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Abstract
The ion size-modified Poisson Boltzmann equation (SMPBE) is applied to the simple model
problem of a low-dielectric spherical cavity containing a central charge, in an aqueous salt
solution to investigate the finite ion size effect upon the electrostatic free energy and its sensitivity
to changes in salt concentration. The SMPBE is shown to predict a very different electrostatic free
energy than the nonlinear Poisson-Boltzmann equation (NLPBE) due to the additional entropic
cost of placing ions in solution. Although the energy predictions of the SMPBE can be reproduced
by fitting an appropriatelysized Stern layer, or ion-exclusion layer to the NLPBE calculations, the
size of the Stern layer is difficult to estimate a priori. The SMPBE also produces a saturation layer
when the central charge becomes sufficiently large. Ion-competition effects on various integrated
quantities such the total number of ions predicted by the SMPBE are qualitatively similar to those
given by the NLPBE and those found in available experimental results.

Keywords
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INTRODUCTION
Numerous processes involving the folding, bending, melting and binding of highly charged
biopolyelectrolytes, which are vital for biological function, are strongly influenced by
changes in the ionic solvent environment. Non-specific salt-mediated electrostatic
interactions play an important role in these biomolecular processes because of their long-
range influence, and such interactions largely govern the complex salt dependent behavior of
the above mentioned processes. Therefore, physically realistic models of these long-range
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and salt-mediated electrostatic interactions are essential to predict the physiochemical
behavior of charged biomacromolecules in ionic solutions.

Because of its simplicity and ability to accurately predict many thermodynamic properties,
the nonlinear Poisson-Boltzmann equation, NLPBE,1-4 has been extensively used to model
the ionic solvent environment of biomolecules. Despite this success, it is subject to well
known approximations, such as omitting finite ion size and ion-ion correlation effects,
which prohibit its application to systems where such effects become pronounced such as
ionic layering, overcharging or charge inversion, like-charge attraction, and ion selectivity
inversion, all of which are associated with highly charged macroions, usually under high salt
conditions or in the presence of multivalent ions.5-11

Addressing these approximations within the Poisson-Boltzmann approach while retaining its
simplicity is therefore desirable. As a result, several investigators have formulated various
corrections to the NLPBE in order to include the effects of ion-ion correlations12, a dipolar
solvent with variable density13 and other effects14 in an effort to account for the above
mentioned intriguing experimentally observed phenomena.

Experimental studies have shown that even for small inorganic ions at intermediate to high
salt concentrations, ion size effects cannot be ignored in quantitative predictions of nanopore
selectivity at high surface charge densities15. In light of such experimental observations,
several methods have been developed to address the effects of finite ion size one of the first
being the use of an ion exclusion region or “Stern layer” surrounding the charged
biomolecule where ions are not permitted to penetrate.16 Others include using a cutoff on
the maximum local salt concentration,17 Coulomb gas with finite size,18 modified Poisson-
Boltzmann based on the generalized-Poisson Fermi formalism,19 lattice statistics
models20-22, equation of state coupled to a function integral representation for a hard sphere
fluid mixture approach,23 and Bogoliubov-Bom-Green-Yvon hierarchy by Outhwaite and
co-workers.24,25

In this paper, we chose to investigate the lattice-gas based method because it provides a
physically realistic model that can be extended to the case of nonuniform ion sizes, without
increasing the computational complexity of the original Poisson-Boltzmann solution. The
predictions of one such theory, the uniform ion-size modified Poisson-Boltzmann equation,
SMPBE,20,21,26 are compared with those of the traditional NLPBE with and without an ion-
exclusion region. The uniform ion-size MPBE is implemented for a low-dielectric spherical
cavity with a central charge embedded in an aqueous salt solution. The mathematical details
of this uniform ion SMPBE model are described in the Appendix, and its numerical
implementation discussed in the Methods section.

The most popular method of accounting phenomenologically for the excluded volume or
steric effects in the NLPBE relies on using a Stern layer, or ion-exclusion region. Its use is
motivated by reasoning that ions will not come within their van der Waal’s radius of the
biomolecule, an observation that has been confirmed by different Monte Carlo
simulations27,28 of ionic distributions around biomolecules. However, this approximate
model provides a limited representation of finite ion size effects, and, as will be shown later,
does not reproduce the predictions of the SMPBE. Some investigators29 have used a Stern
layer in conjunction with the SMPBE, but doing so is an effective overcounting of the
observed lack of ion centers within their atomic radius of the molecular surface because in
the SMPBE an ion with its atomic center at that distance would still contribute charge
density at the molecular surface because of the ion’s finite size.

Unfortunately, as will be discussed below, current experimental data29-32 is insufficient to
conduct a decisive validation of these models since they have generally measured global or
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integrated (over the entire space) properties, such as the number of bound counterions,
which are essentially identical for all of the candidate models. To determine which of these
competing methods is best, experimental probes of local properties must be devised to
measure, say, the forces between charged biomolecules at short separation distances, whose
predictions would be sensitive to modeling choice

METHODS
Nonlinear Poisson-Boltzmann Equation

In the NLPBE, the normalized electrostatic potential ϕ = eφ / kbT of a biomolecule
immersed in an ionic solvent obeys:

(1)

where ε(r) is the dielectric constant, e is the protonic charge, kb is the Boltzmann constant
and T is the absolute temperature of the ionic solution. The charge density ρNLPBE (r) in the
solute, ion-exclusion, and solvent regions (respectively, Ω1, Ω2, and Ω3) is given by:

(2)

In eq 2 Qi is the discrete charge of the solute at position ri, and  and  are the valence and
the bulk concentration for both the coion and the counterion, respectively. The region Ω2 is
frequently modified by setting ρion to 0 in the vicinity of the molecular surface, creating the
Stern layer or ion-exclusion region.

In the case of small electrostatic potentials, ϕ≪ 1, eq 1 in region Ω3, reverts to the well
known linearized PBE:

(3)

where the Debye-Hückel screening parameter, κ, is given by

 and εext is the dielectric constant of the
solvent.

The Uniform Ion Size Modified Poisson-Boltzmann Equation
To account for the uniform finite size of ions, the NLPBE can be modified as in the lattice
gas model.20 In this model, each ion is assumed to occupy a cube of volume a3 where a is
twice the radius of the ion, rion, and all of the ions in the solution have equal radii. The
mobile ion density in the exterior region Ω3 is therefore modified to20:

(4)

where , and the volume exclusion factor of the i’th ion is given by:
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(5)

In both the NLPBE and the SMPBE, the electrostatic free energy Felec can be expressed as
the sum of three terms. In the SMPBE, this can be written as:

(6)

where the first term is the electrostatic stress, and the third term, denoted by ΔΠSMPBE, is
the osmotic pressure whose NLPBE counterpart is,

(7)

which is readily obtained in the limit a→0. Note that ΔΠSMPBE, unlike ΔΠNLPBE, is not
separable into contributions from individual ions because these contributions combine
nonlinearly in the logarithm. This means that the well-known relationship between ΔΠ and
the derivative of the electrostatic free energy with respect to log(cb) available for the
NLPBE,

(8)

does not hold in the SMPBE. However, an expression for this derivative is nevertheless
available and is given by (see Appendix):

(9)

A simple relationship can be found between FSMPBE and FNLPBE in the limit of small ξ by
writing:

(10)

In the limit of ξ(r) << 1 eq 10 simplifies to:

(11)

where this integral is taken over Ω3, and it is assumed that ξ(r) = a3f(r), where f(r) is
independent of a to first order (see Appendix). This approximation does not hold when a
saturation layer of counterions forms near the surface of the sphere, so eq 11 will not apply
in these cases.

In ionic solutions, a charged biomolecule alters the distribution of counter- and co- ions by
attracting a cloud of counterions and repelling coions. The number of excess counterions
attracted to the biomolecule, νk, is experimentally accessible29,30. Given a solution to either
the NLPBE or the SMPBE, this number can be obtained from the following expression:
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(12)

Numerical Implementation of the 1D Uniform Ion SMPBE
Here the case of a low-dielectric spherical cavity containing a central charge and surrounded
by ionic solution is considered. This simple spherical configuration is directionally invariant,
with the solution depending solely on the radial coordinate r and with origin at the center of
the low-dielectric spherical cavity. Therefore, eq 1 reduces to the 1D NLPBE equation:

(13)

A discrete approximation to this equation is easily developed using either finite difference or
finite element methods and results in high resolution solutions. The following results use an
approximation1 previously developed for solving the NLPBE, extended here by modifying
the source term to account for uniform finite ion size as in eq 4 and by incorporating the
boundary treatment described in Boschitsch and Fenley,33 which applies to both the linear
and the nonlinear PBE and requires only that the potential at the outer boundary be small,
∣ϕ∣<<1. Correction terms are also added to the calculated electrostatic energies and salt
gradients to account for contributions from outside the computational domain. These terms
can become important, especially at lower salt concentrations.

The calculations presented here used 5000 nodes and an outer boundary placed at 200 Å
from the surface of the sphere of radius 20 Å. The solution was considered to have
converged when the maximum change in potential at a grid node was less than 10−5*min{1,
∣ϕs∣} where ϕs is the surface potential. To verify that results were both converged and
accurate, additional calculations were conducted for randomly selected cases to ensure that
no significant changes occurred when: (i) the mesh resolution was halved and (ii) when a
smaller convergence criterion was used. The derivatives of the electrostatic free energy with
respect to bulk concentration and with respect to ion size were also verified by using finite
difference method.

RESULTS
Unless specified otherwise all results were generated for a spherical cavity of radius 20 Å
containing a central charge of −50e. The ion radius is equal to one half of the size of the
lattice spacing (a) used in the SMPBE. It is set to values between approximately 1 to 8 Å.
The Stern layer is not invoked for the the SMPBE calculations. However, as noted in the
text below for some NLPBE calculations a Stern layer is employed. The dielectric constant
was set to 78.5 in the exterior region (Ω2⋃Ω3) and 4 inside the molecule (Ω1). All
calculations were performed at 298.15 K.

Ion Competition Effects on Global Thermodynamic Properties
The behavior of many highly charged biomolecules such as nucleic acids is highly
influenced by changes in ionic conditions due to the presence of neutralizing counterions
that form a characteristic ionic cloud surrounding the charged biomolecule. Moreover, many
vital biological processes occur in salt mixtures and involve changes in competition effects
between monovalent and multivalent ions.34,35
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Because the SMPBE models ions differently than the NLPBE, its predictions of competition
effects between different ion species may differ from those of the classical NLPBE. This is
investigated in Figure 1 which plots FSMPBE against [NaCl] for different values of [MgCl2].
For increasing [MgCl2], the resulting curves exhibit gradual flattening with decreased
slopes. This reflects the Mg+2 counterions competing the Na+ ions away from near the
surface of the molecule. These curves have the same qualitative form as similar curves for
the NLPBE, as shown by Shen and Honig,2 Boschitsch and Fenley,1 and Figure A.1. in the
Supporting Information, and therefore there is no clear difference between the ion
competition effects predicted by the NLPBE with or without the Stern layer and those
predicted by the SMPBE at least for the integrated quantities considered here.

That the SMPBE produces similar predictions for ion competition effects on global
thermodynamic properties of the low-dielectric spherical cavity to those of the NLPBE can
be further demonstrated by examining Figure 2, where υMg, υNa, and υCl are plotted against
log([MgCl2]) for NaCl = 0.1 M. These curves are qualitatively similar to the comparable
curves generated by Lipfert and co-workers26,30, which included the three-dimensional
structure of actual biomolecules. This behavior indicates that, as they discussed, the
inclusion of accurate three-dimensional structures does not significantly change the
predictions of ion competition effects for such integrated quantities. Once again, the ion
competition effects of thermodynamic parameters predicted by the SMPBE are in close
agreement with the NLPBE’s predictions. In these calculations and others we have carried
out (though by no means exhaustive), we have generally found that both the NLPBE’s and
SMPBE’s predictions of global or integrated quantities are in good agreement. However, the
ion sizes considered here (sodium and magnesium), are comparatively small (radii are on the
order of 1 Å), whereas, as was pointed out by Chu and co-workers29, if a much larger ion
radius is considered (on the order of 10 Å), the equivalent ion competition curves of global
properties predicted by the SMPBE are found to differ significantly from those of the
NLPBE. Exploring the validity of the SMPBE may therefore be possible by conducting
experiments with much larger ions such as polyamines (spermine and spermidine).19 Note
that increasing the charge on the biomolecule does not seem to increase the difference
between the predictions of the traditional NLPBE and those of the SMPBE, as is evident
from the Figure A.2. in the Supporting Information Materials. Increasing the charge of the
biomolecule therefore does not appear to be a viable experimental method for investigating
the effects of the SMPBE. Although the NLPBE results in this figure use a Stern layer, the
figure appears nearly identical when a Stern layer is not used, so the presence or absence of
a Stern layer does not alter these conclusions.

Electrostatic Free Energy and its Salt Sensitivity
As mentioned before, any processe (e.g., folding, stability, binding) involving highly
charged biopolyelectrolytes, are affected by changes in salt concentration36. Here we
examine how the electrostatic free energy and its salt sensitivity obtained with the SMPBE
differs from that of the standard NLPBE.

The electrostatic free energy, FSMPBE differs from FNLPBE due to the additional entropic
energy cost of displacing solvent when placing ions in solution and the different electrostatic
potentials predicted by the SMPBE. Eq 11 indicates that to first order the difference,
FSMPBE−FNLPBE is proportional to a3 under conditions where no saturation layer forms.
This is illustrated in Figure 3 where log(FSMPBE−FNLPBE) for the low dielectric spherical
cavity in a 1:1 salt solution is plotted against log(rion) (a=2rion) for different concentrations
of [NaCl]. The curves in this plot are linear, and their slopes are very close to the expected
value of 3. Interestingly, although FSMPBE depends upon [NaCl], FSMPBE−FNLPBE is
essentially independent of [NaCl] in the absence of a saturation layer. Despite the high
charge of the sphere, the difference between the electrostatic energies predicted by the
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SMPBE and NLPBE is less than kbT. This indicates that distinguishing between the SMPBE
and NLPBE predictions on the basis of experimental solvation free energies is unlikely.

One important difference between the NLPBE and the SMPBE can be seen in the osmotic
pressure term, ΔΠ. In the NLPBE, ΔΠ is equal to −dFNLPBE / d log(cb) as shown by Sharp
and co-workers.37 This relationship does not hold in the SMPBE because adding an ion to
the solvent displaces solvent molecules, introducing an additional entropic cost to ΔΠ. This
additional entropic cost of placing an ion in solution explains the result, discussed by Chu
and co-workers29, that the NLPBE underestimates the preference that biomolecules have for
magnesium counterions over sodium counterions. Because the magnesium ions have
roughly the same size as the sodium ions, placing one magnesium ion costs less entropy than
placing two sodium ions, thereby increasing the predicted affinity of biomolecules for
magnesium in the SMPBE. The additional entropic cost of placing ions introduced in the
SMPBE means that, although dFSMPBE / d log(cb) depends only weakly on rion, ΔΠ is very
sensitive to changes in this parameter. This is clear from Figure 4, where ΔΠSMPBE and
−dFSMPBE / d log(cb) are plotted against ion size rion. ΔΠSMPBE = −dFSMPBE / d log(cb)
when rion = 0, but quickly diverges for larger values of rion, while dFSMPBE / d log(cb)
remains relatively constant.

Traditionally, a Stern layer has been added to the NLPBE to approximate ion size effects by
reasoning that the main effect of a finite ion size is to exclude ions from the immediate
vicinity of the charged biomolecule. To test this assertion, both FSMPBE as a function of rion
and FNLPBE as a function of the thickness of the Stern layer are plotted in Figure 5. The two
electrostatic energies diverge with increasing rion, because the NLPBE with a Stern layer
overestimates the change in electrostatic free energy with ion size. The predictions of the
salt dependence of the free energy by the two models are also different, as is clear from
Figure 6, where the dependence −dFSMPBE / d log(cb) on ion size is given with the same
parameters as in Figure 5. While it may be possible to adjust the Stern layer size to match
the SMPBE’s predictions, how to perform this adjustment in an a priori manner for general
bimolecular configurations and ionic conditions is not obvious. Note further that the
disparities in the slopes of the curves in Figures 5 and 6 at a=0 point to a fundamental
physical modeling discrepancy in how finite ion size is accounted for. Specifically, the
SMPBE model indicates an O(a3) dependence on F near a=0 whereas the NLPBE model
with a Stern layer reflects an O(a) behavior. The former variation is expected on the basis of
a volume-based exclusion effect whereas the latter behavior reflects the distance-based
exclusion characteristic of the Stern layer.

It will be important to examine if the salt dependence of various thermodynamic properties
of biopolyelectrolytes in salt mixtures can be better explained or predicted using the more
accurate SMPBE, with non-uniform ion size, as opposed to using the NLPE with the Stern
layer. Future studies should address this point for realistic biopolyelectrolytes for which
thermodynamic salt dependent data is available in the literature.

Saturation Layer
One feature that the SMPBE is able to capture is the presence of a saturation layer around
the biomolecule. Essentially, as the local potential increases, the density of ions reaches a
nonzero saturation concentration, which it cannot exceed because of the finite size of the
ions. This contrasts with the standard NLPBE, with or without the use of Stern layer, which
allows the concentration of ions to increase without bound and reach physically implausible
values in the vicinity of the charged interface. This behavior is illustrated in Figure 7, where
the local concentration of counterions is plotted as a function of the distance from the
surface of the low-dielectric spherical cavity. In this case the 1:1 salt solution has
concentration [NaCl] = 0.01 M. The ion radius is 3.5 Å and the central charge of the
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spherical cavity is varied. For a sufficiently large central charge, the counterions form a
layer with a saturated ion density before falling off monotonically and rapidly to the bulk ion
concentration. This same behavior was captured by Outhwaite and co-workers using a more
sophisticated theory.38 Interestingly, this figure indicates that the saturation layer will form
even at very low salt concentrations (0.01M) provided the charge of the sphere is
sufficiently large, and indeed, a saturation layer will develop at all nonzero salt
concentrations for sufficiently high central charges. This behavior agrees with observations
that have been made in other studies for other geometries, including charged cylinders and
parallel plates.21,22,39 Future experimental, simulation and theoretical studies should
confirm the existence of this saturation layer and examine its implications to other physical
properties of arbitrary shaped biopolyelectrolytes under varying ionic conditions, including
salt mixtures.

CONCLUSIONS
The influence of finite ion size was assessed on the basis of the SMPBE applied to a low-
dielectric spherical cavity containing a central charge and compared against the standard
NLPBE in the context of competition effects between ion species and the salt-dependence of
the electrostatic free energy. It is found that the predictions of ion competition effects given
by the SMPBE do not differ significantly from those of the NLPBE for the global quantities
here considered. However, the SMPBE predictions may differ from those of the NLPB for
ion distribution profiles of highly charged 3D biomolecules in salt mixtures, especially at
and near to the highly charged 3D biomolecular surface.

Although the SMPBE does not yield significantly different ion competition effects than the
NLPBE, it does produce different electrostatic free energy predictions. In particular,
although dFSMPBE / d log(cb) closely matches the predictions of the classical NLPBE, ΔΠ
gains an additional entropic energy term from the displacement of solvent upon the
placement of ions in solution that is very sensitive to changes in the ion radius. This means
that, unlike in NLPBE, ΔΠ predicted by the SMPBE is not equal to −dFSMPBE / d log(cb) as
shown in the appendix. Unfortunately, the electrostatic free energy is not directly accessible
to experiment, making it impossible to examine the difference between the SMPBE’s
predictions of the free energy and those of the NLPBE.

The SMPBE predicts the formation of a saturation layer. When the central charge on the
biomolecule is large enough to create a field that would normally cause the local ion
concentration predicted by the NLPBE to exceed the saturation concentration, the SMPBE
instead shows the presence of a saturation layer for various geometries including the charged
sphere, cylinder and infinite plate.20,22,39,40

We also sought to determine whether these effects of the SMPBE could be approximated by
the NLPBE with a Stern layer, but, as we demonstrated, these two models predict very
different behaviors. Although the SMPBE does not include such effects as ion-ion
correlations, it has a more rigorous foundation in statistical mechanics than the NLPBE with
and without a Stern layer, and it therefore appears to be a preferable method for including
the effects of ion size. The ion distributions can be different to that of the uniform SMPBE
when ions with different charges and radii are present in the ionic solution. By using a non-
uniform ion SMPBE based on the generalized Poisson-Fermi approach, Tresset and co-
workers41 predicted ion stratification around a uniformly charged plane. The proper
modeling of biopoelectrolytes in salt mixtures will require non-uniform ion size modified
PB solvers. In order to verify the robustness of such non-uniform SMPB solvers will require
the availability of pertinent experimental and simulation data. Unfortunately, comparing the
predictions of the SMPBE to experimental findings was impossible in the present paper
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because the code used could not use a realistic three-dimensional molecular surface. This
capability will be implemented shortly, and the results will be presented in a future
publication. However, the results presented in this paper should also pertain to calculations
performed on realistic molecular surfaces.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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APPENDIX

Electrostatic Free Energy
The electrostatic free energy, FSMPBE, of the SMPBE model can be expressed as the integral
over the entire domain:

(14)

where the first term is the electrostatic stress, the third term is the excess osmotic pressure
term, ΔΠ, ε is the dielectric constant, φ is the electrostatic potential, ρf is the biomolecule
charge distribution, and ΔΠ is the excess osmotic pressure of the mobile ion cloud. In the
SMPBE, ΔΠ is given by20:

(15)

where the domain of integration in eq 15 is the region Ω3. C is the fraction of the local
volume taken up by ions in the presence of the biomolecule, and C0 is the same quantity in
the absence of the biomolecule:

(16)

(17)

Here  and  are the local concentrations of the k’th ion species in the presence of the

biomolecule, and  and  are the local concentrations in the absence of the biomolecule.

In the SMPBE,  is given by20:

(18)
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where  and

(19)

where  and  are the valences of ions A and B.

Salt Gradient of the Electrostatic Free Energy

The salt gradient of the electrostatic free energy,  is defined as the derivative of the
free energy with respect to the bulk concentration of salt. To compute this quantity, first take
the variation of the electrostatic free energy term in eq 14.

(20)

From this equation, the salt gradient of the electrostatic free energy is:

(21)

where the ion distribution ρion is given by:

(22)

and the surface integral term is given by:

(23)

The second term of eq 21 is zero because it is a restatement of the PBE. The fourth term can
be rewritten by combining eqs 16-19 as:

(24)

Therefore the salt gradient of the electrostatic free energy for the i-th ion species is given by:

(25)

By assuming that the charge neutrality condition for salt AxBy requires that , and

that the salt completely dissociates in the solvent, we get .

By calculating the derivative of ξ(r) with respect to cbi and using eq 22, further
simplification is possible:
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(26)

where the salt gradient of the electrostatic free energy contains a normalization constant
1+ξ(r).

At finite salt concentrations, the surface integral term, Si, is zero because the exponential
decay in the potential guarantees that the integrand is zero at infinity, but in the limit of zero
salt concentration, this is not true and Si diverges. This difficulty is avoided by considering
instead the derivative of the electrostatic free energy with respect to log(cb) (cb

½ is another
useful choice yielding finite derivatives) to obtain:

(27)

The product cbiSi now vanishes as cbi→0. To prove this, note that at a large distance, R, the
potential is sufficiently small that the local behavior in the region r>R is governed by the
linear PBE. Thus the potential solution behaves as:

(28)

where B is a constant and

(29)

The derivative of φ with respect to κ is given by:

(30)

and its derivative with respect to r is given by:

(31)

Inserting into eq 23:

(32)

The last term in braces is bounded by 1 so that:
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(33)

The derivative of κ with respect to cbi is:

(34)

so that

(35)

, where  Substituting into the result for cbi∣Si∣ confirms the
convergence with zero concentration, cbi.

Dependence of the Electrostatatic Free Energy on Ion Size
At small salt concentrations, the difference between the free energy predictions of the
SMPBE and those of the NLPBE are dominated by the additional entropic cost of placing an
ion in solution in the SMPBE model. By considering the derivative of electrostatic free

energy with respect to a, , a formula relating FSMPBE to FNLPBE in the limit of small
salt concentrations can be derived as follows:

(36)

where .

Because the electrostatic potential has the asymptotic form , M=0 and the second
term on the right side of eq 36 is zero because it is the SMPBE equation. By calculating the
derivative of ξ(r) with respect to a and using eq 15, eq 36 can be further simplified to:

(37)

By considering the limit of small ξ(r), we can derive a relationship between FSMPBE and
FNLPBE. The Taylor series expansion of eq 37 for small ξ is:

(38)

Expanding ξ(r) to lowest order gives ξ(r) = a3f(r), where f(r) does not depend on a (see
Supplementary Information Materials). By retaining only the ξ2(r) term, this equation
becomes
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(39)

Integrating:

(40)

demonstrating that (FSMPBE−FNLPBE) is proportional to a3.
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Figure 1.
The electrostatic free energy (in kbT) computed with the uniform ion size-modified Poisson-
Boltzmann equation, FSMPBE, of a low-dielectric spherical cavity of radius 20 Å and a
central charge of −50e at concentrations of 2:1 salt, [MgCl2], of 0, 0.01, 0.02, 0.05, and 0.1
M and an ion radius of 1.5 Å is plotted against the logarithm of the concentration of 1:1 salt,
[NaCl].
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Figure 2.
The number of bound Mg2+, Na+, and Cl− ions (νMg, νNa, and νCl ) for a mixed salt
solution, with an ion radius of 1.4 Å and1:1 NaCl salt concentration fixed at 0.1 M,
calculated with both the nonlinear Poisson-Boltzmann equation (Δ,□,o), and the size-
modified Poisson-Boltzmann equation (×, ◇, +) are plotted as a function of MgCl2salt
concentration ([MgCl2]). The NLPBE calculations were performed with a Stern layer of 1.4
Å thickness.
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Figure 3.
The logarithm of the difference between the electrostatic free energy (in units of kbT) given
by the uniform ion size-modified Poisson-Boltzmann equation and that given by the
standard nonlinear Poisson-Boltzmann equation without a Stern layer,
log(FSMPBE−FNLPBE), is plotted against log(rion) for 3 different values of NaCl
concentration. The slopes of the curves are 3 to within 0.67%.
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Figure 4.
The excess osmotic pressure, ΔΠSMPBE computed using the uniform ion size-modified
Poisson-Boltzmann equation, SMPBE, and its derivative with respect to the logarithm of the
bulk 1:1 salt concentration, −dFSMPBE / d log(cb), are plotted against ion size rion, where
rion, is equal to one half of a, the size of the lattice spacing used in the SMPBE theory.
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Figure 5.
The electrostatic free energy predicted by the uniform ion size-modified Poisson-Boltzmann
equation, FSMPBE, as a function of the ion radius, rion, and the electrostatic free energy
predicted by the standard nonlinear Poisson-Boltzmann equation, FNLPBE, as a function of
the thickness of the Stern layer.
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Figure 6.
The derivative of the electrostatic free energy predicted by the uniform ion size-modified
Poisson-Boltzmann equation with respect to the logarithm of the bulk concentration of 1:1
salt, −dFSMPBE / d log(cb), as a function of the ion radius, rion, and the equivalent quantity
predicted by the classical nonlinear Poisson-Boltzmann equation, −dFNLPBE / d log(cb), as a
function of the thickness of the Stern layer.
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Figure 7.
The local concentration of Na+, c(r), outside a low dielectric spherical cavity in a 1:1 salt
solution with [NaCl] = 0.01 M and an ion radius of 3.75 Å for different central charge
values.
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