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Summary

In high-dimensional data analysis, feature selection becomes one means for dimension reduction,
which proceeds with parameter estimation. Concerning accuracy of selection and estimation, we
study nonconvex constrained and regularized likelihoods in the presence of nuisance parameters.
Theoretically, we show that constrained Ly-likelihood and its computational surrogate are optimal
in that they achieve feature selection consistency and sharp parameter estimation, under one
necessary condition required for any method to be selection consistent and to achieve sharp
parameter estimation. It permits up to exponentially many candidate features. Computationally,
we develop difference convex methods to implement the computational surrogate through prime
and dual subproblems. These results establish a central role of Ly-constrained and regularized
likelihoods in feature selection and parameter estimation involving selection. As applications of
the general method and theory, we perform feature selection in linear regression and logistic
regression, and estimate a precision matrix in Gaussian graphical models. In these situations, we
gain a new theoretical insight and obtain favorable numerical results. Finally, we discuss an
application to predict the metastasis status of breast cancer patients with their gene expression
profiles.

Keywords

Coordinate decent; continuous but non-smooth minimization; general likelihood; graphical
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1 Introduction

Feature selection is essential to battle the inherited “curse of dimensionality” in high-
dimensional analysis. It removes non-informative features to derive simpler models for
interpretability, prediction and inference. In cancer studies, for instance, a patient’s gene
expression is linked to her metastasis status of breast cancer, for identifying cancer genes. In
a situation as such, our ability of identifying cancer genes is as critical as a model’s
predictive accuracy, where selection accuracy becomes extremely important to reproducible
findings and generalizable conclusions. Towards accuracy of selection and parameter
estimation, we address several core issues in high-dimensional likelihood-based selection.

Consider a selection problem with nuisance parameters, based on a random sample Y = ( Y3,
, ¥;) with each Y;following probability density g(€°, ), where & = (8, 7°) is a true

0 _ 0 —(p0
parameter vector, B = (B1: -+ Bp)=(B, .0, ) and ° = (), - - , ) are the parameters of
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interest and nuisance parameters respectively, Ao={j:ﬂ(} # O} is a set of nonzero coefficients

of A with size | Ag| = pp, and OA;; is a vector of 0’s with ¢ denoting the set complement. Here
we estimate (&, Ag), where p may greatly exceed 77, and g = 0 is permitted.

For estimation and selection, a likelihood is regularized with regard to B, particularly when p
> n. This leads to an information criterion:

17
~LO)+A ) 1(B; # 0), W

J=1

where L(9)=Zizllogg(9, Yi) is the log-likelihood based on Y, A > 0 is a regularization

P
parameter, and ijll(ﬁj #0) s the Lo-function penalizing an increase in a model’s size. In
(1), when &= gwithout nuisance parameters, A = 1 is Akaike’s information criterion, j— o
is Bayesian information criterion [21], among others. In fact, essentially all selection rules
can be cast into the framework of (1).

Regularization (1) has been of considerable interest for its interpretability and computational
merits. Yet its constrained counterpart (2) has not received much attention, which is

P
—L(6), subject to ZI(BJ- #0) <K, o)
j=1

where K'= 0 is a tuning parameter corresponding to A in (1). Minimizing (1) or (2) in
gives a global minimizer leading to an estimate ﬁz (ﬁ,q, 04¢) 7, with A the estimated Ay,
where 5 is un-regularized and possibly profiled out. Note that (1) and (2) may not be
equivalent in their global minimizers, which is unlike a convex problem.

This article systematically investigates constrained and regularized likelihoods involving
nuisance parameters, for estimating zero components of £° as well as nonzero ones of &°.
This includes, but is not limited to, estimating nonzero entries of a precision matrix in
graphical models.

There is a huge body on parameter estimation through L;-regularization in linear regression;
see, for instance, [16] for a comprehensive review. For feature selection, consistency of the
Lasso [26] has been extensively studied under the irrepresentable assumption; c.f., [15] [34].
Other methods such as the SCAD [6] have been studied. Yet Ly-constrained or regularized
likelihood remain largely unexplored. Despite progress, many open issues remain. First,
what is the maximum number of candidate features allowed for a likelihood method to
reconstruct informative features? Results, such as [13], seem to suggest that the capacity of
handling exponentially many features may be attributed primarily to the exponential tail of a
Gaussian distribution, which we show is not necessary. Second, can parameter estimation be
enhanced through removal of zero components of 8? Third, can a selection method continue
to perform well for parameters of interest in the presence of a large number of nuisance
parameters, as in covariance selection for off-diagonal entries of a precision matrix?

This article intends to address the foregoing three issues. First, we establish finite-sample
mis-selection error bounds for constrained Ly-likelihood as well as its computational
surrogate, given (1, po, p), where the surrogate—a likelihood based on a truncated /-
function (TLP) approximating the Lg-function, permits efficient computation; see Section
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2.1 for a definition. On this basis, we establish feature selection consistency for them as 7, p
— 00, under one key condition that is necessary for any method to be selection consistent:

logp
s

Crnin(8”) > dy @)

)

(B 00 A% i) FRTAGTATTY ap > 0 is a constant, |-| and \ denote the size

where Cpin(6°) = inf,,

- - 12 12060 )y 172
of a set and that of set difference, respectively, (6, eo)z%( [(&'2®,y) - g"(6", ) du(y))
is the Hellinger-distance for with respect to a dominating measure x, and g(6, )) is a
probability density for ;. As one consequence, exponentially many candidate features

p=exp (ncmd—o“’o) are permitted for selection consistency with a broad class of constrained
likelihoods. This challenges the well established result that the maximum number of
candidate features permitted for selection consistency depends highly on a likelihood’s tail
behavior, c.f., [4]. In fact, selection consistency continues to hold even if the error
distribution does not have an exponential tail; see Proportion 1 for linear regression. Second,
sharper parameter estimation results from accurate selection by Lg-likelihood and its
surrogate as compared to that without such selection. For feature selection in linear
regression and logistic regression, the optimal Hellinger risk of the oracle estimator, the
maximum likelihood estimate (MLE) based on Ay as if the true Aq were known a priori, is

recovered by these methods, which is of order of \/E and is uniform over a certain Ly-band

of & excluding the origin. This is in contrast to the minimax rate /“2/2 with > py for
estimation without feature selection in linear regression [17]. In other words, accurate
selection by Ly-likelihood and its surrogate over the Ly-band improves accuracy of
estimation after non-informative features are removed, without introducing additional bias to
estimation. Moreover, in estimating a precision matrix in Gaussian graphical models, the
foregoing conclusions extend but with a different rate at /2 where a log p factor is due
to estimation of 2p nuisance parameters as compared to logistic regression. Third, two
difference of convex (DC) methods are employed for computation of (1) and (2), which
relax nonconvex minimization through a sequence of convex problems.

Two disparate applications are considered, namely, feature selection in generalized linear
models (GLMs), as well as estimation of a precision matrix in Gaussian graphical models. In
GLMs, feature selection in nonlinear regression appears more challenging than linear
regression for a high-dimensional problem. In statistical modeling of a precision matrix in
Gaussian graphical models, two major approaches have emerged to exploit matrix sparsity
by likelihood selection and neighborhood selection. Papers based on these two approaches
include [15] [12] [28] [2] [8] [19] [20] [18], among others. As suggested by [19], existing
methods may not perform well when the dimension of a matrix exceeds the sample size 7,
although they give estimates better than the sample covariance matrix. In addition,
theoretical aspects for a likelihood approach remain to be under studied. In these situations,
the proposed method compares favorably against its competitors in simulations, and novel
theoretical results provide an insight into a selection process.

This article is organized as follows. Section 2 develops the proposed method for Lg-
regularized and constrained likelihoods. Section 3 presents main theoretical results for
selection consistency and parameter estimation involving selection, followed by a necessary
condition for selection consistency. Section 4 applies the general method and theory to
feature selection in GLMs. Section 5 is devoted to estimation of a precision matrix in
Gaussian graphical models. Section 6 presents an application to predict the metastasis status
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of breast cancer patients with their gene expression profiles. Section 7 contains technical
proofs.

2 Method and computation

2.1 Method

In a high-dimensional situation, it is computationally infeasible to minimize a discontinuous
cost function involving the Lg-function in (1) and (2). As a surrogate, we seek a good
approximation of the Lo-function by the TLP, defined as j(|;|)=Amin (2, 1), With z>0a
tuning parameter controlling the degree of approximation; see Figure 1 for a display. This =
decides which individual coefficients to be shrunk towards zero. The advantages of A|4) are
fourfold, although X2) has been considered in other contexts [9]:

1. (Surrogate) It performs the model selection task of the Ly-function, while providing
a computationally efficient means. Note that the approximation error of the TLP
function to the Lp-function becomes zero when zis tuned such that

< min{|ﬁ2|:k € Ap}, seeking the sparsest solution by minimizing the number of non-
zero coefficients.

2. (Adaptive model selection through adaptive shrinkage) It performs adaptive model
selection [23] through a computationally efficient means when A is tuned.
Moreover, it corrects the Lasso bias through adaptive shrinkage combining
shrinkage with thresholding.

3. (Piecewise linearity) It is piecewise linear, gaining computational advantages.

4. (Low resolutions) It discriminates small from large coefficients through
thresholding. Consequently, it is capable of handling many low-resolution
coefficients, through tuning z.

To treat nonconvex minimization, we replace the Lg-function by its surrogate [X-) to
construct an approximation of (2) and that of (1):

]7
~L(9), subjectto Y J(B;) <K, @
j=1
p
S(0)= - LO+1)_J(B)), ©)

J=1

where (5) is a dual problem of (4). To solve (5) and (4), we develop difference convex
methods for the primal and dual problems, for efficient computation.

2.2 Unconstrained dual and constrained primal problems

Our DC method for the dual problem (5) begins with a DC decomposition of §6): S(6) =
S8 - SH(B), where $1(6)= ~ LO+AY " 1B).S28=4) ) _ B J1(B;)=", and

J2(|,8j|)=@ - max(@ -1, 0). Without loss of generality, assume that —L is convex in 6,
otherwise, a DC decomposition of —L is required and can be treated similarly. Given this DC
decomposition, a sequence of upper approximations of S ) is constructed iteratively, say, at
iteration /77, with V.S, a subgradient of S, in |B: S™(8) = 5,(6) - (S(B™ = V)+(|8 - |
BN S, (JBY)), by successively replacing Sy(8) by its minorization, where || for a
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vector takes the absolute value in each component. After ignoring

m— P m— m—
S2(B™ V) - %ZFIIB 1)II(IBT Y1>7) that is independent of 6, the problem reduces to

S (@)= - LO)+= Zlﬁ,uﬂ”‘ Y <. ®)
j=1

Minimizing (6) in @yields its minimizer ™. The process continues in /77 until termination
occurs. Our unconstrained DC method is summarized as follows.

Algorithm 1
Step 1. (Initialization) Supply a good initial estimate 89, such as the minimizer of

51(6).
Step 2. (Iteration) At iteration /n, compute & by solving (6).

Step 3. (Termination) Terminate when (@ 1) — (&™) < ¢, and no components
of ,B(’") is at =z. Otherwise, add e to that components whose absolute value
is 7, and go to Step 2, where e is the square root of the machine precision.
Then the estimate 8= &/ ), where 17" is the smallest index at the
termination criterion.

P
In Algorithm 1, (6) reduces to a general weighted Lasso problem: _L(9)+Z_,»:]/11'Wj|, with

A=2(B"V| < 7). Therefore any efficient software is applicable.

For (4), we decompose the nonconvex constraint into a difference of two convex functions
to construct a sequence of approximating convex constraints. This amounts to solving the
mth subproblem in a parallel fashion as in (6):

n}gin—L(H), subject to — ZWJ|I(|E(’" 1)| <1)<K- ZI(A('" 1)|>T) @
j=1

This leads to a constrained DC algorithm—Algorithm 2 for solving (4) by replacing (5) in
Algorithm 1 by (4).

Algorithms 1 and 2 are a generalization of those in [24] for a general likelihood, where all
the computational properties there extend to the present situation, including equivalence of
the DC solutions of the two algorithms and their convergence. Next we shall work with (5)
due to its computational advantage. For instance, a coordinate decent method that works
well with (5) breaks down for (4), c.f., [24].

This section presents a general theory for accuracy of reconstruction of the oracle estimator

6™ = (B! b with B"'= (Bml 0,,) given Ay, which is the MLE provided that the
knowledge about Ay were known a priori. As direct consequences, feature selection
consistency is studied as as well as optimal parameter estimation defined by the oracle
estimator. In addition, a necessary condition for feature selection will be established as well.
A parallel theory for regularized likelihood is similar and thus is omitted.
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3.1 Constrained Lg-likelihood

In (2), assume that a global minimizer exists, denoted by 8-0 = (B0, 7:0) with

B=(BL 0 ) Wri i i T
1y Catoys ). Write Bas (B4, 0)ad), with B4 being (B, ..., B4])’ for any subset A C
{1, -+, p} of nonzero coefficients.

Before proceeding, we define a complexity measure for the size of a space F. The
bracketing Hellinger metric entropy of 7, denoted by the function A(:, F), is defined by
logarithm of the cardinality of the «~bracketing (of ) of the smallest size. That is, for a

bracket covering S (s, m)={f], f¥,-- , fu, f} C 25 satisfying MaX1<j<m |f —f || < €and

for any F€ 7, there exists a s such that f, < f<f}, ae P then Hu, F) is log(min{m : S(u,
m)}), where ||f], = J #(2)du. For more discussions about metric entropy of this type, see
[14].

Assumption A (Size of parameter space)—For some constant ¢y > 0 and any

= <t<g < 1, H(t, 51) < cp(log p)?|A| log(2&/8), with |A| < po, where 51 = 7 N {/(6, &) < 2&}
|salocal parameter space, and 7+ = {g*2(6, y) : 6= (B, 1), B= (Ba, 0)} be a collection of
square-root densities.

Theorem 1 (Error bound and oracle properties)—Under Assumption A, if K= py,
then, there exists a constant ¢ > 0, say Cr=2 5o such that for (n, g, ),

PO £ 0™) < exp (—canCpin(@°)+2l0g(p+1)+3)). ®)

Moreover, under (3) with dy>max(2, (2c0)'/*c} 'log(2'" /c3)), 60 reconstructs the oracle
estimator @ with probability tendmg to one as n, p — oo. Three oracle properties hold as
n, p— oo:

A. (Selection consistency) Estimator AL0 is selection consistent, that is, ALALO # Ay)
— 0.

B. (Optimal parameter estimation) For 6, ER*@", 6*)=(1+0(1)EK*@", 6°)=0(s2.,)
and #*(6,6")=0,(e2 ,, ), provided that £/2(8™, €°) does not tend to zero too fast

in that %nCmin(é)")HogEhz('é'”ﬂ 6°) — oo Where ey, is any solution for &:

H”Z(t/@, B, )t < can'’&”. ©)

2 8g2

C. (Uniformity over a Lp-band) The reconstruction holds uniformly over By(v, /),
namely, supgPegy(u,) A0 £ 8 — 0, where By(u,)) is a Lo-band, defined as

p
(B.n0):po= | 108} % 0) < w, Coin(®) = B with 0 < < min(n, £), 1= o2t and o
<min(n, p). This implies feature selection consistency supgde gy(, ) AAL0 % Ap)

ER2 (@0 00)

$9Pe0c g (1) .
EnZ(gml 60) - 1, with

— 0, and optimal parameter estimation wpyo_, .,

2 pnl A0 A
SUP, BN G ):0(8,,[’”’1,)’ provided that £/2(8™, &°) does not tend to zero

too fast in that %nCmin(90)+10gSUP90€BO(M_,)Ehz(ﬁ"l, 6°) = oo

JAm Stat Assoc. Author manuscript; available in PMC 2013 January 01.
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The Ly-method consistently reconstructs the oracle estimator when the degree of separation
exceeds the minimal level, precisely under (3). As a result, selection consistency is
established for the Ly-method. This, combined with that in Theorem 3, suggests that the Lg-
method is optimal in feature selection against any method, matching up with the lower
bound requirement under the degree of separation with respect to (p, fp, /1) except a constant
factor ap > 0 in Theorem 3. Moreover, the optimality extends further to parameter
estimation, where sharper parameter estimation is obtained from accurate L selection,
achieving the optimal Hellinger risk of the oracle estimator asymptotically. By comparison,
such a result is not expected for L,-regularization. As suggested in [17], selection
consistency of Lasso does not give sharper parameter estimation, where the rate of

convergence of a Li-method in the L, risk remains to be /222220 jn |inear regression. This
is because a L1-method is nonadaptive and overpenalizes large coefficients as a result of
shrinking small coefficients towards zero. Similarly, in feature selection in logistic
regression, the Lg-method is expected to give rise to better estimation precision than a L4-
method, although a parallel result for a L,-method has not been available. Finally, the
uniform result in (C) is over a Ly-band By(v;, /), which is not expected over a Ly-ball By(v,
0) in view of the result of Theorem 3.

3.2 Constrained truncated L4-likelihood

For constrained truncated L-likelihood, one additional regularity condition—Assumption B
is assumed, which is generally met with a smooth likelihood; see Section 4 for an example.
It requires the Hellinger-distance to be smooth so that the TLP approximation to the Lg-
function becomes adequate through tuning .

Assumption B—For some constants ¢;—d5 > 0,

B(0,6°) > diP (0, 6") — dspr®, AT = (B} = 7, (10)

where 6+ = (BB 2 D), - BoIBA = D, 1.+ 7).

Theorem 2 (Error bound and oracle properties)—Under Assumption A with 7

replaced by {g*2(6,)) : 6= (8, 1) : B= (Ba, Bac), |Badle, < 3 say 0< t< e for some
constant ¢, and Assumption B, if K= gy and =< max(c’, (¢4 Crmid )2 pds)Y®2>), then
there exists a constant ¢, > 0, such that for any (n, p, p),

P(’6T igml) < exp (—canmin(60)+2log(p+1)+3). (11)

Moreover, under (3) with sufficiently large constant ap > 0, 87 has the three oracle
properties (A)—(C) of 80, provided that 2 Cin(6°)+log ER2@",6°) — oo For (0),

7 < (80) is required as well as nCrin(@)+logsup , | ER*@",6%) — oo,

d3

Remark—Constants in Theorem 1 can be made precise. For instance, .,=+ _1_and

27 1926
do> max(=-, (2c)/*¢; 'og (2% /c3)).

cpdy

Theorem 2 says that the oracle properties of the Ly-function are attained by its
computational surrogate when z is sufficiently small.

JAm Stat Assoc. Author manuscript; available in PMC 2013 January 01.
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3.3 Necessary condition for selection consistency
This section establishes the necessary condition (3) by estimating the minimal value gy in
(3), required for feature selection consistency.
Let K(6y, &) = Elog g(61, V)/9(6, Y) be the Kullback-Leibler loss for 6, versus &, where
E'is taken with regard to g(81, Y). Let ymin(6°) = min{|8)]:k € Ag}>0.

Assumption C—For a constant 7> 0, K(6;, 6) < ryﬁﬁn(ﬁ). Here {6;= (B; ), /=1, o}

Po
is a set of parameters, where 8=, _ Ymin€k = Ymin€j; j=1, -, po}, and

0 e;=(0,...,0,1,0,...,0"
ﬁj=zk:17minek+7mmej;j: m+1, -, pand i1 p—j—1 - Assume that

. . 0
s = infgp Q>0
i@
min

Theorem 3 (Necessary condition for feature selection consistency)—Under
Assumption C, for any constant ¢« € (0, 1), any (1, gy, p) with gy < p/2, and any 7P, we have

inf  sup P (Zi Ao) > cy,

A {ﬁO:Cmin(OO):R*] (12)
with R¥=stlcolosp, Moreover,
inf sup P(A\;t Ao) >cy, as n,p — 0o, (13)

A @°eBg(u,l)

<mi _ 7 log, (="
where u< min(o/2, 1), =g, 'z, and dy=1

n

Theorem 3 says that feature selection inconsistency occurs when do< 2 in (3). There the
minimal value do=2 yields a requirement for feature selection consistency in (3).

4 Generalized linear models

For GLMs, observations Y;= (Z; X,) are paired, response Z;is assumed to follow an
exponential family with density function g(z;; 6;, ¢) = exp{[z;6;— K 6)1 &) + Az}, ¢)},
where 6;is the natural parameter that is related to the mean u;= £z) = b'(6), and pis a
dispersion parameter. With a link function g, a regression model becomes 7= g(u) = B;.
The penalized likelihood for estimating regression coefficient vectors Bis

P n
_L(ﬁ)+zf:‘J(lﬁjl;/l’ ™), where L(ﬁ):Zizl[Zi'ui = b(ui)l/a(e)+c(zi, ¢) iis the log-likelihood,
and j(8,/:, 7)=% min((8,], 7) is the TLP penalty.
For parameter estimation and feature selection, we apply Algorithm 1, where (6) becomes a

series of weighted lasso for GLMs, for which some existing routines are applicable, for
simplicity. In implementation, we use the function wtlassoglm() in R package SIS.

Next we examine effectiveness of the proposed method through simulated examples in
feature selection. In linear regression and logistic regression, the Lasso, SCAD [6], SCAD-
OS, TLP and TLP-OS are compared in terms of predictive accuracy and identification of the
true model, where SCAD-OS and TLP-OS are SCAD and TLP with only one iteration step

JAm Stat Assoc. Author manuscript; available in PMC 2013 January 01.
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in the DC iterative process, and SCAD-OS is proposed in [33]. The latter four methods use
the Lasso as an initial estimate.

4.1 Simulations

For simulations predictors X/’s are iid from N/ (0, V), where V is a p x p matrix whose /ith
element is 0.5/, In linear regression, Z;= B7X;+ &, e~ N(0, 6); i=1, -, n, and random
error g;is independent of X;; in logistic regression, a binary response is generated from logit
Pr(Z;= 1) = B7X,. In both cases, B= (B1, -, Bp) T with 1 =1, B, = 0.5 and 55 = 0.75; ;=0
for j# 1, 2, 5. This set-up was similar to that considered in [33]; here we examine various
situations with respect to p, 7. Each simulation is based on 1000 independent replications.

For any given tuning parameter A, all other methods use the Lasso estimate as an initial
estimate. For each method, we choose its tuning parameter values by maximizing the log-
likelihood based on a common tuning dataset with an equal sample size of the training data
and independent of the training data. This is achieved through a grid search over 21 A values
returned by glmnet() for all the methods, and additionally over a grid of 10 z values that are
the 9th-, 19th-, 29th-, ---, 99th-percentiles of the final Lasso estimate for the TLP.

The model error (ME) is used to evaluate predictive performance ofﬁ, defined as /\//E(,B) =
(B- )V (B- B, which is the prediction error minus &2 in linear regression,
corresponding to the test error over an independent test sample of size 7= co. In our
context, the median ME’s are reported over 1000 simulation replications, due to possible
skewness of the distribution of ME. In addition, the mean parameter estimates of the
nonzero elements of B will be reported, together with the mean true positive (TP) and mean

P - P -
false positive (FP) numbers: #TP=Zj:11(ﬁj # 0,8 # 0) ang #FP:ijll(ﬁjZO,ﬁj #0),

For linear regression, simulation results are reported for the cases of p= 12, 500, 1000, 7=
50, 100, and o = 1 in Table 1. As suggested by Table 1, the TLP performs best: it gives the
smallest estimation and prediction error as measured by the ME, the smallest mean false
positive number (FP) while maintaining a comparable mean number of true positives (TP)
around 3. Most critically, as pincreases, the TLP’s performance remains much more stable
than its competitors. On a relative basis, the TLP outperforms its competitors more in more
difficult situations.

For logistic regression, simulation results are summarized for the cases of p= 12, 200, 500
and 7= 100, 200 in Table 2. As expected, the TLP continues to outperform other methods
with the smallest median ME’s. It gives less biased estimates than the Lasso estimates. The
TLP’s superior performance remains strong over other methods, as p increases.

4.2 Theory for feature selection

This section establishes some theoretical results to gain an insight into performance of the
proposed method in feature selection. Let Y= (Z X), and g(, 2)=rj=exp(—55(Z —ﬁTX)z)
and g(B, 2) = pA(1 - p)t=Ziin linear and logistic regression. Assume that 5" =g’ z, belongs
to a compact parameter space for any model size |A| < . In this case, selection does not
involve nuisance parameters, where 8= 8. Under (14), we establish feature selection
consistency as well as optimal parameter estimation for the TLP:

_ 1 T -1 0
Cmin(ﬁo)_ maX(IAo\A\,l)(ﬁAOO\A) (ZAo\A B ZAo\AA ZA ZAAU\A)'BAO\A

log
> do=2F,

min
A:|AI<po,A#Ag (14)
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where ap > 0 is a constant independent of (1, p, ), and X g is a sub-matrix given a subset B
of predictors, of covariance matrix X with the jAth element Co( X}, X), independent of A
A simpler but stronger condition can be used for verification of (14):

-1 lo
2 . ) gp
. min ¢ E - E E E > dy——, 15
7/'T"“A:IA\SPO,A¢AO mm( Ap\A Ap\A.A A Adg\A 0 n ( )

Where ymin=ymin(8°) = min{|ﬁ2| :ﬂ‘,ﬁ # 0} is the resolution level of the true regression

-1
.. min, Cmi Z - Z Z Z >min,_, . Cmi Z
coefficients, =~ 4MisroAdo “’“‘( A0\ aovia Lda Ldpagia Batgim<ap, Cmin g), and

Cmin denotes the smallest eigenvalue. Note that (14) is necessary for any method to be
selection consistent except constant ap if

-1
N4 < a4, Cmiin (ZAO\A B ZAO\A,A ZA ZAAO\A) >0.

Proposition 1—Under (14), the constrained MLE ﬁTof (4) consistently reconstructs the
oracle estimate 7. As n, p— oo, feature selection consistency is established for the TLP

as well as optimal parameter estimation g2g", g%=E£nr>(g", 5°)=0(x2) under the Hellinger
distance A(-, -). Moreover, the results hold uniformly over a Ly-band

P .
Bo(u, l):{'BOIijll(ﬂ? #0) <u, yrznin(ﬁo)mlnBDAo;\B\gpoCmin(zg) 2 l}’ with0O < u< min(/]7 p),

I=dyo? ez, that is, as n, p— oo,

2/l
=T =l Supﬁ“ego(u,l)Eh B ’ﬁo )
sup P(ﬁ +f )—>0, I,

-
2 ml
BPeBo(w) SUP o EI B B0)

with sup ER* @™, B°)=d" * for some d".

BOeByuh
Various conditions have been proposed for studying feature selection consistency in linear
regression. In particular, a condition on ymin is usually imposed, in addition to assumptions
on the design matrix X such as the sparse Riesz condition in [32]. To compare (14) with
existing assumptions for consistent selection, note that these assumptions imply a fixed
design version of (14) by necessity of consistent feature selection. For instance, as showed

in [32], the sparse Riesz condition with dimension restriction and 52 > ¢ lew-w, required
for the minimum concavity penalty to be consistent, imply (15) Witﬁpreplaced by p-u
thus (14) when p/ubounded away from 1, where = py. Moreover, the number of over-
selected variables is proved to be bounded but may not tend to zero for thresholding Lasso
in Theorem 1.1 of [35], under a restrictive eigenvalue condition [1] and a requirement on
vmin- Finally, in linear regression, only finite variance o is required for the proposed
method, which is in contrast to a commonly used assumption on sub-Gaussian distribution
of e

In conclusion, the computational surrogate—the TLP method indeed shares desirable oracle
properties of the Lg-method, which is optimal against any selection method, for feature
selection and parameter estimation.
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5 Estimation of a precision matrix

Given nrandom samples from a p-dimensional normal distribution Yy, -, Y,~ N (u, Z), we
estimate the inverse covariance matrix Q = £71 that is p x p positive definite, denoted by Q
> 0. For estimation of (u, Q), the log-likelihood is proportional to

n Iv
S logder(@) - 5;(& - QY - ). (16)

The profile log-likelihood for Q, after x is maximized out, is proportional to

logdet(@) — 1ir(Sq, where Y=n' 370 Yiang S=n"' 37 (Vi ~D)¥i =)' arethe
corresponding sample mean and covariance matrix, detand frdenote the determinant and
trace. In (16), the number of unknown parameters £2 in Q can greatly exceed the sample size
nin the presence of 2p nuisance parameters (g, {Qj;: =1, -+, p}), where Qj, denotes the
Jkth elements of Q. To avoid non-identifiability in estimation, we regularize off-diagonal
elements of Q in (16) through a nonnegative penalty function ) for the »w-1 parameters of
interest:

1 p
S (@)=logder(Q) - 51r(SQ) - Z J{Qi, j # k). a7
Jk=1,j#k

In estimation, the TLP function J(Qji, j # k})=2 min(|Qal, 7) is employed for both
parameter estimation and covariance selection in (17). Towards this end, we apply
Algorithm 1 to solve (6) sequentially, which reduces to a series of weighted graphical lasso
problems, and is solved by taking advantage of existing software. In implementation, we use
R package glasso [8] for (6).

5.1 Simulations

Simulations are performed, where a tridiagonal precision matrix is used as in [7]. In
particular, ¥ is AR(1)-structured with its /-element being o= exp(=ds;— sj), and s; <s, <
- < spare randomly chosen: s;— siq ~ Unif(0.5, 1), for some a2 >0; /=2, -, p. The
following situations are considered: (n, p) = (120, 30) or (n, p) = (120, 200), and a=0.9 or &
= 0.6, based on 100 replications.

Five competing methods are compared, including Lasso, adaptive Lasso (ALasso), SCAD-

OS and SCAD, and TLP-OS and TLP. ALasso uses weight /l/I,E(jO)IV, where A9 is an initial
estimate and = 1/2 as in [7].

To measure performance of estimator Q, we use the entropy loss and quadratic loss: 10ss(Q,
Q) = 1MQ1Q) - log |70 - p, and lossy(Q, Q) = #(Q71Q - /)2, as well as the true positive
(TP) and false positive (FP) numbers: #7P=%;; (Q;;i# 0, Q;;# 0); #FP=Z;; Aw;;= 0, Q;;#
0).

For small p= 30, TLP and TLP-OS are always among the winners. It is also confirmed that
the one-step approximation to SCAD or TLP gives similar performance to that of the fully
iterated SCAD or TLP, respectively. For large p, to save computing time, as advocated in
[7], we only run SCAD-QOS and TLP-OS. In such a situation, an improvement of TLP-OS
over other methods is more substantial for large p = 200 than for small = 30. Overall, the
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proposed method delivers higher performance in low-dimensional and high-dimensional
situations, respectively.

5.2 Theory for precision matrix

To perform theoretical analysis, we specify a parameter space ® in which Q @ 0 with 0 <
MaXi<ip [Q) < Mo, Gnin(Q) = My >0, for some constants M, M, >0, independent of (7, p,
). Let A={(j k) : j# k Qjx# 0} be the set of nonzero off diagonal elements of Q, where |
A| = pp is an even number by symmetry of Q, and Q depends on A. Results in Theorem 1
imply that the constrained MLE yields covariance selection consistency under one
assumption:

1
Conin@°) > do—22 | (18)

which is necessary for covariance selection consistency indeed for any method, up to
constant ap when ¢pin(H) > 0, where ap > 0 is a constant independent of (n, p, i), and

H= (MN -0, 1S the 2 X2 Hessian matrix of —log deQ), whose Q) Q x) element
is X A/k)ZOA/ ¥), ¢t [3], Ajkis a px pwith the jk-element being 1 and 0 otherwise.
Sufficiently, (18) can be verified using

Cnin(Q”) > ¥z, Cmin(H), (19)

with ymm(g ) = Ymin= mln”Q J: Q]k #0,j# k.

Proposition 2—Under (18), the constrained MLE Q7 of (4) consistently reconstructs the
oracle estimator Q™. As n, p— oo, covariance selection consistency is established for the

TLP as well as optimal parameter estimation Ehz(aT’QO)=(1+0(1))Eh2(§mZ’Qo)zo(POI’#),

1/2
20.0%=1 - (zler(ﬂ)dzt(ﬂo))
where Q.0 der 2127 is the squared Hellinger distance for Q versus Q0.

Moreover, the above results hold uniformly over a Lg-band

0. 0 2 0
Bolu, =i Z et i i # 0) < 1Y, Q) emin(H) < 1} yith 0 < < min(n, p) and
I=dyo? ez, that is, as 77, p — oo,

T sup_, IEhZ(EZT,QO)
sup P(Q #Q )—)O, o = — b
Q%eBo(wl) sup Eh*(Q, Q")

QOeBy(ul)

—~ml % dlog
with sup,, ,  ER*Q",Q%)=d" 2 for some d > 0.

In short, the TLP method is optimal against any method in covariance selection, permitting p

up to exponentially large in the sample size, or P < poexp (ni(’) Moreover, as a result
of accurate selection of this method, parameter estimation can be sharply enhanced at an

order of /222 as measured by the Hellinger distance, after zero off-diagonal elements are
removed. Note that the log p factor is due to estimation of 2,0 nuisance parameters as
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compared to the rate of \/E in logistic regression. In view of the result in Lemma 1, this

result seems to be consistent with the minimax rate /' under the Loo matrix norm [20].

6 Metastasis status of breast cancer patients

We apply the penalized logistic regression methods to analyze a microarray gene expression
dataset of [29], where our objectives are (1) to develop a model predicting the metastasis
status, and (2) to identify cancer genes, for breast cancer patients. Among the 286 patients,
metastasis was detected in 106 patients during follow-ups within 5 years after surgery. Their
expression profiles were obtained from primary breast tumors with Affymetrix HG-133a
GeneChips.

In [29], a 76-gene signature was developed based on a training set of 115 patients, which
yielded a misclassification error rate of 64/171=37.4% when applied to the remaining
samples. [30] compared the performance of a variety of classifiers using a subset of 245
genes drawn from 33 cancer-related pathways: based on a 10-fold cross-validation (CV).
Their non-parametric pathway-based regression method yielded the smallest error rate at
29%, while random forest, bagging and Support Vector Machine (SVM) had error rates of
33%, 35% and 42%.

In our analysis, we first performed a preliminary screening of the genes using a marginal t-
test to select the top p genes with most significant p-values, based on the training data for
each fold of a 10-fold-CV. Then the training data were split into two parts to fit penalized
logistic models and to select tuning parameters, respectively. The results were summarized
in Table 3, including the total misclassification errors and average model sizes (i.e. hon-zero
estimates) based on 10-fold CV. A final model is obtained by fitting the best model selected
from a 10-fold CV to the entire data set.

With regard to prediction, no large difference is seen among various methods, with the error
rates ranging from 102/286=35.7% (of TLP and TLP-OS with p = 200) to 118/286=41.3%
(of ALasso with p=200). The TLP performed similar to the TLP-OS, both were among the
winners. In addition, the Lasso gave the least sparse models while the SCAD gave the most
sparse models.

With regard to identifying cancer genes, the Lasso, TLP-OS and TLP yield the same model,
identifying the largest number of cancer genes, whereas the SCAD and SCAD-OS give the
most sparse models with only at most 2 cancer genes, and ALasso only yields 10 cancer
genes. Here cancer genes are defined according to the Cancer Gene Database [10].

In summary, the TLP and TLP-OS identify a good proportion of cancer genes and lead to a
model giving a reasonably good predictive accuracy of the metastasis status. In this sense,
they perform well with regard to the foregoing two objectives.
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7 Appendix

Proof of Theorem 1

The proof uses a large deviation probability inequality of [27] to treat one-sided log-
likelihood ratios with constraints. This enables us to obtain sharp results without a moment
condition on both tails of the log-likelihood ratios.

When K = gy, |ALO| < . If ALO = Ay, then B0 = A7, et a class of candidate subsets be
{A A% A, |Al < p} for feature selection. Note that A C {1, -, p} can be partitioned into
(A\Ao) U (Ao ﬂA). Let B/q':{ez (ﬂA, 0, 7]) AZ A, |A0 ﬂA| =K |A\A0| :j, (,00—

K Crin(6°) < 17(6, @)} C 71 k=0, -, = 1,j=1, -, i — k Note that By;consists of

po \[ P—DPo
( k )( J ) different elements A’s of sizes |[Ay N Al = kand |A\ Ay| = /. By definition,
(6=(8,,0,m:A % Ag:Crmin(6) < 10, 6°), 1A| < po} € U 'U™ By Hence

PO~ £ 0™) < P* [ sup (L) - L(Em’))>o)
0=(B.0)B=(B 0).A#Ap.|Al<po
<p* [ sup (L) - L(HO))>O)
0=0B,m):p=(B,.0),A#A,|Al<po

< > P* sup  (L(6) — L(&")) > o) =1
Ac{l,-,p}):A#Ap,|AI<po Hz(ﬂ,n):B:(BA ,0)

where 7 is the outer measure and L(@™) > L(6°) by definition.

For /, we apply Theorem 1 of [27] to bound each term. Towards this end, we verify the
entropy condition (3.1) there for the local entropy over 5.. Note that under Assumption A

g:gn,PO,p:(zco)l/ZC;llog(zl/z /e3)log P(%")l/z satisfies there with respect to £ > 0, that s,

172
sup [ SHY2 (1], B)dr < pi/*2' P slog(2/2'2es) < can' 282, 20)

{0<IAl<po}

for some constant ¢; >0 and ¢, say ¢z = 10 and c4=2222. Moreover, by Theorem 2.6 of

b b+1/2
[25],( a ) < T e < @XpUar1/2)log(b/a)+a) g0 any integers a < b. By (3),
Cmin(@) > &, , implies (20), provided that do>(2co)'/?¢; 'log(2'/% /¢3). Using the facts

po=k( p—=po —k Po i
i ; . < (p — po+1)P* < .
about binomial coefficients: ijo ( J ) <@ =porh) and( i ) =20 \e obtain,
by

Theorem 1 of [27], that for a constant ¢, >0, say Cr= o /is upper bounded by

1
1926
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po—1 po—k
S P (sup (LO) — L) 2 0) < 4 z (p 0 )exp( can(po — K)Canin(6)) z (p po )
k=0 j=0  0eBy J

<4 ; exp (—i(canCuyin() — log(p — po+1) — logpo))

< R (exp(—(canCuyin(6) — log(p — po+1) - logpo))),

where R(xX) = xA1 — X) is the exponentiated logistic function. Note, moreover, that /< 1 and
log(p — po+1)+logpy < 2log(p+1)/2 < 2logzsl: Then

1
I< Sexp(—canmin(00)+2log%) < exp(—conComin(6°)+2log(p+1)+3).

Finally, (A) follows from AAL0 # Ag) < P(8-0 # 8™, (8) and (3) with dy> 2, as 1, p— 0.
For (B), let G={8-0# & and A(G) < 8 exp(-c,nCrin/4) by (8) and (3). For the risk
property, E/2(6-0, &) < ER(0™, &) + EIP (60, ) [(G) is upper bounded by

ER* (@™, 6°)+4exp(—canCumin/2)=(1+0(1))ER*(@™, 6"),

using the fact that /(6-0, &%) < 1. Then (B) is established. Similarly (C) follows. This
completes the proof.

Proof of Theorem 2

The proof is basically the same as that in Theorem 1 WI'[h a modification that A is replaced
by A% Now Bjj= {6+ : A™ # Ay, |Ag N AT | = k |A™ \Ag| = j, (e = K) Cinin(°) -
thpt®) < IP(6+, )}; j=1, -, pp. Then

P Z p
(6=(8,.0.m:A # Ao ) B} < po. Coinl®) < W0, 6")) € U2 U “By;

[)
When K= p, ZFlJ('BjD < Po, implying that |A*| < gy. If |A*| = pp, then

P
ZFI Bil(B;1 < D=0 implying that 67 = 8. Then we focus our attention to the case of A*
# Ap. Note that, with 8= (B, n) and 8= (B4, 0),

P*[ sup (L) — L") > o] < z P* (sup(L(H)) —-L@E®) >0
Jj=1

92A¢A0,Zj;1](l3ﬂ)ﬁpo eB;
po—1po—k —
<43 % ( pope )( o )exp(—czn(dlcmin(e‘b —dypr)
k=0 j=0 J
< Sexp(—(cad /2)nCnin (6°)+2log Z21) < exp(—c2nCinin (6°)+2log(p+1)+3),

provided that =< (ch Cnin(0°)/2pds)Y/ 2. The rest of the proof proceeds as in the proof of
Theorem 1. This completes the proof.
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Proof of Theorem 3

The main idea of the proof is the same as that for Theorem 1 of [24], which constructs an
approximated least favorable situation for feature selection and uses Fano’s Lemma.
According to Fano’s Lemma [11], for any mapping 7= 7{ Y3, -, Y}) taking values in S=

_1 IS1 . nK(q jqp )+log2
{, 19}, [S] Zj:lpj(T(Yl’ L Y)=)) < Z l_‘g‘gﬁ;(k‘s‘,i , Where K(q/, qu) = J gj

1<jksIS

log(g/ gx) is the Kullback-Leibler information for densities gjversus gy corresponding #;and
P

To construct an approximated least favorable set of parameters Sfor Ag versus Ay, define 8
to be (Yminliy 0.c). Let S={6;=(6;, 710)}?:0 be a collection of parameters with components

equal to ¥, or 0 satisfying that for any 1< j, /' = p, Hﬁ, —,31'”2 < 47,2n;n, as defined in
Assumption C. Then for any 6, 6x € S, K(8;,6r) < anin < nECpyin(6%) by Assumption C.

-1 - n(r/s i (00)+log2 .
By Fano’s lemma, IS1 Z,Est(TZJ) < MG implying that

— Crmin(6°)+slog2
sup PA+A)>1- M’
{60:Coin (60)=R") slogp

bounded below by ¢~ with R*=stizeosy, This yields (12). For (13), it follows that & > /with
I=d, ez and g, = a-cs, for any & € By(u, /). This completes the proof.

4r

Proof of Proposition 1
We now verify Assumptions A—C. Note that

08 8)=2E (1 — expl— (67X - (ﬁO)TX)Z))

for linear regression, and /2(8, f°) is
1 2 1/2
5 (E(u”z((ﬂo)TX) — " PETX) 1 = (B X)) = (1 - ug" X)) 2),

for logistic regression, where u(s) = (1 + exp(s)) L.

Assumption A follows from [14]. Note that A=A" U A% and %j’”’ <1E(Xj), forl<j<p

and g€ R”. Thus

on*(8.8”)
V2B~ I Ber B)I=1| D =2

B

|S 27 Z E(X;]) < ZTpm]aijj.

jeAT l6=p* JjeAT*
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Then Assumption B is fulfilled with ¢y = &5 = 1 and a3 = 2 max; % ;.

To simplify (3), we derive an inequality through some straightforward calculations: with =

((Ba. 0) = (0, Bap))

C(B0) > o - . _ 2
Cmm(ﬂ)_ClﬁA:Agl;?AIS[)o'AO\A' EB, X, ﬁAoXAO)

. _1~T ~ .
>ct min  |Ag\A|™! > 92 min - Cmi .
lﬁA 5A¢A0,\A|$po| 0\Al B ZAUA()ﬁ lenBZ[B|S21)o,A0CB mm(ZB)

for some constant ¢}>0, because the derivative of | _ exp(—1x2) and (1 + exp(x)) "2 are
bounded away from zero under the compactness assumption. This leads to (14). By Theorem
2, the TLP has the properties (A)—(C) there, through tuning.

Finally, K(Bj.81) < cEB, X, —B,, XAA )> < r¥ain by the compactness assumption, where 7
= cmax(g; A EBaj XA/ pAkxAk) By Theorem 3, (14) except a constant af > 0 is
necessary for any method to be feature selection consistent. This completes the proof.

Proof of Proposition 2

To obtain the desired results, Theorems 1-3 are applied. First a lower bound of Gyin(6°) is
derived to simplify (3). Given the squared Hellinger distance

R26,0%)=1 — | e’ o= 11" @+ Q"))
de 222, , by strong convexity of —log defQ), c.f.,

[3], for any @€ © and a constant ¢ >0 dependlng on M,

“2log (1 - K6, 6%)) > —L(logdet (Q)+logdet (Q°))+logdet (Q+—9°)
> (@) Q- Q@) '@ - Q) 2 " AN\ Alemin(H)y?

min’

where A% and A are as defined in Section 4.2, and Q" is an intermediate value between Q
and Q% see A.4.3 of [3] of such an expansion. Moreover, Cin(6°) = infq 442,45 |41 109 (1
- IA(Q, Q9)), yielding (18).

For Assumption A, note that |Qd < (Q;Qx) < Mo; j# k, because Q > 0 and de/(Q) is
bounded away from zero. To calculate the bracketing Hellinger metric entropy, we apply
Proposition 1 of [22]. Let Q 4 be a submatrix, consisting of gy nonzero off-diagonal elements
of Q. Note that g(8, y) of Y is proportional to /1(84, Y) Il ac 16} y1), where

ho(0,, y)=(det(Q,))"*exp(—1(y, — 1) @, (y,—1,)). b (0, y)=det(Q;)exp(—3(y; — 17
and y4 and 84 are the sub-vectors of y and Bcorrespondlng to Qa. Tﬁen for some constants

ki>0; j= 1,2andany Q, Q € @,

18726, y) — 8", )| <klg®,y) - g6, y)|
< ki kP (mo@, Y) = ho(@,. y)i+ 3 Ih 0. y) — hi(0;, y>|) .
JEA®
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This implies that A(t, =) = ¢y(JA| log(2ep/h)+log((p —|A)) p/H)) by [14] for some constant ¢,
which in turn yields Assumption A. For Assumption B, note that, for j# k=1, -, p, for any
e€E 6,

on2@6,6%) . 1 o0
|6(Tjk)|zz|(1—h2(0,90))tr((2( +2 ) _Ql)Ajk)L

1

Cmin(+Cmin

which is upper bounded by | @)t | S s j# k=1, -, p. With

2 0.0%)
E 0

e oot | This implies Assumption B with
d=c=1and dy= . For Assumption C, note that the Kullback-Leibler for 6 versus 8is

A=A UAS 117(0.6") - 6+, 6")| =1

0
L(log @4 1r( QY )+ — 1" Q(u — 1°) — n), which is upper bounded by /2(6, &),
because the likelihood ratios are uniformly bounded. An application of Taylor’s expansion
as in verification of Assumption A yields that —2log(1 — #2(6,6°)) < ry2,., where r=
" cmax(H), leading to Assumption C.

The results in (18) follow from Theorems 1-3 with

112 (log(p — po)po)/*n~ /2= /e by solving (9). This completes the

n

En,po,p= mMax((pologp)
proof.
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Figure 1.

Truncated L function J;(|8{) with z= 1 in (a), and its DC decomposition into a dfference of
two convex functions J; and Jr2 in (b).
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