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Abstract
A common problem in image-guided radiation therapy (IGRT) of lung cancer as well as other
malignant diseases is the compensation of periodic and aperiodic motion during dose delivery.
Modern systems for image-guided radiation oncology allow for the acquisition of cone-beam
computed tomography data in the treatment room as well as the acquisition of planar radiographs
during the treatment. A mid-term research goal is the compensation of tumor target volume
motion by 2D/3D registration. In 2D/3D registration, spatial information on organ location is
derived by an iterative comparison of perspective volume renderings, so-called digitally rendered
radiographs (DRR) from computed tomography volume data, and planar reference x-rays.
Currently, this rendering process is very time consuming, and real-time registration, which should
at least provide data on organ position in less than a second, has not come into existence. We
present two GPU-based rendering algorithms which generate a DRR of 512 × 512 pixels size from
a CT dataset of 53 MB size at a pace of almost 100 Hz. This rendering rate is feasible by applying
a number of algorithmic simplifications which range from alternative volume-driven rendering
approaches – namely so-called wobbled splatting – to sub-sampling of the DRR-image by means
of specialized raycasting techniques. Furthermore, general purpose graphics processing unit
(GPGPU) programming paradigms were consequently utilized. Rendering quality and
performance as well as the influence on the quality and performance of the overall registration
process were measured and analyzed in detail. The results show that both methods are competitive
and pave the way for fast motion compensation by rigid and possibly even non-rigid 2D/3D
registration and, beyond that, adaptive filtering of motion models in IGRT.
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1 Introduction
Radiation therapy is a common and indispensable method of treatment in the management of
many malignant diseases including cancer of the lung, breast and prostate. A dose of 50 – 80
Gy is applied, destroying all cells in the tumor target volume. Given these circumstances a
precise irradiation plan and the subsequent monitoring of dose escalation is mandatory. The
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basic principles of radiation biology require that the dose has to be delivered in fractions,
which are applied on a more or less daily basis. Periodic as well as aperiodic motion and
changes in anatomy complicate this task obviously; therefore, it is necessary to include large
safety margins around the target volume, imperilling surrounding healthy tissue. Sometimes,
tumor location and shape render radiation therapy treatment even unfeasible.

It is the aim of image-guided radiation therapy (IGRT) to increase the precision of
irradiation utilizing additional information from intra-fractional imaging [1-5]. Methods for
retrieving this additional image information range from ultrasound [6,7], magnetic
resonance imaging [8] and, most important, kilovoltage and megavoltage x-ray imaging,
either by means of planar radiography [9,10] or 3D modalities [11,12]. Non-rigid
registration [13] techniques can be employed to simulate the deformation of the tumor
[14,15] between treatment sessions. A common feature of most of the presented techniques
is the fact that these are methods for patient setup–therefore, they are used for positioning
the patient properly prior to each treatment session, and not for motion compensation.

For intrafractional motion compensation, modelling of breathing motion [16-18] is a topical
field of research. Here, a typical patient-specific motion pattern is applied to simulate the
motion of the tumor target volume (usually the lung or the liver) during irradiation. The
identification of fiducial markers implanted into the tissue neighboring the tumor with
planar x-ray imaging [9,10] or the implantation of passive electromagnetic transponders [19]
is an alternative method to achieve motion monitoring. The increase in dose delivery
precision is, however, accompanied by additional clinical effort and trauma caused by the
implantation. Furthermore, metallic material such as the passive transponders or markers
renders magnetic resonance imaging problematic due to extinction artifacts [20].

Real-time non-invasive tumor motion compensation and modelling is an open research
challenge. While patient-specific motion models provide a good starting point, it is of course
necessary to monitor the correctness of the modelled tumor trajectory; in lung cancer
therapy, this can be accomplished by the aforementioned invasive methods, or by optical
tracking of extrinsic landmarks attached to [21] or intrinsic features on the patients surface
[22]. A classic approach from control theory towards driving a motion model with minimum
latency would be the application of a predictive Kalman filter where a prediction value is
provided by the model, whereas tracking of the tumor target value adds the corrector part.

2D/3D registration [23-29], the derivation of six degrees of rigid body motion from an
iterative comparison of perspective volume renderings simulating x-ray images (also called
digitally rendered radiographs or DRRs) and real x-ray data taken during irradiation might
provide a non-invasive method to track tumor motion. However, the massive computational
effort connected to DRR rendering does still result in typical runtimes of 30 to 100 seconds
until the registration process is completed [28]. It is therefore straightforward to use the
computational power of a modern graphics processor unit (GPU) to increase algorithm
performance. A possible goal is a typical registration time of 0.2 s, which corresponds to the
image update rate from modern x-ray units directly attached to the linear accelerator
(LINAC) delivering the treatment beam. In [30], we presented a GPU-based implementation
of an already efficient volume-driven splat rendering method [31]. In [30], a rendering time
of approximately 25 ms was achieved. We have refined this method using a more efficient
implementation, and it was compared against a further development of the sparse raycasting
method presented in [25].

Spoerk et al. Page 2

Z Med Phys. Author manuscript; available in PMC 2012 June 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



2 Materials and Methods
2.1 Wobbled Splat Rendering

The wobbled splat rendering algorithm was first proposed by in [31] as a high-performance
variance of splat rendering. It achieves anti-aliasing by stochastic modification of the focal
spot’s or every voxels position instead of using footprints to simulate the splatting of three-
dimensional kernels [31,32].

Wobbled splat rendering iterates over all voxels of a volume and performs a geometric
projection of the form

1

where  is the original voxel and  is the projected voxel. P is projection matrix, and V is
a volume transform given in homogeneous coordinates. In order to avoid discretization
artifacts and the considerable computational effort of footprint computation as used in
conventional splat rendering, a stochastic motion of the virtual focal spot is introduced.
Further details about wobbled splat rendering are given in [30,31].

The direct implementation of the wobbled splat rendering suffers from two major problems.
First, the random number generation for introducing wobbling is a deterministic process and
the memory is not used in an efficient way. To initiate the processing of the voxel data, this
data is transferred once for each rendering from the CPU to the GPU. For datasets consisting
of several millions of voxels, this can easily result in an overhead of several milliseconds
just for the data transfer. By utilizing the OpenGL concept of vertex buffer objects, it is
possible to skip this retransferring. The voxel data that do not change in the course of
registration are stored directly in the video memory of the graphics card and only changing
parameters like transformation matrices are retransferred for every rendering.

For efficient wobbling of the focal spot, precalculated Gaussian distributed random numbers
are stored in a three dimensional texture to be used as a lookup table. Because one texture
for the whole volume would require too much memory, we used a smaller texture which is
applied to several parts of the volume. This texture can then be fetched during the DRR
generation to access the random numbers.

2.2 Ray Casting
Ray casting is the most popular algorithm for volume rendering in general and DRR
generation in particular [26,29,33]. One widespread used implementation of ray casting for
the GPU is to utilize a bounding structure – a simple geometric body that encloses the voxel
volume – to generate rays that are used to traverse and sample a volume in form of a texture.
By using a special color encoding, it is possible to calculate the ray for every pixel of the
DRR with this structure. In a first pass, the back faces of the volume are rendered. In a
second pass, the corresponding front faces are rendered and the faces are used to calculate
the ray by subtracting the colors, which are represented by single precision numbers –
therefore, the distance between front and back faces can be directly derived from the color
coding. This ray is then used to traverse the volume data that is stored in a three-dimensional
texture. Along the rays, the volume data is sampled in certain intervals and composed to the
final intensity for the current pixel.

One concept for improving the performance of GPU based ray casting is the use of bounding
structures that are as small as possible [33], which implies that these bounding structures are
more or less surface representations of the volume data. To generate such refined bounding
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structures, a volume to surface transformation is required. The most known algorithm for
this purpose is marching cubes, which has proved to produce models of too high complexity
for the use as bounding structures. Therefore, the simpler cuberille method was utilized in
this work [34]. For every voxel that contains data above a threshold, quads representing the
voxels sides are generated to all neighboring voxels that do not contain data above the
threshold. This allows to fast generate a closed surface of the volume. This surface is
blocky, but since the surface is not rendered itself, this does not influence the quality of the
DRRs. To produce more coarse grained bounding structures, it also possible to only
transform groups of voxels to surface cubes. Examples of cuberille refined bounding
structures of different granularity are shown in Fig. 1.

2.3 Optimizing DRR rendering for fast 2D/3D registration
The strengths of wobbled splat rendering are evident. First, it is a very simple method that
can be easily parallelized on a GPU since it consists of subsequent matrix computations. The
introduction of perspective is easily achieved by modifying the projection matrix and does
not cause additional computational effort. Second, being a volume-based rendering
technique, it is possible to reduce the number of voxels to be rendered in a similar manner to
the aforementioned cuberille method by introducing a minimum rendering threshold.

Another concept for improving the performance of GPU based ray casting is sparse
sampling. For 2D/3D-image registration using intensity based merit functions, it is possible
to calculate the similarity measure on only a subset of the image content, as long as this
subset was chosen stochastically [25]. In [25], only a small number of rays with randomly
chosen endpoints in the DRR was used to sample a joint histogram, which was used to
compute a mutual information (MI) merit function. Another recently introduced merit
function named stochastic rank correlation (SRC) [28] also allows for the computation of a
similarity measure from a subset of the rendered DRR; as opposed to MI type merit
functions, it is not suitable for multimodal image fusion but is invariant to monotonous shifts
in image intensity and gives more robust and accurate results compared to other merit
functions. For this series of experiments, we have adopted a ray casting algorithm utilizing
bounding structures and sufficient GPU use. Examples for sparsely sampled DRRs with a
different amount of image content are shown in Fig. 2.

2.4 Evaluation and Implementation
Evaluating the performance of the rendering approaches was done by rendering two test
datasets of CT and x-ray data provided with known gold standard positions. These gold
standard parameters were modified in the interval [−180° … 180°] for all three axes with a
step size of 12°. The used datasets were a section of a human spine [35] and a pig skull
including the soft tissue [37]. Both CT and x-ray datasets were reduced to 8 bit depth after
appropriate windowing for reducing the amount of data to be transferred to the GPU and
back, and were rendered with a low and a high threshold to extract additional properties. The
mean rendering times and their standard deviations for these measurements are shown in
Table 1. The test system was an Intel(R) Core(TM)2 Duo T7700 CPU @2.40 GHz with 4
GB Ram running Kubuntu 9.10 ×64, which uses the 2.6.31 Linux kernel. A NVIDIA
Quadro FX 570M graphics card with 512 MB video memory was used with the NVIDIA
190.18 driver for all rendering procedures.

3 Results and Discussion
Fig. 3 presents some DRRs rendered with the different rendering methods compared by this
work for visual analysis. These images show that wobbled splat rendering produces DRRs
containing more noise than ray casting, which is a direct consequence of the stochastic
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routines that avoid aliasing artifacts in this volume-driven method. Also the contours of ray
casting are sharper and overall image blur is lower. Therefore, in general, ray casting seems
to produce DRRs of better quality. However, since the DRRs are not used for visualization,
it is questionable whether an influence on registration performance is evident.

Table 1 shows rendering time measurements for the different rendering approaches with
differing optimization techniques. These values represent the mean and the standard
deviation of 27000 renderings created with differing rotational parameters.

Several properties of the different rendering approaches can be extracted from Table 1. For
wobbled splatting, the most important improvement in rendering time is achieved by
utilizing vertex buffer objects to optimize the memory management. This technique allows
for an acceleration of the algorithms by a factor of 2 in comparison to the implementation by
[30]. Furthermore, it can be shown that using precalculated textures with random numbers
instead of the deterministic approach of [30] for introducing stochastic motion to the splat
rendering do not improve the rendering time significantly.

In this implementation, ray casting is faster than wobbled splat rendering for almost all
setups. Only if the volume to render contains a very sparse distribution of non-zero voxels,
wobbled splat rendering performs considerably better than ray casting. The refinement of the
bounding volume has proved to not always accelerate the rendering. Depending on the used
dataset, the threshold and the pose and the size of the cuberille generation kernel, this
method can result in large improvements (see Table 1 for the spine dataset with a threshold
of 70) or to a increase of the rendering time (see Table 1 for the pig dataset with a threshold
of 10). The problem is that using a more detailed bounding structure requires more
processing by the graphics hardware. Table 2 also shows that sparse sampling of the DRR
allows to speed up the whole rendering process for all datasets and any threshold. The
results illustrate that the introduction of a rendering threshold is of crucial influence on both
methods: in the case of splat rendering, the number of voxels to be rendered depends
directly on the threshold [30,31] since it is a volume driven method; in the case of the
proposed raycasting method, the shape of the bounding structure and therefore also the
computational effort is determined by the same threshold.

The results of registrations utilizing different rendering methods from Table 2 revealed the
different properties of the investigated approaches. While using ray casting allows to reduce
the overall registration time, it shows that the quality of registration does not increase in
comparison to wobbled splat rendering. Refining the bounding structure for ray casting
using the cuberille approach can reduce the performance, but seems on the other hand to
improve the quality of the registration. Sparse sampling of the rendering process has proved
to not only improve the rendering time, but also the registration time and the quality of the
overall process. The image data were acquired by using a rather large gold standard dataset
for 2D/3D registration featuring CT as well as x-ray data with known ground truth
registration parameters [37]; the CT scan of this dataset, for instance, features 67 MB.
Therefore the registration time became quite considerable, especially for the purpose of
realtime tumor motion compensation. However, in a recent series on clinical data, the
appropriate choice of the region-of-interest for registration yielded registration times in the
range of 0.5 seconds. The registration experiments were carried out after a random
displacement of 25 mm from a known ground truth position defined by fiducial markers
using a local optimization routine. A rendering threshold of -540 HU was chosen, which is
known from an extensive series of experiments to give good results without sacrificing too
much information on soft tissue [38]. Details on the evaluation procedure can be found in
[38]. It turned out that the DRR rendering – which was considered a major source of
computational labor in older publications [23-25] – only requires 23 – 43% of the
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computation time for a single iteration. It is therefore evident that in a next step, the merit
function evaluation should also be carried out on the GPU in order to further improve
registration performance.

4 Conclusion
It is shown that modern programming techniques, alongside with efficient implementation
of rendering paradigms and similarity function evaluations, allow for generation of DRRs
suitable for high-speed 2D/3D registration. The combination of sparse ray sampling and
SRC or MI based similarity measures is, however, specific to this specific registration
problem. Still, we see a merit for the application of lung cancer motion compensation; in
many cases, the tumor can be identified even on MV images from electronic portal imaging
[27]. The introduction of kV imaging units attached to the linear accelerator does even
provide a source of better quality images in real time. An example is shown in Fig. 4.

In current LINAC-setups, parallel acquisition of perpendicular kV and MV image data is
feasible. It is therefore an straightforward further development to utilize the most important
intrinsic property of rank-correlation based measures like SRC – its independence from
variations in the histogram of the DRR and the kV or MV data – together with the sparse
sampling raycasting method presented. The use of this method to other areas where driving a
soft tissue model using X-ray data is, however, imaginable but depends on the boundary
conditions in a specific clinical application field. Due to the fact that ionizing radiation is to
be used, we assume that organ motion monitoring in this setup is confined to radiotherapy,
where the comparatively small dose from X-ray imaging is marginal with respect to the dose
delivered by the LINAC. Beyond lung motion, another potential application includes liver
motion since at least parts of the organ surface – namely the part next to the diaphragm –
give a clear contrast in X-ray.

The rendering results presented mainly show bony tissue, which is certainly a weakness of
the chosen evaluation with respect to driving soft tissue models. It is however mandatory
that new algorithms are tested on reference datasets, and unfortunately a reference motion
sequence with known gold standard parameters is not yet available. For the given purpose –
the evaluation of specialized DRR rendering algorithms – this drawback of the available
phantoms appears acceptable. The next open research challenge to be tackled is the further
refinement of a time-critical registration routine to achieve a further improvement of the
already very efficient registration algorithm and fusion of registration results and motion
models using adaptive filters.

Acknowledgments
This work was supported by the Austrian Science Foundation FWF project L 503 and P 19931. S. A. Pawiro holds
a scholarship for the Eurasisa-Pacific UNINET foundation. The spine dataset and ground truth for the 2D/3D
registration used in this work was provided by the Image Sciences Institute, University Medical Center Utrecht, The
Netherlands.

References
[1]. Evans P. Anatomical imaging for radiotherapy. Phys Med Biol. 2008; 53:R151–91. [PubMed:

18495981]

[2]. Sarrut D. Deformable registration for image-guided radiation therapy. Z Med Phys. 2006; 16:285–
97. [PubMed: 17216754]

[3]. Islam M, Norrlinger B, Smale J, Heaton R, Galbraith D, Fan C, et al. An integral quality
monitoring system for real-time verification of intensity modulated radiation therapy. Med Phys.
2009; 36:5420–8. [PubMed: 20095254]

Spoerk et al. Page 6

Z Med Phys. Author manuscript; available in PMC 2012 June 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[4]. Zhao B, Yang Y, Li T, Li X, Heron D, Huq M. Image-guided respiratory-gated lung stereotactic
body radiotherapy: which target definition is optimal? Med Phys. 2009; 36:2248–57. [PubMed:
19610314]

[5]. Case R, Sonke J, Moseley D, Kim J, Brock K, Dawson L. Inter- and intrafraction variability in
liver position in non-breath-hold stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys.
2009; 75:302–8. [PubMed: 19628342]

[6]. Reddy NM, Nori D, Sartin W, Maiorano S, Modena J, Mazur A, et al. Influence of volumes of
prostate, rectum, and bladder on treatment planning CT on interfraction prostate shifts during
ultrasound image-guided IMRT. Med Phys. 2009; 36:5604–11. [PubMed: 20095273]

[7]. Johnston H, Hilts M, Beckham W, Berthelet E. 3D ultrasound for prostate localization in radiation
therapy: a comparison with implanted fiducial markers. Med Phys. 2008; 35:2403–13. [PubMed:
18649473]

[8]. Fallone B, Murray B, Rathee D, Stanescu T, Steciw S, Vidakovic S, et al. First MR images
obtained during megavoltage photon irradiation from a prototype integrated LINAC-MR system.
Med Phys. 2009; 36:2084–8. [PubMed: 19610297]

[9]. Onimaru R, Shirato H, Fujino M, Suzuki K, Yamazaki K, Nishimura M, et al. The effect of tumor
location and respiratory function on tumor movement estimated by real-time tracking
radiotherapy (RTRT) system. Int J Radiat Oncol Biol Phys. 2005; 63:164–9. [PubMed:
16111585]

[10]. Mao W, Riaz N, Lee L, Wiersma R, Xing L. A fiducial detection algorithm for real-time image
guided IMRT based on simultaneous MV and kV imaging. Med Phys. 2008; 35:3554–64.
[PubMed: 18777916]

[11]. Tomé W, Jaradat H, Nelson I, Ritter M, Mehta M. Helical tomotherapy: image guidance and
adaptive dose guidance. Front Radiat Ther Oncol. 2007; 40:162–78. [PubMed: 17641508]

[12]. Dawson LA, Jaffray DA. Advances in image-guided radiation therapy. J Clin Oncol. 2007;
25:938–46. [PubMed: 17350942]

[13]. Crum WR, Hartkens T, Hill DL. Non-rigid image registration: theory and practice. Br J Radiol.
2004; 77:S140–53. [PubMed: 15677356]

[14]. Yang D, Lu W, Low D, Deasy J, Hope A, El Naqa I. 4D-CT motion estimation using deformable
image registration and 5D respiratory motion modelling. Med Phys. 2008; 35:4577–90.
[PubMed: 18975704]

[15]. Nithiananthan S, Brock KK, Daly MJ, Chan H, Irish JC, Siewerdsen JH. Demons deformable
registration for CBCT-guided procedures in the head and neck: convergence and accuracy. Med
Phys. 2009; 36:4755–64. [PubMed: 19928106]

[16]. Neicu T, Shirato H, Seppenwoolde Y, Jiang SB. Synchronized moving aperture radiation therapy
(SMART): average tumour trajectory for lung patients. Phys Med Biol. 2003; 48:587–98.
[PubMed: 12696797]

[17]. Park C, Zhang G, Choy H. 4-dimensional conformal radiation therapy: image-guided radiation
therapy and its application in lung cancer treatment. Clin Lung Cancer. 2006; 8:187–94.
[PubMed: 17239294]

[18]. Colgan R, McClelland J, McQuaid D, Evans PM, Hawkes D, Brock J, et al. Planning lung
radiotherapy using 4D CT data and a motion model. Phys Med Biol. 2008; 53:5815–30.
[PubMed: 18827322]

[19]. Santanam L, Malinowski K, Hubenshmidt J, Dimmer S, Mayse ML, Bradley J, et al. Fiducial-
based translational localization accuracy of electromagnetic tracking system and on-board
kilovoltage imaging system. Int J Radiat Oncol Biol Phys. 2008; 70:892–9. [PubMed: 18262100]

[20]. Zhu X, Bourland J, Yuan Y, Zhuang T, O’Daniel J, Thongphiew D, et al. Tradeoffs of integrating
real-time tracking into IGRT for prostate cancer treatment. Phys Med Biol. 2009; 54:N393–401.
[PubMed: 19661570]

[21]. Chang J, Sillanpaa J, Ling C, Seppi E, Yorke E, Mageras G, et al. Integrating respiratory gating
into a megavoltage cone-beam CT system. Med Phys. 2006; 33:2354–61. [PubMed: 16898437]

[22]. Hughes S, McClelland J, Tarte S, Lawrence D, Ahmad S, Hawkes D, et al. Assessment of two
novel ventilatory surrogates for use in the delivery of gated/tracked radiotherapy for non-small
cell lung cancer. Radiother Oncol. 2009; 91:336–41. [PubMed: 19395076]

Spoerk et al. Page 7

Z Med Phys. Author manuscript; available in PMC 2012 June 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



[23]. Lemieux L, Jagoe R, Fish DR, Kitchen ND, Thomas DG. A patient-to-computed-tomography
image registration method based on digitally reconstructed radiographs. Med Phys. 1994;
21:1749–60. [PubMed: 7891637]

[24]. Penney G, Weese J, Little J, Desmedt P, Hill D, Hawkes D. A comparison of similarity measures
for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging. 1998; 17:586–95.
[PubMed: 9845314]

[25]. Zöllei, L.; Grimson, E.; Norbash, A.; Wells, W. 2D-3D rigid registration of x-ray fluoroscopy
and CT images using mutual information and sparsely sampled histogram estimators, Computer
Vision and Pattern Recognition; IEEE Computer Society Conference; 2001; p. 696-703.

[26]. Khamene A, Bloch P, Wein W, Svatos M, Sauer F. Automatic registration of portal images and
volumetric CT for patient positioning in radiation therapy. Med Phys. 2006; 10:96–112.

[27]. Künzler T, Grezdo J, Bogner J, Birkfellner W, Georg D. Registration of DRRs and portal images
for verification of stereotactic body radiotherapy:a feasibility study in lung cancer treatment.
Phys Med Biol. 2007; 52:2157–70. [PubMed: 17404461]

[28]. Birkfellner W, Stock M, Figl M, Gendrin C, Hummel J, Dong S, et al. Stochastic rank
correlation:A robust merit function for 2D/3D registration of image data obtained at different
energies. Med Phys. 2009; 36:3420–8. [PubMed: 19746775]

[29]. Wu J, Kim M, Peters J, Chung H, Samant S. Evaluation of similarity measures for use in the
intensity-based rigid 2D-3D registration for patient positioning in radiotherapy. Med Phys. 2009;
36:5391–403. [PubMed: 20095251]

[30]. Spoerk J, Bergmann H, Wanschitz F, Dong S, Birkfellner W. Fast DRR splat rendering using
common consumer graphics hardware. Med Phys. 2007; 34:4302–8. [PubMed: 18072495]

[31]. Birkfellner W, Seemann R, Figl M, Hummel J, Ede C, Homolka P, et al. Wobbled splatting - a
fast perspective volume rendering method for simulation of x-ray images from CT. Phys Med
Biol. 2005; 50:N73–84. [PubMed: 15843725]

[32]. Mueller, K.; Yagel, R. Fast perspective volume rendering with splatting by utilizing a ray-driven
approach; VIS’96: Proceedings of the 7th conference on Visualization’96; Los Alamitos, CA,
USA: IEEE Computer Society Press. 1996; p. 65-73.

[33]. Scharsach, H. Advanced gpu raycasting, Proceedings of the 9th Central European Seminar on
Computer Graphics; Vienna. 2005; http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-2005/
papers/VRVis-Scharsach-Henning.pdf

[34]. Preim, B.; Bartz, D. Visualization in Medicine: Theory, Algorithms, and Applications. Morgan
Kaufmann; San Francisco: 2007.

[35]. Tomazevic D, Likar B, Pernus F. Gold standard data for evaluation and comparison of 3D/2D
registration methods. Comput Aided Surg. 2004; 9:137–44. [PubMed: 16192053]

[36]. van de Kraats EB, Penney GP, Tomazevic D, van Walsum T, Niessen WJ. Standardized
evaluation methodology for 2-D-3-D registration. IEEE Trans Med Imaging. 2005; 24:1177–89.
[PubMed: 16156355]

[37]. Pawiro SA, Markelj P, Pernus F, Gendrin C, Figl M, Weber C, Kainberger F, Nöbauer-Huhmann
I, Bergmeister H, Stock M, Georg D, Bergmann H, Birkfellner W. Validation for 2D/3D
registration. I: A new gold standard data set. Med Phys. Mar; 2011 38(3):1481–90. [PubMed:
21520860]

[38]. Gendrin C, Markelj P, Pawiro SA, Spoerk J, Bloch C, Weber C, Figl M, Bergmann H, Birkfellner
W, Likar B, Pernus F. Validation for 2D/3D registration. II: The comparison of intensity- and
gradient-based merit functions using a new gold standard data set. Med Phys. Mar; 2011 38(3):
1491–502. [PubMed: 21520861]

Spoerk et al. Page 8

Z Med Phys. Author manuscript; available in PMC 2012 June 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-2005/papers/VRVis-Scharsach-Henning.pdf
http://www.cg.tuwien.ac.at/hostings/cescg/CESCG-2005/papers/VRVis-Scharsach-Henning.pdf


Fig. 1.
Illustrations of the bounding structure generated using the cuberille method for volume to
surface transformation. The relative distance of the bounding surface with respect to the
rendering plane is encoded by color. Therefore it is possible to compute the effective path of
the ray when passing the relevant image data by a subtraction of the numerical values
representing the color.
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Fig. 2.
Sparsely sampled DRRs with different amounts of image content. (a) shows a complete
DRR, and (b) – (d) show the same DRR with 50, 25 and 5% image content.
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Fig. 3.
Identical perspective renderings of a porcine skull created with (a) wobbled splat rendering,
(b) wobbled splat rendering using a precalculated texture for random number generation, (c)
ray casting and (d) ray casting with a bounding structure refined by the cuberille method.
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Fig. 4.
A comparison of a registered DRR (left) and the matching X-ray (right) of a patient
suffering from bronchial carcinoma. The tumor is marked with an arrow. Despite the fact
that X-ray only provides poor soft tissue contrast, structures usable for registration can be
identified in the target volume.
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