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Abstract

Cytidine-5’-diphosphocholine (citicoline) has a variety of cognitive enhancing, neuroprotective,
and neuroregenerative properties. In cocaine-addicted individuals, citicoline has been shown to
increase brain dopamine levels and reduce cravings. The effects of this compound on appetite,
food cravings, and brain responses to food are unknown. We compared the effects of treatment
with citicoline (500 mg/day versus 2000 mg/day) for six weeks on changes in appetite ratings,
weight, and cortico-limbic responses to images of high calorie foods using functional magnetic
resonance imaging (fFMRI). After six weeks, there was no significant change in weight status,
although significant declines in appetite ratings were observed for the 2000 mg/day group. The
higher dose group also showed significant increases in functional brain responses to food stimuli
within the amygdala, insula, and lateral orbitofrontal cortex. Increased activation in these regions
correlated with declines in appetite ratings. These preliminary findings suggest a potential
usefulness of citicoline in modulating appetite, but further research is warranted.
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The epidemic of obesity is one of the most pressing health concerns of the 215t century
(Mokdad, et al., 1999). The factors that lead to poor appetite control, excessive weight gain,
and obesity are multifaceted, but neuroscience research is making headway into clarifying
the neuro-cognitive systems involved in regulating appetite and food intake. Hormones such
as insulin, leptin, and ghrelin on the homeostatic functions of the hypothalamus have long
been known to mediate appetitive responses, but recent evidence suggests that these
hormones may also have direct effects on dopamine neurons, which in turn may have a more
immediate and direct effect on the motivation to eat and the reward value of food (Figlewicz
& Benoit, 2008; Palmiter, 2007). Because of its primary involvement in reward and
motivation, the dopamine system is implicated in a variety of substance abuse/addictive
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behavior disorders such as cocaine addiction and pathological gambling (Dalley, et al.,
2007; Goodman, 2008). The involvement of the dopamine system in appetite and eating
behavior suggests that dopaminergic-reward models of craving and substance-dependence
may potentially apply to the regulation of food intake (Avena, Bocarsly, Rada, Kim, &
Hoebel, 2008; Avena, Rada, & Hoebel, 2008; Thanos, Michaelides, Piyis, Wang, &
Volkow, 2008).

In cocaine addicted individuals, preliminary evidence suggests that it may be possible to
reduce drug cravings through the administration of cytidine-5’-diphosphocholine (citicoline)
(Renshaw, Daniels, Lundahl, Rogers, & Lukas, 1999). Furthermore, one recent randomized,
placebo-controlled study found that cocaine dependent outpatients treated with citicoline
were less likely to screen positive for cocaine by the end of the trial (Brown, Gorman, &
Hynan, 2007). Citicoline, which is marketed as a nutritional supplement and widely
available in health food stores, is essentially a complex organic molecule that has been
shown to have a variety of cognitive enhancing, neuroprotective, and neuroregenerative
properties (Ozay, et al., 2007; Parisi, et al., 2008; Secades & Lorenzo, 2006), although
findings are far from conclusive (Cohen, et al., 2003; Fioravanti & Buckley, 2006). Some
evidence suggests that citicoline may affect the dopamine system (Secades & Lorenzo,
2006), thereby altering the reward value of stimuli. As a nucleotide molecule, citicoline is
involved in cellular metabolism and biosynthesis of phospholipids (Conant & Schauss,
2004). When taken orally, exogenous citicoline undergoes hydrolysis in the small intestine,
where it is absorbed as choline and cytidine (Weiss, 1995). Because it is water-soluble,
citicoline is rapidly hydrolyzed and absorbed into the blood stream, demonstrating over 90-
percent bioavailability (Conant & Schauss, 2004; D'Orlando & Sandage, 1995). Once
absorbed, choline and cytidine are circulated throughout the body and become available to a
variety of biosynthetic systems, and readily cross the blood-brain barrier where they are
synthesized once again into citicoline (Rao, Hatcher, & Dempsey, 1999). It has been
suggested that exogenous administration of citicoline can help preserve endogenous choline
reserves and minimize cell membrane phospholipid catabolism, a process that may occur
when the demand for acetylcholine exceeds available stores of endogenous choline
(D'Orlando & Sandage, 1995; Weiss, 1995). Citicoline is believed exert a variety of effects
on the central nervous system via synthesis of acetylcholine and phosphatidylcholine
(D'Orlando & Sandage, 1995), restoration of membrane phospholipid components such as
cardiolipin (Rao, Hatcher, & Dempsey, 2001) and sphingomyelin (Adibhatla & Hatcher,
2002), and enhancement of neurotransmitters such as norepinephrine and dopamine (Agut,
Coviella, & Wurtman, 1984; Agut, Ortiz, & Wurtman, 2000; Lopez, Coviella, Agut, &
Wurtman, 1986; Petkov, Stancheva, Tocuschieva, & Petkov, 1990). A number of studies
have suggested that citicoline administration has several effects on the dopamine system,
including increasing the levels of dopamine in neural tissues (Agut, et al., 2000; Rejdak,
Toczolowski, Solski, Duma, & Grieb, 2002), increasing dopamine receptor densities
(Gimenez, Raich, & Aguilar, 1991), and neuroprotection of dopamine neurons (Radad,
Gille, Xiaojing, Durany, & Rausch, 2007). The effects of citicoline on the dopamine-reward
system in conjunction with preliminary evidence of its effectiveness at reducing cravings in
cocaine users (Renshaw, et al., 1999) raises the possibility that citicoline may also have the
potential to affect appetite and food cravings.

Citicoline has been studied extensively in recent years for a variety of cognitive enhancing
and neuroprotective functions, but there have been no investigations into the potential
effects of this compound on appetite and cerebral responses to food. Therefore, we
conducted a preliminary evaluation of two different doses of citicoline (500 mg/day vs 2000
mg/day) administered daily for six weeks on changes in appetite and cortico-limbic
responses to images of high calorie foods during functional magnetic resonance imaging
(FMRI). It was hypothesized that the higher of the two doses of citicoline would be
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associated with greater declines in appetite ratings and increased activation within brain
regions that are involved in inhibitory control, satiation, and withdrawal responses relative
to the lower dose, and that these changes in brain activation would predict appetite changes.
We focused our analyses on three regions based on previous research suggesting that they
are particularly important in appetite. First, we focused on the lateral orbitofrontal cortex, a
region that functions as part of the gustatory cortex and is often activated in studies using
appetizing food images (Schienle, Schafer, Hermann, & Vaitl, 2008; Simmons, Martin, &
Barsalou, 2005). Furthermore, the lateral orbitofrontal cortex is involved in behavioral
control and has been shown to be more active when an individual feels sated (Small,
Zatorre, Dagher, Evans, & Jones-Gotman, 2001) and when stimuli are perceived as less
rewarding (Kringelbach & Rolls, 2004). Therefore, this region was selected for specific
study. Second, we focused on the insular cortex, as evidence suggests that it is involved in
visceral bodily sensations such as those that occur during disgust responses (Stark, et al.,
2007; Wright, He, Shapira, Goodman, & Liu, 2004) and interoceptive awareness of somatic
states (Craig, 2002), and is commonly activated in studies showing photographs of
appetizing foods (Porubska, Veit, Preissl, Fritsche, & Birbaumer, 2006; Siep, et al., 2008;
Simmons, et al., 2005). Finally, because the amygdala is often involved in responses to food
stimuli and appetite (Killgore, et al., 2003; LaBar, et al., 2001), particularly in obese
individuals (Stoeckel, et al., 2008), we also hypothesized that this region would be affected
by administration of citicoline.

Sixteen healthy adults (8 men; 8 women; 12 right-handed by self-report) ranging from 40 to
57 years (M = 47.3, SD = 5.4) were recruited from the community of Belmont, MA. At
intake, the Body Mass Index (BMI) of participants ranged from 20.1 to 38.6 (M = 25.3, SD
=5.2). Volunteers were screened for a wide range of potential medical, psychiatric, and
health concerns and only those participants that were deemed to be in good medical and
psychiatric health were included. Participants had normal or corrected-normal vision (with
contact lenses). The present study was conducted under the guidelines of the McLean
Hospital Institutional Review Board. All participants provided written informed consent and
were given a small financial compensation for their participation.

Study Design

Participants completed two interview/functional imaging scanning sessions separated by six
weeks. At the first visit, participants completed a medical and psychiatric interview and
several questionnaires about food and lifestyle preferences, and were asked to rate their
typical appetite on a 10-point Likert scale from 1 (never hungry) to 10 (always hungry).
Following the interview and questionnaires, participants underwent an fMRI scan to
examine responses to images of high calorie foods. Participants were scanned at
approximately the same time of day to minimize circadian influences. No attempts were
made to restrict food intake prior to the scans and participants were allowed to follow their
normal diets. In an open label design, participants were randomly assigned to one of two
conditions, a Low Dose or a High Dose administration of citicoline (Cognizin™, Kyowa
Hakko Kogyo Co., Ltd, Japan). Eight participants (4 male, 4 female) were assigned to
consume the Low Dose (i.e., one 500 mg capsule/day) of citicoline over the intervening six
week period, while the other eight participants were assigned to consume the High Dose
(i.e., four 500 mg capsules/day) during the same time period. Participants were contacted by
telephone twice per week to improve compliance and to allow for reporting of any adverse
effects. Participants returned to the neuroimaging center to repeat the questionnaires and
fMRI scanning procedure after six weeks of treatment. Changes in appetite ratings and
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weight were calculated for each participant by subtracting scores at Visit 1 from those at
Visit 2.

Imaging Methods

Functional images were acquired on a Siemens Trio whole body 3T MRI scanner equipped
with a quadrature RF head coil (TR = 3 sec, TE = 30 msec, flip angle = 90 degrees). Fifty
images per slice were collected over 35 to 41 coronal slices (5 mm thick, 0 skip) with a 20
cm field of view and a 64 x 64 acquisition matrix (in-plane resolution = 3.125 x 5 x 3.125
mm) using a single-shot, gradient pulse-echo sequence. To allow the scanner to reach a
steady-state, three dummy images were acquired at the start of each functional scan and
discarded from analysis. The participant’s head was secured using foam padding.

Stimulation Paradigms

The stimulation paradigm has been described in detail in several previous reports (Killgore,
et al., 2003; Killgore & Yurgelun-Todd, 2005a, 2005b, 2007). In brief, participants were
scanned while viewing a series of colorful visual images that included both high-calorie
foods (e.g., cheeseburgers, hot dogs, french-fries, ice cream, cake, cookies) and control
images of non-food objects with similar visual complexity, texture, and color (e.g., rocks,
shrubs, bricks, trees, flowers). The stimulation paradigm was 150 seconds in duration, and
comprised 5 alternating 30-second periods (i.e., control, high-calorie, control, high-calorie,
control). Each alternating block consisted of ten photographs (2500 msec stimulus
presentation and a 500 msec inter-stimulus interval). Stimuli were controlled by a Macintosh
computer running Psyscope (Macwhinney, Cohen, & Provost, 1997) and were back-
projected onto a screen placed at the rear of the scanner. Participants viewed the stimuli via
a mirror mounted on the head coil. The same stimuli were presented at baseline and again
following six weeks of treatment.

Image Processing and Analysis

Data were preprocessed and analyzed in SPM99 (Friston, et al., 1995). Images were motion
corrected, convolved into the standard MNI space, smoothed using an isotropic Gaussian
kernel (full width half maximum [FWHM] = 6 mm), and resliced to 2x2x2 mm voxels using
sinc interpolation. Data analysis was completed in two stages. At the first stage, contrast
images were constructed to evaluate activation specific to viewing the high-calorie food
images relative to the nonfood control images. Within-subject contrast images were also
created to determine regions of change between Visit 1 and Visit 2. In the second, or
“random-effects” level of analysis, these change images were entered into a between groups
t-test to compare the effects of Low vs. High dose citicoline. The change images were also
entered into a simple linear regression model in SPM99 with appetite change scores entered
as the covariate of interest. Three region of interest (ROI) masks were created using the
WEFU Pickatlas utility (Maldjian, Laurienti, Kraft, & Burdette, 2003) to restrict analyses to
only pre-specificed areas. Based on previous research showing that food images are
associated with activation of the amygala (Killgore, et al., 2003; Killgore & Yurgelun-Todd,
2005b; Siep, et al., 2008; Stoeckel, et al., 2008), insula (Siep, et al., 2008; Simmons, et al.,
2005; Stoeckel, et al., 2008), and lateral orbitofrontal cortex (OFC)(Killgore & Yurgelun-
Todd, 2006; Simmons, et al., 2005; Stoeckel, et al., 2008), these three regions were analyzed
using the published anatomical atlas of Tzourio-Mazoyer and colleagues (Tzourio-Mazoyer,
et al., 2002). Because these three ROIs were predicted a priori to be affected by citicoline
and to show functional changes with appetite ratings, we used a statistical threshold of p <.
05, k = 10 contiguous voxels. Exploratory whole brain analyses were undertaken at a more
stringent threshold of p <.001, k = 10 for the direct contrasts between baseline and post-
treatment and the correlation analyses.
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Results

Appetite Ratings and Weight

Self-rated appetite declined significantly between Visit 1 (M = 6.8, SD = 1.5) and Visit 2 (M
= 6.1, SD = 1.5) for the sample as a whole, t(15) = -2.83, p = .02. The mean change scores
for both groups declined between visits, but the magnitude of decline only reached
significance for the High Dose group (M = -0.88, SD = 0.83), t(7) = —2.97, p = .02, while
the decline for the Low Dose group did not (M = -0.38, SD = 0.92), t(7) = -1.16, p = .29.
Between group comparison of these changes did not reach statistical significance, however,
t(14) = 1.14, p = .27. Similarly, there was no significant change in weight from Visit 1 to
Visit 2 for the low (M = -6.4 Ibs, SD = 11.0, t(6) = —1.55, p = .17) or high (M = —0.57 Ibs,
SD = 3.8, 1(6) = —0.40, p = .71) dose groups and the magnitude of weight change did not
differ between the two groups, t(13) = 1.55, p = .15.

Dose Group Comparisons

The effects of High vs. Low Dose citicoline on changes in brain activation were compared
for the three ROIs. As evident in Figure 1, the High Dose group showed significantly greater
between-visit increases in activation within the left amygdala (T = 2.25, 40 voxels, MNI
coordinates: x = =20,y =0, z = —=22), bilateral insula (T = 3.59, 92 voxels, MNI coordinates:
x=-28,y=32,z=6; T =3.49, 25 voxels; MNI coordinates: x =34,y =22,2=10; T =
1.99, 10 voxels, MNI coordinates: x = =36, y = —10, z = 6), and right lateral orbitofrontal
cortex (T = 2.76, 41 voxels, MNI coordinates: x = 34, y = 30, z = —22) relative to the Low
Dose group. In contrast, there were no ROIs where Low Dose citicoline produced greater
change than High Dose citicoline. In contrast to the ROIs, exploratory whole brain
comparisons revealed that only one region, located within the right cerebellum (T = 4.35, 10
voxels, MNI coordinates: x = 30, y = =56, z = —24), showed significantly greater change in
activation in the High Dose group relative to the Low Dose group. In contrast, there were no
regions that showed greater pre-post changes in activation in the Low Dose group relative to
the High Dose group for the exploratory whole brain analysis.

Correlation Between Brain Activation and Appetite Changes

Changes in regional brain activation from Visit 1 to Visit 2 were used to predict
corresponding changes in appetite ratings. As evident in Figure 2, changes in ROI activation
when viewing high-calorie food images were associated with changes in appetite between
the two visits. Specifically, participants that showed the greatest increase in the task-related
activation of the right amygdala (T = 3.76, 146 voxels, x = 28, y = -2, z = -24), bilateral
insula (T =5.09, 865 voxels, x =36,y =12,z=4; T =4.36, 22 voxels, x =-28,y =22,z =
—-20; T = 3.75, 624 voxels, x = -42,y = 10, z = -6), and left lateral orbitofrontal cortex (T =
6.63, 532 voxels, x = -36,y =22,z =-16; T = 4.22, 549, voxels, x = 26,y = 24, z = -14)
tended to show the greatest declines in appetite ratings between the two visits. The
correlations were similar for the Low Dose (i.e., right amygdala r = —.63, p = .085; right
insular =-.89, p =.003; left OFC r = -.91, p = .002) and High Dose (i.e., right amygdala r
=-.91, p=.002; right insular = -.70, p = .051; left OFC r = -.88, p = .004) groups.
Exploratory analysis of the correlations at the whole brain level revealed no regions showing
positive correlations between changes in brain activation and changes in appetite ratings, but
did show a number of negatively correlated clusters where increased brain activation
between the two testing sessions was associated with decreased appetite ratings. These
regions included inferior orbitofrontal cortex, thalamus, and insula, among others (see Table
1).
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Discussion

These preliminary findings suggest that citicoline administration was associated with a
modest but significant decline in appetite ratings for the group as a whole. High-Dose
citicoline (i.e., 2000 mg/day) for six weeks was associated with a significant decline in
appetite ratings from baseline, whereas no significant effect was observed for the Low Dose
(i.e., 500 mg/day), and no changes were evident in weight status. Because the appetite effect
was only significant in the High Dose group, it raises the possibility of a dose-dependent
effect of citicoline on appetite suppression. Such findings are consistent with animal studies
linking citicoline to increases in dopamine (Agut, et al., 2000; Rejdak, et al., 2002) and
human evidence suggesting that citicoline may be effective at reducing aspects of craving in
cocaine-dependent individuals (Renshaw, et al., 1999). However, given the preliminary
nature of these findings and the lack of significant between-group differences in appetite
suppression or weight change, further research that includes larger samples and a placebo
control group will be necessary to determine the magnitude and reliability of the effects of
citicoline on appetite.

Previous studies using fMRI have shown that visual perception of images of appetizing
foods are generally associated with increased activation in a broad network of cortical and
limbic regions, including the orbitofrontal cortex, medial prefrontal cortex, amygdala,
hippocampus, ventral striatum, insula, and cingulate gyrus (Killgore, et al., 2003; Killgore &
Yurgelun-Todd, 2005b; Siep, et al., 2008; Stoeckel, et al., 2008), but activation of these
regions is highly dependent upon a number of factors including weight (Killgore &
Yurgelun-Todd, 2005a; Stice, Spoor, Bohon, Veldhuizen, & Small, 2008; Stoeckel, et al.,
2008), mood (Killgore & Yurgelun-Todd, 2006, 2007), eating disorder diagnostic status
(Santel, Baving, Krauel, Munte, & Rotte, 2006; Schienle, et al., 2008), and immediate
hunger or nutritional state of the individual (Cornier, Von Kaenel, Bessesen, & Tregellas,
2007; Fuhrer, Zysset, & Stumvoll, 2008; Siep, et al., 2008). For the present study, we
focused our analyses on three regions that are often associated with cerebral responses to
food. These included the lateral orbitofrontal cortex, insular cortex, and amygdala.

In the present study, we found that citicoline administration was associated with dose-
dependent changes in functional brain responses to high calorie foods between the two
visits. Compared to the Low Dose of citicoline, the High Dose was associated with
increased activation within the right lateral orbitofrontal cortex ROI during visual perception
of high calorie foods. Medial aspects of the orbitofrontal cortex have been associated with
reward processing (Kringelbach & Rolls, 2004) and this region tends to be activated in
during perception of appetizing food stimuli (Rolls & McCabe, 2007; Schienle, et al., 2008).
In contrast, activation in the lateral orbitofrontal regions has been associated with
punishment experiences (Kringelbach & Rolls, 2004), satiety, and the desire to stop eating
(Hinton, et al., 2004; Killgore & Yurgelun-Todd, 2006; Small, et al., 2001). When sated,
images of normally appetizing foods produce increased activation of the lateral orbitofrontal
cortex (Santel, et al., 2006). When considered in light of these previous studies, the present
findings suggest that the High Dose treatment may have led to appetite changes by
increasing the responsiveness of this region to images of calorie-rich and high-fat foods,
though this speculation will require further study. High doses of citicoline were also
associated with greater activation increases in bilateral insula and the left amygdala in
response to the high-calorie food images. Activation of these regions has been associated
with anticipation of aversive experiences and visual perception of unpleasant images in
previous research (Nitschke, Sarinopoulos, Mackiewicz, Schaefer, & Davidson, 2006), and
the insula has frequently been implicated in the experience and perception of disgust (Stark,
et al., 2007; Wright, et al., 2004) and interoceptive awareness of visceral/somatic states
(Craig, 2002). The present findings suggest that treatment with the High Dose of citicoline
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produced significantly greater increases in left amygdala activation than the Low Dose
treatment. Previous research has suggested that visual perception of foods, regardless of
calorie content, appears to be associated with amygdala activation (Killgore, et al., 2003).
Elevated activation within the amygdala is often associated with negative affective
experiences, such as conditioned fear (LaBar, Gatenby, Gore, LeDoux, & Phelps, 1998) or
perception of unpleasant or negatively valenced emotional stimuli (Stark, et al., 2007).
Again, while speculative and in need of further study, these findings tentatively suggest that
citicoline may affect appetite by increasing responsiveness of these regions.

Finally, it was hypothesized that change in activation of the three cerebral regions of interest
between Visit 1 to Visit 2 would correlate with appetite changes over this same period. This
hypothesis was supported, as increased activation within each of the three regions was
significantly predictive of reduced appetite by the end of the study. In other words, appetite
ratings declined most extensively for those individuals that showed the greatest increases in
activation within the amygdala, insular cortex, and lateral orbitofrontal cortex in response to
high calorie food images over the six-week period. Findings for the insula and orbitofrontal
cortex were further confirmed in the exploratory whole brain analysis. Because activation in
these paralimbic regions is often associated with negative affect (Markowitsch,
Vandekerckhovel, Lanfermann, & Russ, 2003), aversive perceptions (Stark, et al., 2007;
Wright, et al., 2004), and behavioral inhibition (Ridderinkhof, van den Wildenberg,
Segalowitz, & Carter, 2004), increased activation in these regions might indicate that the
food images were being perceived as less rewarding and potentially more aversive than at
baseline and therefore led to reduced desire to consume food.

Although our hypothesis was based on limited evidence that citicoline may affect the
dopamine system (Agut, et al., 2000; Gimenez, et al., 1991; Radad, et al., 2007; Rejdak, et
al., 2002), it is possible that the changes observed here in the High Dose group may have
resulted from properties of citicoline other than its effects on the dopamine system.
Citicoline has a number of mechanisms of action, including functioning as a precursor of
phospholipid and acetylcholine synthesis (Conant & Schauss, 2004; D'Orlando & Sandage,
1995), enhancement of the release of other neurotransmitters such as norepinephrine (Lopez,
et al., 1986), counteracting the buildup of beta-amyloid protein and cellular apoptosis in the
hippocampus (Alvarez, Sampedro, Lozano, & Cacabelos, 1999), and repair of neuronal
membranes via increased synthesis of phospholipid components including cardiolipin (Rao,
et al., 2001) and sphingomyelin (Adibhatla & Hatcher, 2002). Growing evidence suggests
that citicoline may have neuroprotective effects following stroke or other brain injuries and
may enhance cognitive performance in patients suffering from degenerative dementias such
as Alzheimer’s and Parkinson’s Diseases (Conant & Schauss, 2004). Thus, the mechanisms
of action and potential neural systems affected by citicoline are numerous and remain to be
fully elucidated. Further research will be necessary to determine the specific appetite
systems affected by citicoline and whether this compound shows clinical efficacy at
changing appetite or weight status.

We present these findings as preliminary, fully mindful of the limitations inherent in a non-
placebo controlled design with a relatively small sample size. Furthermore, because this was
an open label trial and participants were aware of the treatment and dosage they received, it
is possible that their expectations may have affected their responses to the questionnaires or
the stimuli. Future studies would benefit from the use of double blind crossover designs and
these findings will need to be replicated with larger samples. It should also be reiterated that
despite the decline in appetite ratings, no change in actual weight was noted. However, it is
possible that the change in appetite was gradual and that a six week trial may not have been
adequate to be expressed in changes in weight. Trials extending for longer durations may
clarify this issue. An additional factor to be considered is the potential influence that body
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mass may play in the effects of citicoline on brain responses, as previous research suggests
that body mass is related to brain responses to food images (Killgore & Yurgelun-Todd,
2005a). BMI was not controlled or manipulated in the present study due to the small sample
size and limited degrees of freedom, but future investigations should consider the role of this
variable in food perception. To avoid the effects of hunger on brain activation, no attempts
were made to restrict food intake prior to the scans, but this may have also had some effect
on brain responses. Future studies will need to examine the interaction of citicoline and
hunger on brain responses to food stimuli. Finally, it is not possible to rule out exposure and
habituation effects in the present study, as participants viewed the same stimuli on both
occasions. However, this is unlikely in light of the six-week intervening period between the
scans and our finding that most participants, particularly those in the High Dose group
actually showed increased activation rather than a reduction, arguing against habituation to
the food stimuli. In light of the numerous neuroprotective and health promoting effects, high
tolerability, and low side-effect profile of citicoline, these tentative findings are intriguing
and warrant further research into the efficacy of this substance as a potential supplement for
modulating appetite.
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Figure 1.

Axial slices showing significantly greater increases in functional activation after six weeks
of treatment with High Dose citicoline (2000 mg/day) versus the Low Dose (500 mg/day)
treatment during the food perception task. Activation is shown only within the three regions
of interest, including the left amygdala (AMYG), bilateral insula (INS), and right lateral
orbitofrontal cortex (OFC).
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The scatterplots show the correlations between changes in brain activation in response to the
food perception task and changes in appetite ratings following six weeks of treatment with
citicoline in the maximally correlated voxel for A) the right amygdala, B) right insula, and
C) left lateral orbitofrontal cortex (see text for MNI coordinates).
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