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The role of PINK1 in mitochondrial bioenergetics

In a flurry of PINK, mitochondrial
bioenergetics takes a leading role in
Parkinson’s disease

Anne N. Murphy*'t
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For many years research in Parkinson’s
disease (PD) has linked mitochondrial
dysfunction with the characteristic loss
of dopaminergic neurons of the substan-
tia nigra, accumulation of cytoplasmic
inclusions termed Lewy bodies, and motor
dysfunction (Henchcliffe & Beal, 2008).
The most compelling connection is that
Parkinsonism can be observed in both
humans and animals following exposure
to inhibitors of complex | of the electron
transport chain (Betarbet et al, 2002).
An understanding of how mitochon-
drial dysfunction arises in the tissue of a
person afflicted with the disease has been
elusive. The discovery of seemingly
unrelated mutant genes responsible for
familial forms of PD, including o synu-
clein (PARK1/PARK4), LRRK2 (PARKS),
parkin  (PARK2), DJ-1 (PARKG),
ATP13A2 (PARKY9), initially seemed to
confound rather than solve the mystery,
until the discovery of PD-associated
mutations in a bona fide mitochondrial
protein, PINK1 (PTEN-induced kinase 1
or PARKG) (Valente et al, 2004). Since
then, a flurry of studies have detailed
how this serine threonine kinase affects
mitochondrial function and dynamics,
and have put forward different hypoth-
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eses to explain the role(s) of mutant
PINK1 in Parkinson’s disease.

In this issue of EMBO Molecular
Medicine, Morais et al make a significant
contribution to our understanding of the
PINK1-mediated mitochondrial protec-
tion. Using Drosophila and mouse models,
the researchers assert that an early effect
of PINK1 deficiency is the disruption of
Complex I function. This results in
decreased  mitochondrial ~membrane
potential and compromised transmission
at neuromuscular junctions in Drosophila,
that can be rescued by supplementing
ATP in the synaptic terminal. Thus, the
work lends insight into functional con-
sequences of the mitochondrial defects in
neuromuscular junctions that could
account for defects in normal motor
control in the disease. The authors also
found that complex I activity and synaptic
function could be replenished by expres-
sion of human wild type but not by PINK1
PD clinical mutants. Their findings high-
light the pivotal role of PINK1 in main-
taining respiration and mitochondrial ATP
production and its relevance in PD.

This study pinpoints the
respiratory defect specifically
at the level of complex |
activity.

The consequences reported so far
regarding the genetic manipulation of
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PINKI1 on mitochondria are multifaceted,
and discrepancies exist between model
systems and between laboratories even
when measuring similar endpoints
(Table I). There is, however, a general
agreement of a drop in mitochondrial
membrane potential as a result of PINK1
deficiency, and evidence that mitochon-
dria are hydrolyzing glycolytically pro-
duced ATP to generate the membrane
potential (Morais et al, this issue; Gandhi
et al, 2009). Morais et al propose that
defects in the mitochondrial respiratory
chain lie upstream of these alterations.
Deficiencies in several respiratory com-
plexes have been reported in PINK1
deficient cells (Gautier et al, 2008; Gegg
et al, 2009; Hoepken et al, 2007; Piccoli et
al, 2008); however, this study pinpoints
the respiratory defect specifically at the
level of complex I activity. This is an
important distinction, as a generalized
loss of respiratory competence may
signal a different underlying mechanism
than specific complex I inhibition.
Another recent publication ascribes simi-
lar importance of PINK1 in the main-
tenance of mitochondrial bioenergetic
function, but with a slightly different
twist (Gandhi et al, 2009). Instead of
complex [ as the primary dysfunction
resulting from PINK1 deficiency, these
authors suggest a key effect on the Na*/
Ca®" exchanger at the inner mitochon-
drial membrane that is responsible for
Ca®" efflux from mitochondria in elec-
trically excitable cells. Uptake and efflux
of Ca®* from mitochondria are important
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aspects of normal neurotransmitter
responses; however, excessive matrix
Ca®" is known to significantly compro-
mise mitochondrial function by multiple
mechanisms. Each of these patterns of
inhibition would predict increased reac-
tive oxygen species (ROS) production, as
reported in multiple studies.

A clear link between the loss of PINK1
expression and alterations in mitochon-
drial morphology has been established
(see Table I). The observations of both
morphological and bioenergetic compro-
mise raise the quintessential ‘chicken and
egg’ question, as these two aspects of
mitochondrial function are closely inter-
twined (see Twig et al, 2008). Genetic
studies in Drosophila (Deng et al, 2008;
Poole et al, 2008; Yang et al, 2009)
suggest that PINK1 normally plays a role
in promoting fission, although Morais et
al have not observed defects in the
morphology or number of mitochondria
at the Drosophila neuromuscular junc-
tion (NMJ) of Pinkl mutants. The data
available for mammalian cells and tis-
sues are also not clear; Morais et al, did
not observe changes in mitochondrial
morphology of Pinkl mouse mutant
neurons while others have described
cristae and mitochondrial fragmentation
as well as an increased size (Table I). If
mitochondrial respiratory dysfunction or
enhanced Ca?" retention is indeed the
primary consequence of PINKI defi-
ciency, one might expect mitochondrial
fission rather than fusion to result, as
mitochondrial depolarization and Ca*"
sequestration have generally been asso-
ciated with fission events (Saotome et al,
2008; Twig et al, 2008). Clearly, the link
between mitochondrial bioenergetics and
morphology is complex, and much
remains to be revealed on the topic.

A direction in which
the PINK flurry should now
converge.

What can explain the divergent obser-
vations of effects of PINK1 deficiency?
The simplest is that PINK1 may be a
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multifunctional protein with numerous
binding partners and kinase targets
that are differentially expressed in the
many models that have been created.
The reported effectors—substrates of
PINK1 include the mitochondrial mole-
cular chaperone TRAP1 (Pridgeon et al,
2007), the matrix serine protease HtrA2/
Omi (Plun-Favreau et al, 2007), and the
ubiquitin E3 ligase parkin (Kim et al,
2008). It is currently unclear how these fit
into pathways controlling bioenergetic
function, although a theoretical argument
can easily be made that chaperone and
protease function could have important
effects on protein import and respiratory
complex assembly. The identification of
the targets of PINK1’s kinase activity and/
or binding partners will help to further
unravel the role of PINK1 in the regula-
tion of mitochondrial function and PD.
Morais et al provide us with a direction in
which the PINK flurry should now
converge—we can narrow the search
considerably by focusing on substrates
involved in Complex I activity and/or
regulation, and hope that this approach
will soon bring us novel insights and
additional PD therapeautic targets.

The author declares that she has no
conflict of interest.
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