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Abstract

Catecholaminergic (CA) neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds,
CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown
previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive
male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we
exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid
synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the
phosphorylation of tyrosine hydroxylase (TH), a rate-limiting enzyme in the CA synthetic pathway. We found that
immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory
thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid
chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites,
dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain
after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally
relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.
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Introduction

The processes of attending to a stimulus and assigning value to it

both depend on catecholamine neuromodulators such as dopa-

mine (DA) and norepinephrine (NE). Catecholaminergic (CA)

systems can alter sensory gating and receptive fields to maximize

the salience of behaviorally relevant signals. In so doing, they serve

as dynamic filters that integrate prior experience, environmental

context, and internal state [1,2]. When the importance of an

auditory stimulus is increased, for example by associating it with

a foot shock or a reward, the resulting remapping of auditory

cortex is accomplished in part by dopaminergic neuromodulation

[3]. Similarly, because CA systems are exquisitely sensitive to the

animal’s environment, they can bring information on context

directly to areas involved in sensory processing to facilitate

context-appropriate responses to sensory signals [2,4].

In songbirds, CA projections to the auditory forebrain have

been hypothesized to affect the processing of song [5–13].

Noradrenergic denervation or blockade of CA activity reduces

behavioral and neural responses to song as well as behavioral and

neural selectivity for sexually stimulating song [14–18]. In female

white-throated sparrows (Zonotrichia albicollis), sexual receptivity is

associated with an increase in the number of CA neurons in

brainstem cell groups likely to project to auditory areas [10], as

well as denser CA innervation of the auditory forebrain and

midbrain [10,19]. Female European starlings (Sturnus vulgaris)

exposed for one week to high-quality male song have a greater

density of CA fibers in the auditory forebrain than females exposed

to low-quality song [20]. Thus, there is evidence that catechol-

aminergic projections to auditory areas may carry information on

internal state and social context, that these projections regulate

behavioral and neural responses to song, and that hearing song

may itself alter catecholamine levels in the auditory system.

Despite continued interest in the role of catecholamines in the

processing of song [13], the mechanisms by which they modulate

auditory responses in songbirds are not well understood. According

to models developed in mammals, CA terminals may release

transmitter in a tonic or paracrine fashion that is independent of

both firing and external stimuli [21]. This release may alter the

responsivity or spontaneous firing activity in forebrain neurons [22]

and may be sustained over prolonged periods [23]. Such release

may drive sensory plasticity without stimulus-dependent firing or

presynaptic regulation. In contrast, or in addition, catecholamine

release may be driven by sensory stimuli. Neurons in both the NE

and DA systems respond to a myriad of stimuli from multiple

modalities [1,4,24,25]. Hearing conspecific song induces the

expression of immediate early genes such as FOS and Egr-1,

which mark new protein synthesis in response to a stimulus [26], in

many CA regions. In male zebra finches (Taenopygia guttata), for
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example, exposure to a singing tutor induced FOS expression in the

substantia nigra (SN), ventral tegmental area (VTA), and the

periaqueductal gray (PAG), but this induction was found within DA

neurons only in the PAG [27]. Similarly, in estrogen-primed female

white-throated sparrows, hearing conspecific male song induced

Egr-1 expression in the locus coeruleus (LoC), SN, VTA, and PAG

[28, unpublished data], but not in the tyrosine hydroxylase (TH)-

positive cells of those areas [10]. Gale and Perkel [29] showed that

in anesthetized male zebra finches, dopaminergic neurons in the

SN and VTA fired in response to auditory stimuli, including

conspecific song. Such responses may be limited, however, to the

anesthetized state [30,31]. It is therefore unclear whether hearing

conspecific song rapidly induces CA activity in awake individuals.

In this study, we looked for evidence of rapid increases in

catecholamine synthesis in auditory areas of sexually receptive

females listening to conspecific male song.

In order to test whether hearing song rapidly engages CA inputs

to auditory areas, we employed a relatively new immunohisto-

chemical method to quantify synthetic activity of TH. We took

advantage of the fact that in order to synthesize catecholamines,

TH must be phosphorylated at a minimum of one of its four serine

sites. Immunolabeling of phosphorylated TH (pTH) can thus be

used to map active catecholamine synthesis [32]. Dopamine

synthesis and release are most highly correlated with phosphor-

ylation at serine site 40 (ser40) [33,34], which is not phosphor-

ylated at high rates in the resting state [32,35]. The phosphor-

ylation of TH at ser40 in response to stimuli is quite rapid;

administration of pharmacological agents such as haloperidol or

acetylcholine induces phosphorylation within minutes both in vivo

and in vitro [36]. Antibodies directed against pTH(ser40) have been

used to examine the effects of social stimuli on TH activity in the

brain [37,38]. Here, we hypothesized that exposure to male

conspecific song would increase immunoreactivity for pTH(ser40),

referred to hereafter as pTH, in the auditory pathway of females

within minutes. In order to confirm that we were able to detect

changes in CA activity via immunohistochemistry (IHC), we also

used HPLC to more directly quantify the concentrations of

catecholamines and their metabolites in auditory areas.

The anatomical and functional organization of the central

auditory pathway in songbirds largely resembles that found in

other vertebrates, including mammals (Fig. 1) [39]. Auditory input

is transduced in the cochlea, ascends through brainstem areas

analogous to mammalian cochlear nuclei, and arrives at the dorsal

lateral mesencephalic nucleus (MLd), the avian homolog of the

mammalian inferior colliculus, or auditory midbrain [40]. MLd

neurons send direct projections to the thalamic nucleus Ovoidalis

(Ov), the avian homolog of the ventral medial geniculate [40].

Both structures participate in auditory discrimination and are

tuned to behaviorally relevant signals [39,41,42]. Ov projects to

a pronounced lobe in the forebrain that contains auditory areas

(Fig. 1). Inside this lobe, the caudomedial nidopallium (NCM)

receives input from the thalamo-recipient Field L and is heavily

interconnected with the caudomedial mesopallium (CMM). NCM

and CMM are analogous to the supragranular layers of

mammalian auditory cortex [43] or to mammalian auditory

association cortex [44,45]. In this study, we quantified sound-

induced CA activity both immunohistochemically and via HPLC

at multiple levels of this pathway [19,46].

Results

Rapid Effects of Song on TH Phosphorylation
We exposed individually housed, E2-treated female white-

throated sparrows to audio recordings of conspecific male song,

collected brain tissue immediately afterwards, and quantified the

phosphorylation of TH in the auditory pathway via IHC. The

auditory forebrain (NCM and CMM), thalamus (Ov) and

midbrain (MLd) showed robust immunoreactivity for pTH and

total TH (Fig. 2). Fifteen min of song exposure caused an increase

in pTH immunoreactivity in the auditory forebrain, indicating the

rapid engagement of catecholaminergic synthetic machinery

(Fig. 3). pTH immunoreactivity increased in both NCM and

CMM after 15 min of song exposure (NCM: z= 5.20, P,0.001;

CMM: z= 5.35, P,0.001) and after 30 min of song exposure was

still elevated above baseline in NCM (z= 2.16, P= 0.031). By

contrast, we did not detect an effect of song exposure in the

auditory thalamus or midbrain (|z|#1.03, P$0.304). Our finding

of song-induced TH phosphorylation was thus limited to the

auditory forebrain. To help assess whether this effect was specific

to the auditory system we also looked at a visual area in the

forebrain, the apical part of the hyperpallium (HA), and found no

effect of song duration (|z| #0.43, P$0.669).

We found no significant effects of song duration on TH

immunoreactivity (|z| #1.51, P$0.13; Fig. 4), which indicates

that hearing song did not alter the availability or synthesis of TH

itself. Rather, the available TH was more likely to become

phosphorylated, and therefore active, in response to song

exposure.

Rapid Effects of Song on Catecholamines and their
Metabolites
In order to test whether the phosphorylation of TH occurred

concomitantly with increases in catecholamine synthesis or

turnover, we measured catecholamines and their metabolites via

HPLC in a subset of the above females. Hearing song significantly

increased the concentrations of two dopamine metabolites in

NCM (Fig. 5B). The principal DA metabolite, dihydroxypheny-

lacetic acid (DOPAC), increased between 0 and 30 min of song

exposure (z = 2.22, P= 0.026). For another metabolite, homo-

vanillic acid (HVA), there was a trend at 15 min (z = 1.86,

P= 0.063) and by 30 min this metabolite was also significantly

elevated (z = 3.70, P,0.001). DA decreased significantly in MLd

after 30 min (Fig. 5C; z =214.03, P= 0.035). We did not find

a significant effect of song exposure on NE or its metabolite 3-

methoxy-4-hydroxyphenylglycol (MHPG) in any region of interest

(data not shown).

Lateralization
For the subset of brains subjected to both IHC and HPLC, we

performed the two techniques on opposite hemispheres. Whether

we used the left or the right for each technique was balanced in

our design, so it was not necessary to include it in our statistical

model. Due to recent evidence of lateralization in the auditory

pathway of songbirds, however [19,47–50] we ran the model first

including hemisphere. We found no convincing effects or

interactions; therefore, we removed hemisphere from the statistical

model that we present below (see Methods). Removing hemisphere

from the model did not affect any of the findings we report here.

Explanatory Value of Vocalization Behavior
In order to assess whether the birds’ own vocal responses may

have increased CA activity, we recorded the behavior of each bird

prior to tissue collection. The number of songs, tseets, or chip-ups

(see Methods) did not vary according to playback duration

(Kruskal-Wallis K#0.602; P$0.740; data not shown), suggesting

that these behaviors were not driving the changes in catechol-

amine markers that we observed. The number of trills, which is

Catecholaminergic Responses to Song
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part of the courtship response to song, was significantly higher in

the birds that heard song (Kruskal-Wallis K=7.388, P = 0.025;

Fig. 6A). The number of trills was not, however, correlated with

the catecholamine markers that were affected by song exposure

(Spearman rho |R| #0.295; P$0.177; Fig. 6B–F). It is therefore

not the case that the birds with higher CA activity were the same

birds that responded the most vocally to the playback. It is thus

unlikely that the effects of hearing song on CA activity were caused

by self-stimulation of the auditory pathway.

Discussion

Our results are consistent with previous reports that social

stimuli can induce CA activity in songbirds. In zebra finches, for

example, presentation of song or other social stimuli induced FOS

expression in TH-immunoreactive neurons in the brainstem

[8,27,51]. In female European starlings, hearing high-quality song

increased the density of noradrenergic fibers in the auditory

forebrain over a period of one week [20]. In this study, we show

that the induction of CA activity in the songbird auditory

forebrain can be detected within 15 minutes of the onset of the

sound. In sexually receptive female white-throated sparrows,

hearing 15 or 30 minutes of conspecific male song increased the

phosphorylation of TH, a rate-limiting enzyme in the CA

synthetic pathway, in NCM and CMM of the auditory forebrain

(Fig. 3). Because the phosphorylation of TH tightly regulates its

activity [36,52], we interpret this result to mean that hearing song

induces catecholamine synthesis – either directly or in response to

depletion. This activation was not sustained throughout an entire

30 min presentation of song, but rather was associated with the

song onset (Fig. 3G). The subsequent dephosphorylation of TH

may be due to depolarization-induced increases in intracellular

calcium [53,54]. Overall, our results suggest that catecholamines

may do more than simply prime the auditory forebrain to respond

to sound; rather, sound stimulation appears to be an important

regulator of CA activity in the auditory forebrain.

Sound-induced CA activity has been described in the auditory

system of rodents, in structures upstream from those we looked at

in this study. In guinea pigs, for example, TH immunoreactivity

was up-regulated in the cochlea after 24 hours of exposure to

a 1 kHz tone [55]. In rats, exposure to 45 min of mildly intense

white noise increased concentrations of the NE metabolite MHPG

in the cochlear nuclei, but not the inferior colliculus or primary

auditory cortex [56]. Our current findings provide evidence that

sound exposure can induce CA activity in higher auditory centers

and that this activity can be observed after only 15 minutes.

The detection of rapid increases in TH activity via IHC relies on

the fact that in order to be fully active, TH must be

phosphorylated at one or more serine sites [36,52]. Of the

possible sites, the best-understood is ser40, the phosphorylation of

which is tightly regulated by stimulation in vivo [33,34]. Ong and

colleagues [54,57] have shown that in rats, ser40 phosphorylation

in the VTA and LoC increased in response to social but not non-

social stressors. Riters et al. [38] used an antibody against TH

phosphorylated at ser40 to assess CA responses to conspecific male

song in female European starlings. They did not look at the

auditory pathway in that study, but they did report changes in the

hypothalamus and septum within 20 min after song onset. Because

phosphorylation occurs within minutes of the application of

a stimulus, immunolabeling of pTH may represent an accurate

and convenient method for quantifying rapid changes in CA

activity [32]. Because individual fibers can be visualized, this

technique also allows precise neuroanatomical mapping of the

effects. We are confident that the effects we report here are not

due to increases in the availability of TH itself, because TH-IR

was not altered in any region of interest after 15 or 30 min of

sound exposure (Fig. 4). This result is consistent with other reports

Figure 1. Parasagittal view of the auditory pathway in songbirds. Rostral is to the left. The auditory nerve enters the brainstem and projects
to the cochlear nucleus (CN). From CN, projections extend to the auditory midbrain (MLd, the dorsal lateral mesencephalic nucleus). MLd projects to
the auditory thalamus (Ov, nucleus ovoidalis), which projects to the thalamorecipient region of the auditory forebrain, Field L. From Field L,
projections extend to the caudomedial nidopallium (NCM). NCM is reciprocally connected to the caudomedial mesopallium (CMM).
doi:10.1371/journal.pone.0039388.g001
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that the availability of TH protein is not affected rapidly by acute

exposure to stimuli or pharmacological manipulation [36,54,57].

An over-arching principle of noradrenergic system organization

is that axon collaterals can innervate sensory pathways at multiple

levels. In other words a single LoC neuron may send axons to the

auditory midbrain, thalamus, and forebrain so as to simultaneous-

ly influence auditory responses at all three levels [4]. In our study,

we did not see evidence of such coordinated regulation, however.

Whereas pTH-IR showed a clear peak at 15 min in the auditory

forebrain, it was remarkably flat in Ov and MLd (Fig. 3). It is

possible that the CA fibers innervating the auditory forebrain

originate from sources largely different from those innervating

lower structures in the pathway. Note that because TH is required

for both DA and NE synthesis, dopaminergic and noradrenergic

fibers alike were labeled in our material. A comparison of TH-IR

with that of dopamine beta-hydroxylase (DBH), an enzyme

specific to the NE pathway, shows that whereas DBH-IR fibers

are far outnumbered by TH-IR fibers in the auditory forebrain,

immunoreactivity for the two enzymes is roughly equal in MLd

[19]. This pattern of labeling suggests that the relative contribu-

tions of DA and NE fibers to forebrain and lower auditory regions,

respectively, may differ. Because the regulation of TH activity is

accomplished via a wide variety of mechanisms, including

phosphorylation at sites other than ser40 [34], we may not expect

to see parallel effects in fibers originating from different sources.

We used the contralateral hemisphere of a subset of brains to

test whether the changes in CA activity detected via IHC could

also be detected via HPLC. Although our sample sizes were

smaller for HPLC, we were able to detect a significant increase in

the concentrations of two DA metabolites in NCM (Fig. 5A, C).

This finding is consistent with sound-induced DA turnover in that

area. It is possible that the increased concentration of metabolites

indicates release followed by reuptake and degradation [58–61].

Alternatively, the rise in metabolites may indicate a surplus of

newly synthesized DA that is broken down without being released

[62–64]. In MLd, we noted a significant decline in DA that was

not accompanied by an increase in either metabolite (Fig. 5C).

Such a result could indicate DA release followed by metabolism to

3-methoxytyramine without reuptake, or a decrease in DA cell

firing [58].

We hypothesized that the effects of song playback on CA

activity measured via IHC would occur in parallel with those

detected via HPLC. In NCM, this prediction was supported. We

did not, however, obtain parallel results in CMM or MLd.

Although pTH-IR was significantly enhanced in CMM after

15 min of song playback (Fig. 3G), we could not detect

a concomitant change in the levels of catecholamines or their

metabolites in CMM in the contralateral hemisphere (Fig. 5A).

Further, although we did observe a significant decrease in DA in

MLd (Fig. 5C), we found no effect of playback on pTH-IR in that

region (Fig. 3I). There are a number of explanations for these

disparate findings. First, the phosphorylation of TH and the

synthesis and metabolism of catecholamines may occur at different

times during a CA response. Although many researchers have

reported effects of sensory stimulation on CA activity within 15 to

30 min [38,54,65,66], we may have missed an effect that occurred

earlier than 15 min or later than 30 min. Second, some authors

have reported lateralization of function in the auditory pathway of

songbirds [47–50]. If CA function is lateralized [19], we should

not expect that CA activity will always be identical in both

hemispheres. Although we did not find convincing evidence of

lateralization in this study, our sample size for the HPLC assay was

small. The small sample size, together with missing protein values

for CMM and MLd (see Methods), may have contributed to our

inability to detect changes via HPLC in those regions. Finally, as

noted above, the phosphorylation of TH may occur at four

possible serine sites [34]. Using our methods, we would not have

been able to detect activation of TH via phosphorylation at a site

other than ser40. The significant DA response, together with the

lack of a pTH response, may suggest an alternate phosphorylation

site in MLd fibers.

CA responses, in the form of NE or DA release, may occur via

one or more distinct mechanisms such as tonic, phasic, or firing-

independent release, the latter of which is mediated at the terminal

[1,21,25]. We hypothesize that hearing song triggers phasic

release, but it may also shift CA cells into a ‘‘high tonic’’ mode [67]

or stimulate firing-independent processes that involve, for exam-

ple, reverse transport of DA [68]. We cannot distinguish among

these possibilities here. Our findings clearly suggest an increase in

catecholamine synthesis, but although elevated levels of CA

metabolite have been interpreted as evidence of release, they may

also indicate breakdown without release [58–60,62–64]. Playback

studies using techniques that allow greater temporal resolution and

unequivocal evidence of catecholamine release will be necessary to

better understand the mechanisms underlying sound-dependent

CA activity in the auditory forebrain.

The design of the present study raises two important questions

that should be addressed in future work. First, does sound-induced

CA activity depend on stimulus salience? Monoaminergic

neuromodulators are thought to bring information about internal

state and environmental context into sensory areas, thus helping to

maximize responses to behaviorally relevant signals [1,2,69]. In

this study, we played a courtship signal to receptive females, all of

which likely found it highly relevant. We do not know whether the

CA activity we observed would have been induced at a similar

level by a less salient sound. Previous work in rats suggests that the

CA activity induced by a sound may in fact depend on its

behavioral relevance. Using microdialysis in the auditory cortex of

rats, Stark and Scheich [61] showed that tone-induced HVA

release was greatly enhanced while the rats were learning to

associate the tones with a foot-shock. Similarly, in monkeys trained

on a vigilance task, phasic CA discharges occur preferentially to

target stimuli [4]. We hypothesize that sounds with high

behavioral relevance, such as song, may induce more CA activity

in the auditory forebrain than other sounds. Playback studies using

more than one auditory stimulus will be necessary to test this

hypothesis.

The second question that should be addressed is whether sound-

induced CA activity depends on social context or reproductive

state. The behavioral relevance of courtship signals waxes and

wanes according to social context and the reproductive state of the

listener. Perhaps as a consequence, the magnitude of auditory

responses to those signals depends to some extent on the social

environment and plasma reproductive hormones [70–72]. We

have hypothesized that context- and estrogen-dependent auditory

plasticity is accomplished via CA systems; exposure to high quality

Figure 2. Examples of immunoreactive fibers labeled in this study. Immunoreactivity (IR) for phosphorylated tyrosine hydroxylase (pTH; A, B,
C, G, H) or tyrosine hydroxylase (TH; D, E, F, I, J) is shown in the caudomedial mesopallium (CMM; A, D), caudomedial nidopallium (NCM; B, E), apical
hyperpallium (HA; C, F), n. Ovoidalis (Ov; G, I) and the dorsal lateral mesencephalic nucleus (MLd; H, J) in birds that heard 15 min of song. Dotted lines
encircle the areas sampled in the Ov core and MLd. Rostral is to the right. Scale bars, 100 mm.
doi:10.1371/journal.pone.0039388.g002
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male song [20] and estradiol (E2) treatment [10,19] independently

increased the density of CA innervation of auditory areas. This

enhanced innervation may prime auditory areas to respond more

selectively to behaviorally relevant sounds. Here, we show that CA

fibers innervating the auditory forebrain themselves respond

rapidly to sound stimulation. A study wherein reproductive state

or social context is manipulated would help to clarify the function

of this response.

In addition to our finding that a biologically relevant sound

induces CA activity, we recently showed evidence that the same is

true of another monoamine, serotonin [46]. In E2-treated female

white-throated sparrows, the concentration of the serotonin

metabolite 5-hydroxyindoleacetic acid (5-HIAA) increased in

NCM after 30 min of exposure to male conspecific song.

Together, our findings suggest that serotonergic and dopaminergic

activity are induced by the same stimulus on a similar time scale.

Like catecholamines, serotonin is well-known to play a critical role

in sensory plasticity by altering receptive fields, response thresh-

olds, and signal-to-noise ratios in sensory areas [2]. In fact,

although their mechanisms of action tend to differ within any

particular sensory area, catecholamines and serotonin share

function in that they alter the precision or selectiveness of auditory

coding according to behavioral state [2,73]. Our future work will

involve receptor mapping and pharmacological manipulations to

assess the likely functions of sound-induced monoamine activity in

the auditory system of songbirds.

Materials and Methods

Ethics Statement
All procedures in this study were approved by the Emory

University Institute for Animal Care and Use Committee and

adhered to NIH standards.

Animals
The experimental design is depicted in Fig. 7. We collected

a total of thirty female white-throated sparrows in mist nets in

Atlanta, Georgia during fall 2007 and 2009. We determined their

sex by polymerase chain reaction (PCR) analysis using a blood

sample [74] and confirmed sex by necropsy at the end of the study.

Prior to the study, the birds were housed at the Emory University

animal care facility in indoor walk-in flight cages and supplied with

food and water ad libitum. We held day length constant at 10:14 h

light-dark, which corresponds to the shortest day the birds would

experience while overwintering at the capture site, for at least two

months to ensure that they were not photorefractory [75,76].

Seven days prior to the playback experiment, we transferred the

birds in pairs to sound-attenuating chambers where they were

housed individually in adjacent cages (38638642 cm).

Estradiol Treatment
In captivity, female Zonotrichia sparrows do not undergo full

ovarian recrudescence even under long day lengths [77–79]. We

therefore treated the animals with exogenous E2 in order to

simulate the hormonal milieu associated with breeding

[28,71,72,80]. On the day the birds were transferred to

individual cages, we implanted each bird with a subcutaneous

silastic capsule (length 12 mm, ID 1.47 mm, OD 1.96 mm,

Dow Corning, Midland, MI) containing 17b-estradiol (Stera-

loids, Newport, RI) and sealed both ends with A-100S Type A

medical adhesive (Factor 2, Lakeside, AZ). This dose of E2

increases plasma levels to those typical of the breeding season

within seven days in this species [71,81] and likely does so

within two days [79].

Figure 3. The effects of song exposure on phosphorylated
tyrosine hydroxylase immunoreactivity (pTH-IR). A–F. Immuno-
reactive fibers in the auditory forebrain in a typical bird (median
corrected gray value) from each group. G. pTH-IR increased in CMM and
NCM after 15 min of song, and in NCM remained elevated above
baseline after 30 min. H, I. pTH-IR did not increase in Ov or MLd. NCM,
caudomedial nidopallium. CMM, caudomedial mesopallium. HA, apical
hyperpallium. Ov, n. Ovoidalis (auditory thalamus). MLd, dorsal portion
of the lateral mesencephalic nucleus (auditory midbrain). *significantly
different from the silence (0 min song) condition, see text for p values.
doi:10.1371/journal.pone.0039388.g003

Catecholaminergic Responses to Song
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Song Playback
We started the playback experiment seven days after E2

treatment began. On the afternoon prior to playback, we isolated

each female in a sound-attenuating chamber equipped with

a speaker, a video camera, and a microphone. At ,2 h after

lights-on the following morning, we presented the song stimulus

(see below) via the speaker inside the chamber. Each bird heard

either 15 min of song (n= 10), 30 min of song (n= 9), or silence,

i.e. no song stimuli (n = 10). Video and audio recordings were

made of each bird before and during stimulus presentation. The

chamber used for playback (one of three identical chambers) was

balanced across playback duration.

An observer blind to the hypothesis quantified the vocaliza-

tions (chip-up calls, trills, tseets, and songs; see [81,82] for

descriptions) given by each female during the 45 min prior to

tissue collection. This period consisted of 45 min of silence for

the birds in the 0 min condition, 30 min of silence followed by

Figure 4. There were no effects of song exposure on tyrosine hydroxylase immunoreactivity (TH-IR). A–F. TH-immunoreactive fibers in
the auditory forebrain in a typical bird (median corrected gray value) from each group. G. TH-IR remained unchanged in CMM and NCM after 15 min
and 30 min of song. CMM, caudomedial mesopallium. NCM, caudomedial nidopallium.
doi:10.1371/journal.pone.0039388.g004
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the playback for birds in the 15 min condition, and 15 min of

silence followed by the playback for birds in the 30 min

condition (Fig. 7).

Song Stimuli
The stimulus presentations have been previously described in

detail [71,72,78,81]. Briefly, we downloaded recordings of male

white-throated sparrow songs from the Borror Laboratory of

Bioacoustics birdsong database and constructed presentations

consisting of one song every 15 s (natural song rate). To prevent

habituation to the stimulus, the identity of the singer changed to

a new male every three minutes. Thus, females listening to 15 min

of song heard five unique males, and females listening to 30 min of

song heard ten unique males. Within each group, each female

heard the males in a unique order. All songs were presented at

70 dB, measured at the listener’s cage.

Tissue Collection and Immunohistochemistry
Immediately after the stimulus presentation we rapidly

decapitated each bird, quickly harvested the brain, and fixed

it in 5% acrolein as described previously [80,83]. We cut three

series of 50 mm parasagittal sections from one hemisphere (left

or right was balanced across groups) using a freezing sliding

microtome and immunolabeled two of the three series using

standard IHC protocols [10,19,38]. We incubated one of those

series with an anti-pTH antibody (Genetex; Irvine, CA; see

antisera below) diluted 1:1250 [38], and the other with an anti-

TH antibody (ImmunoStar; Hudson, WI; see antisera below)

diluted 1:2000 [10,19]. We labeled the antigens in both series of

sections using a biotinylated secondary antibody and the ABC

method (Vector, Burlingame, CA). We visualized pTH im-

munolabeling with nickel-enhanced diaminobenzidine [84] and

the TH immunolabeling using diaminobenzidine without nickel.

We processed each series of brain sections in three separate

runs of IHC in which the three playback conditions were

balanced across runs. Following IHC, we mounted all of the

sections onto gelatin-subbed microscope slides, dehydrated

them, and coverslipped in DPX (Sigma, St. Louis, MO).

Antisera
To label pTH we used a rabbit polyclonal antibody raised

against a synthetic phosphopeptide corresponding to amino acid

residues surrounding the phosphorylated ser40 of rat TH

(Genetex, Cat#GTX16557). This antibody labels a CA-like

distribution of cells and fibers similar to the distribution of TH

cells and fibers in zebra finches, canaries, and white-throated

sparrows [10,19,85,86]. To validate the pTH antiserum, we

followed Saper and Sawchenko [87]. Using tissue from two

untreated females not in the study, we first determined the

concentration at which labeling was barely discernable

(1:20,000) and then performed preadsorption tests at twice that

concentration [87] and at the concentration normally used to

label the protein (1:1250). We incubated the diluted antibody

with 50 mg/ml of TH phosphor S40 control peptide, supplied

by the manufacturer (Genetex, Cat#GTX30707), with gentle

agitation at least 3 hours at room temperature before use. Pre-

adsorption completely abolished labeling of somata and fibers.

To label TH, we used a mouse monoclonal antibody generated

against denatured TH purified from rat PC12 cells (ImmunoStar,

Figure 5. Hearing song alters catecholamine content in
auditory areas. DA, dopamine. DOPAC, dihydroxyphenylacetic acid.
HVA, homovanillic acid. A. CMM, caudomedial mesopallium. B. NCM,
caudomedial nidopallium. C. MLd, dorsal portion of the lateral
mesencephalic nucleus (auditory midbrain). *significantly different from
silence (0 min song), see text for p values. n = 4 for each time point.

Total protein content was available for all samples only for NCM (see
Methods). In order to plot the values for CMM and MLd, we normalized
them using the average protein values for those regions. Note the
different scales on the Y axes in each graph.
doi:10.1371/journal.pone.0039388.g005
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Cat#22941). It immunolabels both unphosphorylated and phos-

phorylated TH. According to the manufacturer, the antibody

recognizes a 62 kDa band corresponding to TH in rat, and does

not cross-react with DBH, dihydropterdine reductase, pheny-

letholamine-N-methyltransferase, phenylalanine hydroxylase or

tryptophan hydroxylase using Western blot methods. It has wide

species cross-reactivity and has been validated by preadsorption

studies in a range of vertebrates [88]. This antibody labels

a catecholamine-typical pattern of neurons and fibers in a wide

variety of birds [5,85,89–92] including white-throated sparrows

[10,19,93] and was used by Reiner et al. [86] to perform an

exhaustive characterization of the avian distribution of TH-

immunoreactivity. Anti-TH antibodies from other sources and

anti-DA antibodies produce the same neural distribution in birds

[94,95]. In our tissue, the antibody labels all major TH cell groups

A1–A15 and fibers in a distribution typical of TH. We saw no

specific labeling following omission of the primary or the

secondary antibodies.

Image Acquisition and Quantification of pTH and TH
Immunolabeling
We conducted all image acquisition and analyses while blind to

treatment group. To photograph each region of interest (ROI), we

Figure 6. Significant effects of song playback (Figs. 3, 4) were not driven by vocal responses. A. Box-and-whisker plots showing the
number of trills during the observation period. Outliers are marked by ‘‘X’’. B–F, the number of trills did not explain levels of immunoreactivity for
phosphorylated TH (pTH-IR), DA or DA metabolites in any region where a significant effect of playback was found. The trendlines shown in B and C
include an observation, not shown on the graph, of a bird that trilled 126 times during the observation period.
doi:10.1371/journal.pone.0039388.g006

Figure 7. Time course of the experiment. Female white-throated sparrows were collected from a free-living population and housed on short
photoperiod for approximately 4 months. Each then received a subcutaneous silastic implant filled with estradiol (E2) to mimic breeding levels. Seven
days later, each was isolated in a sound-attenuating chamber and exposed to either silence, 15 min song, or 30 min song. Brains were harvested
immediately after the observation period and bisected into hemispheres for analysis by immunohistochemistry (IHC) or high pressure liquid
chromatography (HPLC). The hemisphere used for each procedure (left or right) was balanced across playback conditions.
doi:10.1371/journal.pone.0039388.g007
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used the 10x objective on a Zeiss Axioskop microscope attached to

a Leica DC500 camera and Macintosh G5 computer running

Leica Firecam (version 1.7.1). We captured rectangular images

(approximately 32 MB in size) corresponding to the field of view of

the camera (8706690 mm), holding the light level constant for all

photos. We based the exposure time and luminosity levels on those

automatically set by the Firecam software.

We acquired images of NCM and CMM between ,350 and

,800 mm from the midline in the same four consecutive sections

from each series. For CMM, the upper corners of the field of view

of the camera were positioned along the dorsal boundary of

CMM, one of the lower corners was positioned adjacent to the

lamina mesopallium, and the entire photo was used in the analysis

[19]. For NCM, we took photos with the rostrodorsal domain [72]

positioned in the center, and used ImageJ (version 1.41o, National

Institutes of Health, Bethesda, MD) to sample from a circular area

approximately 550 mm in diameter. We did not attempt to sample

Field L, first because there are very few TH fibers in this area [86],

and second because the diffuse background staining we observed

there was also present in sections with primary antibody omitted.

In addition to sampling the auditory forebrain, we also

examined pTH and TH immunolabeling in the auditory thalamus

(Ovoidalis, n. Ov) and midbrain (MLd). We photographed Ov in

the three consecutive sections in which it was the largest [19] and

then used ImageJ to trace the core and shell regions (Fig. 2G, I).

We photographed MLd in the five consecutive sections in which it

was the largest and traced the area corresponding to the core [96],

also called the inner MLd [97], in ImageJ (Fig. 2 H, J). Finally, we

quantified pTH and TH immunolabeling in a non-auditory

region, HA, to test whether sound-induced phosphorylation of TH

is specific to auditory regions. We took photos of HA at its rostral-

and medial-most extent (just caudal to the olfactory bulb), and

used the entire photo to quantify immunolabeling.

We converted all of the photos to 8-bit scale and calculated the

average gray value of each ROI using ImageJ. We then calculated

the average gray value of background labeling in each photograph

by placing between 5 and 20 small circles into areas within or

surrounding the ROI that did not contain immunoreactive fibers.

We then subtracted the average gray value of the background

samples in each photo from the average gray value of the ROI in

that photo and took the absolute value of this difference, which we

called ‘‘corrected gray value’’. In a few cases, the background was

slightly darker than the labeling in the ROI; in those cases we used

‘‘0’’. The mean corrected gray value was then calculated for each

ROI in each bird by averaging across sections.

Statistical Analysis of IHC Data
To analyze the effects of song exposure pTH-IR, we used

a separate general linear model (Stata) for each ROI. These

models use restricted maximum likelihood to estimate parameter

coefficients and z tests to determine whether the value of

a coefficient differs from 0. For each model, the response variable

was the mean corrected gray value for pTH-IR (see above). The

predictor, song duration, was expanded into a dummy-variable set

to model the contrast between 0 and 15 min and the independent

contrast between 0 and 30 min. Because increases in pTH-IR

could be due to increases in the availability of TH rather than an

increase in phosphorylation, the same analyses were also

performed for TH-IR.

Measurement of Catecholamines and their Metabolites in
Regions of Interest
The majority of the material used to label pTH and TH was

obtained from birds collected in 2007 (n= 5 or 6 in each playback

condition). In order to test whether hearing song had rapid effects

on the actual levels of catecholamines and their metabolites, we

wanted to quantify these compounds in brain tissue using HPLC.

We therefore added 12 females to the study in 2009, using

methods identical to those outlined above. Of these 12 birds, four

heard silence, four heard 15 min of song, and four heard 30 min.

After the brains were collected, we used a clean razor blade to

bisect each brain into hemispheres. We fixed one in 5% acrolein

for IHC as described above, thus increasing the sample size for the

IHC portion of the study to n= 10 in the 0 and 15 min conditions,

and n= 9 in the 30 min condition. We flash-froze the other

hemisphere to be shipped to the University of North Carolina for

HPLC analysis (see below). The hemisphere that was flash-frozen

(right or left) was balanced across playback duration.

We determined the concentration of catecholamines and

metabolites by HPLC with electrochemical detection [98] using

micropunches of the ROI in the flash-frozen hemispheres. We

considered n. Ov too small to sample accurately via micropunch,

so our samples were limited to CMM, NCM, and MLd. The

methods for quantification of catecholamines and metabolites are

published elsewhere [20], and we reiterate the relevant portions

here. We sectioned the frozen, non-fixed hemispheres at212uC in

the sagittal plane at 300 mm on a cryostat, thaw mounted the

sections onto glass slides, and rapidly re-froze them on dry ice.

From each of two consecutive sections and using chilled thin-

walled stainless steel spring-loaded punch tools (Fine Science

Tools, Foster City, CA, USA), we micropunched a region of

CMM (0.5 mm i.d.) and of NCM (1 mm i.d.), each for which the

anatomical boundaries have been described [70]. We also took

a micropunch (0.5 mm i.d.) from a region of MLd from two

consecutive sections. We expelled the tissue punches into 1.9 ml

polypropylene microcentrifuge tubes (one for each punch), froze

them on dry ice and stored them at 280uC until assay.

The mobile phase consisted of sodium acetate (3.1 g), mono-

hydrate citric acid (8.84 g), disodium EDTA (5 mg), sodium octyl

sulfonate (215 mg), HPLC grade methanol (200 ml) and double-

distilled, deionized water (800 mL). Immediately before the assay,

we added 125 mL of mobile phase with a concentration of 1 pg/

mL of the internal standard, isoproterenol (Sigma), to each tube.

We sonicated the samples and then centrifuged them at 16,000 g

for 15 minutes at 4uC. We aspirated the supernatant and injected

100 ml from each sample into the HPLC system.

The chromatographic system consisted of a HTEC-500 HPLC

machine (EICOM Corporation, Kyoto, Japan), MIDAS Auto-

sampler (Spark Holland, Emmen, Netherlands) and EPC-500

PowerChrom software Version 2.5 (EICOM Corporation, Kyoto,

Japan) running on a PC. A precolumn (PC-04, 10063.0 mm i.d.,

EICOM Corporation, Kyoto, Japan) was applied to the system to

avoid contamination of the separation column (EICOMPAK SC-

30DS, EICOM Corporation, Kyoto, Japan). We separated the

compounds with mobile phase and the flow rate was 350 ml/min.

We maintained the electrode potential at 750 mV with respect to

an Ag/AgCI reference electrode. We prepared standard solutions

containing either 10 or 1 pg/ml of the five external standards

(Sigma): DA, NE, DOPAC, HVA, and MHPG, and the internal

standard, isoproterenol. The higher concentration of external

standards produced peaks with areas ten times greater than did the

lower concentration (ratio 10.5+/20.5 SD) showing that the

standards were reliably detected. To calculate the amount of

catecholamines and metabolites in the samples, we compared the

area of each compound peak with the area of their corresponding

external standards.

We measured the protein content of each sample by dissolving

the remaining sample pellet in 0.2 N NaOH (100 ml) and
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performing the Bradford protein-dye binding assay (Quick Start

Bradford Protein Assay, Bio-Rad) with bovine serum albumin as

a standard (Bio-Rad) on a mQuant microplate spectrophotometer

(BioTek) [99].

Statistical Analysis of HPLC Data
In some cases, we had difficulty getting reliable protein

measurements. As a result, we had a complete set of protein

measurements only for NCM; for CMM and MLd we were

missing the protein measurement for at least one sample. We

therefore normalized for protein content only for NCM. The data

from CMM and MLd were not normalized. To accommodate this

discrepancy, we compared the concentrations of each compound

only between playback conditions and not ROIs. We used

a separate general linear model for each compound and each

ROI as described for pTH above. For each model, the response

variable was the mean concentration from the two punches for

that ROI (in pg/mg protein for NCM and pg for CMM and MLd;

see above), and the predictor song duration was expanded into

a dummy-variable set to model the contrast between 0 and 15

minutes and the independent contrast between 0 and 30 minutes.

Statistical Analysis of Behavioral Data
We used Kruskal-Wallis ANOVAs to test whether playback

duration affected vocalization behavior, followed by Spearman

correlation tests to rule out the birds’ own vocalizations as a source

of variability for the CA variables that were affected by playback

duration.
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