed include cytokine-
mediated glutamate release from astrocytes,147 inhibition of glial glutamate reuptake,148 and
changes in glutamate and γ-aminobutyric acid receptor trafficking and subunit
compositions.149,150 Prostaglandins might also be candidate molecular targets to reduce
inflammation-mediated hyperexcitability, because PGE2 increases neuronal firing and
excitatory postsynaptic potentials, probably by reducing potassium currents in CA1
neurons.151,152

Inflammatory mediators can increase vascular permeability to serum albumin, which
promotes excitability in surrounding neurons by compromising ion buffering and the
glutamate reuptake capacity of astrocytes.153 In this context, albumin-mediated activation of
TGF-β1 receptor signaling induces the transcription of various proinflammatory genes in
astrocytes, which may markedly contribute both to astrocyte dysfunction and to persistent
brain inflammation.153,154

The role of inflammation in the comorbidities of epilepsy, including depression and
cognitive impairment, is under investigation. Chronic activation of cytokine-dependent
inflammatory signaling might precipitate the development of depressive behaviors,155 and
could, conceivably, contribute to neuronal dysfunction manifesting as cognitive deficits.156

Immune and anti-inflammatory therapies
If immune mechanisms and inflammation do indeed have a role in the generation of
seizures, immune-modulating and anti-inflammatory therapies might be effective treatments
for some or all forms of epilepsy. Therapies such as ACTH, corticosteroids, plasmapheresis
and intravenous immunoglobulin (IVIg) have been employed to treat seizures and/or
epilepsy, with varying success. These therapies have all been employed in patients with
presumed autoimmune limbic encephalitis, where early and aggressive treatment often
seems to be useful,60 and in patients with Rasmussen encephalitis, in whom therapy success
rates are much more variable and hemispherectomy remains the treatment of choice.157 The
presumed mechanism of action of the therapeutic agents listed above is suppression of
inflammation; how ever, other modes of action might also be involved, including direct
effects on brain excitability,158 and suppression of endogenous proconvulsant brain
agents.159,160 The use of steroids in various forms is common for more severe, treatment-
resistant forms of childhood epilepsy. The successful use of ACTH—a peptide that releases
endogenous steroids in the patient—as a treatment for infantile spasms, which represent a
severe form of childhood epilepsy that is resistant to conventional AEDs, was initially
shown empirically, then confirmed in randomized controlled trials. Consequently, ACTH
remains a mainstay of therapy for this condition.161 The mechanism of spasm suppression
by ACTH has been speculated to be at least partly driven by direct effects of steroids on
cortical excitability158 and through melanocortin receptor-mediated ACTH suppression of
endogenous convulsants,160,162 rather than through steroid-related immune modulation.

ACTH, steroids and IVIg have all been employed to treat AED-unresponsive pediatric
epilepsies, including Lennox–Gastaut syndrome,163,164 Landau–Kleffner syndrome,165,166
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difficult partial epilepsies, and myoclonic–astatic epilepsies.167 Unfortunately,
determination of whether patients received benefit from these treatments is problematic,
since most of these epilepsies are extremely heterogeneous in etiology and severity, and
exhibit notoriously variable courses. In addition, most of the clinical studies are
retrospective case series, with occasional prospective case series that lack controls.168,169

Follow-up duration in these case series was also often variable. A recent review of
investigations of IVIg in intractable childhood epilepsy found no randomized or controlled
studies and, in fact, only two case series employed statistics in assessing outcome.164 One
series showed a statistically significant reduction in seizures with IVIg treatments, while the
other revealed a nonsignificant trend with such therapy.164 Well-controlled, blinded studies
have been published for the use of ACTH and steroids for infantile spasms;161,170–172

however, a Cochrane Collaboration review on the use of ACTH for other childhood
epilepsies, published in 2007, found only a single randomized controlled trial, which only
included five patients.173 The authors of this review concluded that, at present, no evidence
exists to support either the safety or the efficacy of ACTH for general pediatric
epilepsies.173

Conclusions
Clearly, preclinical data support further attempts to modulate seizures and epilepsy by
influencing inflammation. As noted above, therapeutic interventions with anti-inflammatory
therapies have, to date, consisted only of immune modulators such as IVIg, plasmapheresis,
corticosteroids and ACTH, and the mechanistic actions of these therapies have not been well
studied.

In cases of epilepsy where an immune etiology is suspected, and particularly where
circulating auto-antibodies might have a role, a reasonable approach is to address direct
removal of such antibodies, as is currently done using plasmapheresis, or to reduce the
autoimmune attack through use of IVIg. Notably, IVIgs have also been shown to induce
IL-1ra release from peripheral blood cells, suggesting an additional anti-inflammatory
mechanism of action for this therapy.174

ACTH has been proven to be an effective therapy for infantile spasms (although the
mechanism of action is unclear), whereas the use of plasmapheresis, IVIg or steroids in
other epilepsy syndromes is controversial. Considerations when employing such treatments
include absence of controlled clinical data, the substantial cost of these therapies, and the
risk of known adverse events, which, although uncommon, can be life-threatening. Such
events include increased risk of infection, cardiomyopathy, coagulation disorder, and
hypersensitivity. As a result of the positive response of the patients selected for such
treatments, the results of controlled trials are eagerly anticipated.

A suggestion has been made that some of the anticonvulsant effects of the ketogenic diet—
used for the management of refractory epilepsies in children and adolescents—might be
mediated by anti-inflammatory actions. Specifically, fatty acids induce activation of the
nuclear hormone receptor peroxisome proliferator-activated receptor α, a transcription
factor that down-regulates NFκB-activated proinflammatory genes.175

Importantly, preclinical data suggest that direct targeting of conditions such as IL-1β-
mediated hyperexcitability, might be warranted, because this mechanism could contribute to
different types of seizures. Several important questions remain, such as whether
inflammatory mechanisms are important at all stages of epileptogenesis and epilepsy,
whether patients all have a similar degree of inflammation,69 and whether various epilepsy
etiologies are associated with inflammation that can be targeted therapeutically. Imaging
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techniques such as PET or MRI spectroscopy are undergoing development to evaluate brain
inflammation in epilepsy, which could help to identify people who would benefit from anti-
inflammatory treatments. A clinical trial of an IL-1β synthesis inhibitor was initiated in
2010.176 If this and other trials are successful, assessment of which patients are responding
to anti-inflammatory therapy might become possible and, hence, the underlying epilepsy
pathologies in which inflammation is important might be determined. Working forward
from animal models, and simultaneously backward from patients on the basis of successful
intervention, could ultimately provide us with the best understanding of those epilepsies in
which inflammatory mechanisms are most critical.
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Key points

▪ Epilepsies of various etiologies not classically linked to immunological
dysfunction can be associated with inflammation resulting from increased
levels of inflammatory mediators in the brain

▪ Inflammatory mediators can be produced by glia, neurons, endothelial cells
of the blood–brain barrier, and peripheral immune cells

▪ Brain inflammation might contribute to the onset and perpetuation of seizures
in a variety of epilepsies

▪ Experimental and clinical research is required to generate novel therapeutic
anti-inflammatory approaches that ameliorate seizures and modify the
underlying pathophysiology of epilepsy
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Box 1 | Innate and adaptive immunity in activation of inflammation

Innate immunity

Innate immunity represents a nonspecific immediate host response against invading
pathogens. Leukocytes—including natural killer cells, granulocytes (neutrophils,
eosinophils and basophils–mast cells)—cells of the monomyelocytic lineage (monocytes,
macrophages and microglia), dendritic cells, and Toll-like receptors (TLRs) are involved
in the activation of innate immunity. TLRs, which are transmembrane proteins expressed
by immunocompetent cells such as antigen-presenting cells (APCs), share common
cytoplasmic domains with the interleukin (IL)-1 receptor family and use partly
overlapping signaling molecules with IL-1 receptor type 1. TLRs have a key role in
recognizing conserved motifs broadly shared by pathogens as well as endogenous
molecules termed ‘danger signals’ released from damaged or stressed cells. TLR
activation initiates innate immune responses and inflammation during infection, or in
response to tissue injury.34,177 TLR signaling involves recruitment of cytoplasmatic
adaptor proteins and subsequent induction of the protein kinase cascades, leading to
activation of the nuclear factor kappa B (NFκB)-inducible or interferon-γ-inducible
genes that orchestrate the inflammatory response. Stimulation of TLRs by pathogens
leads to release of cytokines such as IL-12, which are involved in the transition between
innate and adaptive immunity.31

Adaptive immunity

The adaptive immune system is activated in response to innate immunity and enables the
host to recognize and remember specific non-self antigens to mount humoral (production
of antibodies) or cell-mediated immune responses by B and T lymphocytes, respectively.
APCs—dendritic cells, macrophages and B cells, and brain-resident microglia—stimulate
naive T cells to become effector cells. On antigen presentation, clonal selection and
expansion of lymphocytes occurs. Dysregulation of adaptive immunity and loss of
tolerance to self-antigens could result in the development of autoimmunity. A
subpopulation of T cells called regulatory T cells (CD4+CD25+) restrict autoimmune
activity, thereby helping to maintain immune system homeostasis, and tolerance to self-
antigens.
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Box 2 | The blood–brain barrier

Under physiological conditions, the blood–brain barrier (BBB) strictly controls the entry
of blood-borne cells and molecules (including serum proteins) into the brain. Brain injury
resulting from infection, stroke, trauma and/or prolonged seizures can alter the
BBB,98,178,179 thereby permitting blood-to-brain extravasation of peripheral immune
cells or molecules that would otherwise be excluded. Brain inflammation (for example, in
perivascular astrocytes) can affect the permeability properties of the BBB directly via
cytokine-mediated activation of metalloproteinases or tight junction disruption, or
indirectly by promoting transmigration of leukocytes.180,181 Systemic or CNS
inflammation leads to cytokine and chemokine production in blood or within the CNS,
and to receptor-mediated upregulation of selectins and tight adhesion molecules
(intercellular adhesion molecule 1 [ICAM-1], intercellular adhesion molecule 2
[ICAM-2], vascular cell adhesion molecule 1 [VCAM-1], and platelet endothelial cell
adhesion molecule [PECAM]) on endothelial cells in postcapillary venules. Cytokines
and chemokines also activate integrins (lymphocyte function-associated antigen 1
[LFA-1], MAC-1 [CD11b/CD18], very late antigen-4 [VLA-4]) enabling tight adhesion
of leukocytes to the endothelium, and their transmigration and chemoattraction towards
the site of infection or injury
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Review criteria

Articles were selected for this Review by searching the PubMed database with the
following terms: “brain inflammation” or “inflammation” or “cytokines and/or
chemokines and/or COX and/or complement” in combination with “epilepsy” or
“seizures”; “inflammation” in combination with “cell death/neurodegeneration”; “innate
and/or adaptive immunity” in combination with “epilepsy and/or seizures”; “anti-
inflammatory treatments” in combination with “epilepsy or neurological disorders”; and
“blood–brain barrier” in combination with “epilepsy and/or seizures and/or
inflammation”. Only English language articles were considered. No restrictions related to
publication date were set.
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Figure 1. Pathophysiological cascade of inflammatory events in epilepsy
Pathological events intiated in the CNS by local injuries, or peripherally following infections
or as a result of autoimmune disorder, can lead to activation of brain cells or leukocytes,
respectively. These cells release inflammatory mediators into the brain or blood, thereby
eliciting a cascade of inflammatory events that cause a spectrum of physiopathological
outcomes. The effects of brain inflammation contribute to the generation of individual
seizures and cell death, which, in turn, activates further inflammation, thereby establishing a
vicious circle of events that contributes to the development of epilepsy. The peripheral
pathway is shown in yellow, the CNS pathway is shown in blue, and the inflammatory
molecules are shown in pink. The merged colors indicate the contribution of each pathway
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to inflammation and BBB damage. Abbreviations: AP1, activator protein 1; BBB, blood–
brain barrier; COX, cyclooxygenase; GABA, γ-aminobutyric acid; HMGB1, high-mobility
group box 1; MAPK, mitogen-activated protein kinase; NFκB, nuclear factor kappa B;
PI3K, phosphoinositide 3-kinase; PLA2, phospholipases A2; TGF-β, transforming growth
factor β; TNF, tumor necrosis factor.
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