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Abstract

Because of the increasing gap between the data from sequencing and structural genomics, the accurate prediction of the
structural class of a protein domain solely from the primary sequence has remained a challenging problem in structural
biology. Traditional sequence-based predictors generally select several sequence features and then feed them directly into a
classification program to identify the structural class. The current best sequence-based predictor achieved an overall
accuracy of 74.1% when tested on a widely used, non-homologous benchmark dataset 25PDB. In the present work, we built
a multiple linear regression (MLR) model to convert the 440-dimensional (440D) sequence feature vector extracted from the
Position Specific Scoring Matrix (PSSM) of a protein domain to a 4-dimensinal (4D) structural feature vector, which could
then be used to predict the four major structural classes. We performed 10-fold cross-validation and jackknife tests of the
method on a large non-homologous dataset containing 8,244 domains distributed among the four major classes. The
performance of our approach outperformed all of the existing sequence-based methods and had an overall accuracy of
83.1%, which is even higher than the results of those predicted secondary structure-based methods.
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Introduction

The tertiary structures of proteins with high molecular

specificity are believed to play key roles in performing their

biological functions. However, the increasing gap between the

output of sequencing and structural genomics creates difficulty in

the advancement of research. To obtain additional knowledge

about proteins, scientists have focused on structural space, and two

comprehensive databases, SCOP [1] and CATH [2], which

describe protein structural and functional relationships using a

hierarchy of classifications, have been constructed. These two

methods categorize protein domains into classes based on the

grouping of assigned folds, which are categorized according to the

contents and spatial arrangements of the secondary structural

elements of the protein domains [3]. The current version of the

SCOP database, v. 1.75, includes eleven structural classes, with

the four major classes (all-a, all-b, a/b and a+b) covering

approximately 90% of the entries. Slightly different from SCOP,

CATH does not differentiate between a/b and a+b domains at

the class level (these are treated together as mixed ab) but further

classifies these domains into different topologies. The annotated

protein domains are quite limited compared with the 13,116,724

non-redundant protein sequences in the NCBI RefSeq database

(v. 48) [4], which increase the need for accurate and automated

sequence-based protein structural class prediction methods.

Correct prediction of protein structural classes has been proven

useful for the prediction of protein secondary and tertiary

structures [5,6].

During the past three decades, many computational approaches

have been developed for predicting the structural class of protein

domains from their amino acid (AA) sequences. These approaches

differ mainly in the features selected to represent the AA sequences

and the classification algorithms. The early approaches were

primarily based on the AA composition, and treated protein

domains as 20-dimensional (20D) vectors corresponding to the

frequencies of the twenty types of AAs [7–11], based on the

discovery of Muska and Kim that the structural class of a protein

domain correlates strongly with its AA composition [12]. After

realizing that such approaches ignored information on the

sequence order, which is also correlated with the protein structural

class, the so-called pseudo-AA composition (PseAAC) [13,14] and

polypeptide composition [15,16] were introduced to overcome the

limitation. Several other features [17–25], such as the autocorre-

lation function based on the non-bonded residue energy [17],

complexity measure factors [18], functional domain composition

[19], and features extracted from the Position Specific Scoring

Matrix (PSSM) [20,21] and predicted secondary structure [3,22–

24] have also been applied to represent AA sequences. These

selected features were then fed into various classification

algorithms, such as fuzzy clustering [26], component-coupled

[27], Bayesian classification [28], neural networks (NNs) [29],

logistic regression [30,31] and support vector machine (SVM)

algorithms [14,22,23,32,33]. Without considering the predicted

secondary structural information, such prediction methods

achieved accuracies close to or greater than 90% when tested on

datasets of limited size or relatively high sequence identity but

performed poorly on datasets that were expanded or characterized

by low, twilight-zone identity, with accuracies between 50 and

70% [3]. Considering that the structure of a protein is determined

by its amino acid sequence [34], improvements in the sequence-

based prediction methods are promising.

In the present work, we developed an approach that predicts

domains into the four major SCOP classes (all-a, all-b, a/b and

a+b) by converting each domain into a discriminating 4-
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dimensional (4D) structural feature vector solely based on the 440-

dimensional (440D) sequence feature vector extracted from the

PSSM. At first, each domain in the training set was assigned to an

approximate 4D structural feature vector based on the composi-

tion of its secondary structural elements and to another 440D

sequence feature vector based on its PSSM profile. Assuming that

the domains’ 4D structural feature vectors were linear combina-

tions of their 440D sequence feature vectors, the regression

coefficient matrix was determined by using iterative least-squared

multiple linear regression (MLR) method [35] based on the

training data. Using the estimated coefficient matrix, the 4D

structural vectors of the domains in the testing set were calculated

according to their 440D sequence feature vectors, and then

utilized to predict the four major classes. We employed 10-fold

cross-validation and jackknife tests [36] to train and evaluate the

model on a large, non-homologous dataset containing 8,244

domains selected from the ASTRAL SCOP40 v. 1.73 dataset [37],

and an overall accuracy of 83.1% (jackknife test) was achieved. A

blind test was also conducted on another dataset comprising 1,185

domains that are not included in SCOP v. 1.73 but are included in

SCOP v. 1.75 to evaluate the unbiased performance of the

method; an overall accuracy of 80.1% was achieved. The

performance of our approach outperformed all of the existing

sequence-based methods and was even better than those predicted

secondary structure-based methods.

Results

Discriminative Ability of the Structural Feature Vectors
To obtain the regression coefficient matrix Ashaps,seq, which links

the structure feature vector Vshaps to the sequence feature vector

Vseq, the 8,244 domains were grouped into the following four

subsets: 1) 3,673 all-a vs. all-b domains; 2) 6,315 all-a vs. mixed ab
(a/b and a+b) domains; 3) 6,480 all-b vs. mixed ab domains; and

4) 4,571 a/b vs. a+b domains. 10-fold cross-validation was

performed to train the MLR model and to test the discrimination

ability of the calculated structural vectors. The 4D structural

feature vectors of the domains in the training set were calculated

according to Eq. 2, and the corresponding 440D sequence feature

vectors were obtained from their PSSMs according to Eq. 3. Two

rounds of least-squared MLRs were employed to determine the

regression coefficient matrix Ashaps,seq. Using the trained coefficient

matrix, the 4D structural vectors were calculated from the 440D

sequence vectors for each domain in the testing set. Within each of

the four subsets, the scores of a certain dimension (x, y1, y2, z) of the

domains’ 4D structural feature vectors can clearly differentiate

between the corresponding two groups of domains. As shown in

Figure 1, the discriminative accuracy was 99.5% for the first

subset, containing the all-a vs. all-b domains, 95.6% for the second

subset, containing the all-a vs. mixed ab domains that have x.0,

92.7% for the third subset, containing the all-b vs. mixed ab
domains that have x,0, and 89.4% for the last subset, containing

the a/b vs. a+b domains. The structural class of any query

domain could be predicted by combining two of the four types of

discrimination. More specificially, the structural feature scores

x.0 and y1,0 determine an all-a domain, x,0 and y2,0

determine an all-b domain, y1.0 or y2.0, together with z.0,

determine an a/b domain, and y1.0 or y2.0, together with z,0,

determine an a+b domain.

Structural Class Prediction Accuracies
The results of 10-fold cross-validation and jackknife tests

performed on the D8244 dataset are summarized in Table 1.

Based on the results, the overall accuracy of our method is high

(83.1%), and the GC2 value [38] of our method achieved 0.56

using the dataset D8244. A blind test was also conducted on the

independent D1185 dataset comprising 1,185 domains that are in

SCOP v. 1.75 but not in v. 1.73 to evaluate the unbiased

performance of the method. Based on the results shown in Table 2,

a high overall accuracy (80.1%) was achieved.

According to Table 1, the prediction of the all-a domains has

the highest sensitivity, specificity, and MCC values among the four

structural classes, indicating that the prediction of domains in this

class is the most reliable. As shown in Table 2, this advantage is

also reflected in the blind test using the D1185 dataset, in which

only 11 of the 251 all-a domains (4.4%) were mispredicted. In

contrast, the prediction of the a+b domains is inferior to that of the

remaining three classes, suggesting that difficulty exists in

recognizing the anti-parallel b sheets. This disadvantage is also

reflected in the blind test (Table 2) in which 134 of the 477 a+b
domains (28.1%) were mispredicted. Although many more a+b
domains were involved in decreasing the overall prediction

accuracy for the D1185 dataset to approximately 80.1%, the

overall prediction accuracy is still much higher than that achieved

by previous sequence-based algorithms.

Comparison with Other Prediction Methods
Because a widely used, low-identity dataset, 25PDB, is often

used to evaluate the performance of protein structural class

prediction methods [39], we also tested our method using the

25PDB dataset to compare side-to-side the performance of our

approach with that of other methods. However, due to the limited

size of 25PDB, the utilization of all 440 features would cause heavy

over-fitting, which would seriously degrade the prediction

accuracy. Figure 2 shows the relationship between the overall

accuracy and the number of selected feature vectors. Using

25PDB, the overall prediction accuracy of 10-fold cross-validation

first increased rapidly when less than 60 features were used,

whereas the accuracy then increased more slowly until the highest

overall accuracy of 77.0% was achieved with the utilization of 120

optimal features for each dimension; the accuracy gradually

declined thereafter. When using D8244, the overall accuracy

increased gradually still until all of the 440 feature vectors were

included. These results suggest that, the limited number of features

does not cover sufficient sequence information to characterize the

structural information and that further sequence features are

required to achieve a better result.

The jackknife test was performed using the 25PDB dataset,

using 120 optimal features for each dimension. The performance

of our approach versus other methods is shown in Table 3. Most of

the previous sequence-based methods achieved an overall

prediction accuracy of less than 70.0%, along with the GC2 value

ranging from 0.06 to 0.28, highlighting the poor performance. In

contrast, the overall prediction accuracy of our approach is high

(up to 77.2%), which is close to the performance of the predicted

secondary structure-based methods. This level of performance,

achieved using only 120 features for each dimension, should be

away from the expected performance of our method.

Discussion

In the present work, we employed a MLR model to transform

the 440D sequence feature vector extracted from the PSSM of a

protein domain into a 4D structural feature vector, and, the

structural class of the domain was then predicted. We performed

10-fold cross-validation and jackknife tests on the large non-

redundant dataset D8244 to evaluate the performance of our

method. A high overall accuracy of 83.1% (jackknife test) was

Accurate Prediction of Protein Structural Class

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e37653



achieved, which is even higher than that of those predicted

secondary structure-based methods. A blind test was also

performed using another dataset of updated domains, D1185,

and the method provided an overall accuracy of 80.1%.

Moreover, to compare the performance of our approach with

that of the other methods, we also tested our approach on a widely

Figure 1. Discrimination of the protein domains between paired structural class groups. A) Discrimination of the all-a from all-b domains.
B) Discrimination of the all-a from mixed ab domains. C) Discrimination of the all-b from mixed ab domains. D) Discrimination of the a/b from a+b
domains.
doi:10.1371/journal.pone.0037653.g001

Table 1. Performance of the 10-fold cross-validation and jackknife tests using the D8244 dataset.

Class 10-fold Cross-validation Jackknife

Sn (%) Sp (%) MCC GC2 Sn (%) Sp (%) MCC GC2

All-a 91.9 97.2 0.88 92.0 97.3 0.89

All-b 84.6 96.1 0.82 85.0 96.2 0.82

a/b 83.1 94.4 0.78 83.2 94.5 0.79

a+b 73.7 89.0 0.62 74.4 89.0 0.63

Overall 82.8 0.56 83.1 0.56

doi:10.1371/journal.pone.0037653.t001
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used, low-identity dataset, 25PDB. Due to the limited size of the

25PDB dataset, the utilization of all 440 of the features would

cause heavy over-fitting, which would seriously degrade the

prediction accuracy. For this reason, we only used 120 optimal

features for each dimension, which provided an overall prediction

accuracy of 77.2%. Although the accuracy is away from the best

performance of our approach, it is still higher than that of the

existing sequence-based methods and is even close to that of those

predicted secondary structure-based methods (Table 3). The

improved performance of our methods is due to the effective

utilization of sequence features and also to a bridging of the gap

between the sequence and structural features that directly

differentiate between the domains of the four classes. Furthermore,

there is a limitation in the predicted secondary structure based

methods; their prediction accuracies rely heavily on the accuracies

of the underlying secondary structure prediction methods.

Considering that current secondary structure prediction methods

achieve an average accuracy close to 80.0% [3], it would be

difficult for structural class prediction methods based on them to

improve much farther. Moreover, our method directly maps each

domain into a 4D structural space based solely on the PSSM,

which bridges the gap between the protein sequence space and the

structural space and provides further research possibilities

regarding the protein sequence-structure-function relationships.

Materials and Methods

Datasets
D8244. To train and test the model, a large dataset containing

8,244 domains distributed among the four major classes (all-a, all-

b, a/b and a+b) was constructed as described below. A subset

containing domains with pair-wise sequence identities of no more

than 40% was downloaded from the ASTRAL compendium (v.

1.73) [37]. Domains that are either discontinuous, have a sequence

length of less than 30 residues or with limited number of residues

resolved (,50%), or belonging to classes other than the four major

classes were removed. The final dataset, named D8244, comprises

8,244 domains that are located in 6,775 protein sequences. Of

these 8,224 domains, 1,744 belong to the all-a class, 1,929 belong

to the all-b class, 2,357 belong to the a/b class, and the remaining

2,214 belong to the a+b class. The PSSM, which provides the

evolutionary information was generated for each of the 6775

Table 2. Performance of the blind test using the independent D1185 dataset.

Class Accuracies

Sn (%) Sp (%) MCC GC2

All-a 95.6 95.6 0.88

All-b 81.0 94.7 0.76

a/b 78.9 94.2 0.71

a+b 71.9 87.4 0.60

Overall 80.1 0.50

doi:10.1371/journal.pone.0037653.t002

Figure 2. The effect of the number of sequence features used on the overall prediction accuracies for the two datasets 25PDB and
D8244.
doi:10.1371/journal.pone.0037653.g002
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protein sequences by searching against the NR database (v2.2.1,

downloaded on Jul 8, 2011) using Position-Specific Iterated

BLAST (PSI-BLAST) (-j 3–h 0.001) [40]. Detailed information

of the D8244 dataset is shown in supplementary table S1.

D1185. Another blind test set containing 1,185 domains was

constructed to evaluate the unbiased performance of the method.

All of the domains that were updated between SCOP v. 1.73 and

SCOP v. 1.75 were downloaded. Similarly, only continuous

domains with a sequence length of more than 30 residues and

belonging to the major four classes were retained. These domains

were filtered using a clustering program CD-HIT [41] at a 40%

sequence identity, and the remaining domains with more than

40% identity with any domain in D8244, according to the CD-

HIT-2d [41] were removed. This final blind dataset, named

D1185, includes 1,185 domains from 1,023 protein sequences. Of

these 1,185 domains, 251 belong to the all-a class, 258 belong to

the all-b class, 199 belong to the a/b class, and the remaining 477

belong to the a+b class. PSSMs were obtained for all 1,023 of the

sequences as described above. Detailed information of the D1185

dataset is shown in supplementary table S2.

25PDB. The 25PDB dataset was originally constructed by

Kurgan and Homaeian [39] and has since been widely used as a

benchmark dataset by other researchers. In the present work, this

dataset was employed to test the current method and facilitate its

comparison with other methods. Domains in 25PDB were selected

from high-resolution protein structures, with low pairwise

sequence identity (no more than 25%). The 1,673 domains

include 443 all-a, 443 all-b, 346 a/b, and 441 a+b domains

obtained from 1,527 protein sequences. The PSSMs for all 1,527

of the protein sequences were obtained as described above.

Composition and Distribution of the Secondary Structure
Elements

A function describing the composition of the secondary

structure elements along the backbone of each protein domain

was constructed. For a given protein domain with a sequence

length L, if the number of secondary structure elements in a

segment of length k is {ni} (iM{a-helix, anti-parallel b sheet, and

parallel b sheet}), then the composition of these three elements in

the segment should be {ni/k}. ‘‘Walking’’ along the domain

sequentially, a universal function that calculates the average

composition of the three secondary structure elements in all

segments is expressed by the following equation:

Q
0
i~(

XL{kz1

j~1

ffiffiffiffiffiffi
ni,j

k

r

L{kz1
)2, (i[fa-helix,anti-parallel-b,

and parallel-b sheetg,k~5)

ð1Þ

In this equation, ni,j is the number of the ith element in a

segment of length k around position j and, consequently, Q
0

i

describes the spatial organization of the secondary structure

elements of a protein domain. If a certain type of secondary

structure element i is uniformly distributed along the protein

sequence, then Q
0
i should be equal to the content of this secondary

structure element calculated using the entire sequence (Qi~
Ni

L
):

4D Structural Feature Vector
According to SCOP’s definition of structural classes, the

domains in various structural classes are differentiated in their

composition and in the arrangements of their secondary structure

elements. In this study, a 4D structure feature vector Vshaps

reflecting these differences was constructed based on the corre-

sponding value of Q
0
i=Qi for each domain. Revisions to these 4D

vectors were conducted to ensure that the domains of different

structural classes are located in different regions of the 4D

Table 3. Comparison of the jackknife test results between our method and other competing structural class prediction methods
using the 25PDB dataset.

Algorithm Reference Accuracies GC2

All-a All-b a/b a+b Overall

SVM (Gaussian kernel) [33] 68.6 59.6 59.8 28.6 53.9 0.17

Bagging with random tree [11] 58.7 47.0 35.5 24.7 41.8 0.06

Logistic regression [30] 71.1 65.3 67.1 37.3 60.0 0.25

StackingC ensemble [30] 74.6 67.9 70.2 32.4 61.3 0.26

Specific tri-peptides [16] 60.6 60.7 67.9 44.3 58.6 –

LLSC-PRED [31] 75.2 67.5 62.1 44.0 62.2 0.27

SVM [31] 77.4 66.4 61.3 45.4 62.7 0.28

AAD-CGR [25] 64.3 65.0 65.0 61.7 64.0 –

CWT-PCA-SVM [14] 76.5 67.3 66.8 45.8 64.0 –

AADP-PSSM [20] 83.3 78.1 76.3 54.4 72.9 –

AAC-PSSM-AC [21] 85.3 81.7 73.7 55.3 74.1 –

SCPRED [3] 92.6 80.1 74.0 71.0 79.7 0.55

MODAS [22] 92.3 83.7 81.2 68.3 81.4 0.58

RKS-PPSC [24] 92.8 83.3 85.8 70.1 82.9 –

SVM [23] 92.6 81.3 81.5 76.0 82.9 –

This work 92.6 72.5 71.7 71.0 77.2 0.50

doi:10.1371/journal.pone.0037653.t003
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structural space. Each of the four dimensions differentiates

between the domains of two classes, as follows: the first feature

score (named x) primarily differentiates all-a from all-b domains:

x~
Q
0
a

Qa
{

Q
0
b

Qb
{e ð2aÞ

In this equation, e is the structural class-related variable whose

initial value was arbitrarily assigned to ensure that the x scores of

the all-a domains are greater than zero and those of the all-b
domains are less than zero.

The second feature score (named y1) differentiates all-a from

mixed ab (a/b and a+b) domains that have x scores greater than

zero:

y1~
Q
0
b

Qb
{e ð2bÞ

As above, the initial value of e was assigned to ensure that the y1

scores of the all-a domains are less than zero and those of the

mixed ab domains are greater than zero.

The third feature score (named y2) differentiates all-b from

mixed ab domains that have x scores less than zero:

y2~
Q
0
a

Qa
{e ð2cÞ

As above, the initial value of e was assigned to ensure that the y2

scores of the all-b domains are less than zero and those of the

mixed ab domains are greater than zero.

The fourth feature score (named z) differentiates a/b from a+b
domains as follows:

z~
Q
0
para{b

Qpara{b
{

Q
0
anti{b

Qanti{b
{e ð2dÞ

Following the above description, the initial value of e was

assigned to ensure that the z scores of the a/b domains are greater

than zero and those of the a+b domains are less than zero.

440D Sequence Feature Vectors
Another 440D sequence feature vector Vseq was also extracted

from the PSSM for each domain. The PSSMs generated using

PSI-BLAST are powerful resources for constructing feature sets

and have been widely used in bio-computational prediction tools.

The evolutionary information summarized in PSSMs generalizes

the attribute of each position in the protein sequence, ultimately

improving the sensitivity of the prediction model. For a query

domain with a sequence length of L, the PSSM is an L*20-

dimensional score matrix, Pi,j (i = 1,2,…,L; j = 1,2,…,20). The (i,j)th

entry of the profile is a nominal score that represents the

occurrence of the AA in position i of the query domain sequence

that has been substituted by an AA of type j during evolution. The

value of Pi,j.0 indicates that the occurrence of the amino acid in

position i substituted by the amino acid type j is more frequent

than that of the pseudo-count; otherwise, the occurrence of this

substitution is less frequent. In the present work, we separately

considered the AA composition of the domains, autocorrelations

between residues, and several other variables related to the

residue’s position in the sequence. The details of the 440 features

are the following:

1) 20 features measuring the square root of the AA composition,

with Nj denoting the occurrence of AA type j appearing in the

query sequence:

AACj~

ffiffiffiffiffiffi
Nj

L

r
(j~1,2,3,:::,20) ð3aÞ

2) 40 features measuring the average score of the AAs in the query

domain being mutated to AA type j during the evolutionary

process, with 20 for Pi,j.0 :

Pz
j

~
1

L

XL

i~1

Pi,j(pi,jw0,j~1,2,3,:::,20) ð3bÞ

and the remaining 20 for Pi,j,0 :

P{
j

~
1

L

XL

i~1

jPi,j j(pi,jv0,j~1,2,3,:::,20) ð3b0Þ

3) 20 features measuring the autocorrelation of the hydrophobicity

index of two residues separated by a distance of k, with 10 for

Pi,j.0 :

ACHz
k ~

1

L{kz1

XL{kz1

i~1

hi
:hizk,

hi~

P20

j~1

Pi,j|hj

20
(Pi,jw0,k~1,2,3,:::,10)

ð3cÞ

and the remaining 10 for Pi,j,0 :

ACH{
k ~

1

L{kz1

XL{kz1

i~1

h
0
i
:h
0
izk

,

h
0
i
~

P20

j~1

Pi,j|hj

20
(Pi,jv0,k~1,2,3,:::,10)

ð3c0Þ

4) 20 features measuring the autocorrelation of the side chain

masses of two residues separated by a distance of k, with 10 for

Pi,j.0 :

ACMz
k ~

1

L{kz1

XL{kz1

i~1

mi
:mizk,

mi~

P20

j~1

Pi,j|Mj

20
(Pi,jw0,k~1,2,3,:::,10)

ð3dÞ

and the remaining 10 for Pi,j,0 :

Accurate Prediction of Protein Structural Class
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ACM{
k ~

1

L{kz1

XL{kz1

i~1

m
0
i
:m
0
izk

,

m
0
i
~

P20

j~1

Pi,j|Mj

20
(Pi,jv0,k~1,2,3,:::,10)

ð3d0Þ

5) 20*7 features measuring the autocorrelation of the PSSM scores

of two residues separated by a distance of k:

ACj,k~
1

L{kz1

XL{kz1

i~1

Pi,j
:Pizk,j(j~1,2,3,:::,20; k~1,2,3,:::,7)

ð3eÞ

6) 40*3 features measuring the square value of the average score

for segments of length k along the backbone, with 20*3 for Pi,j.0 :

SPz

k,j
~

1

L{kz1
:
XL{kz1

i~1

Pi,j
2
,Pi,j~

1

k
:
Xizk{1

2

l~i{k{1
2

Pl,j(Pl,jw0; j~1,2,3,:::,20; k~7,9,11)

ð3fÞ

and the remaining 20*3 for Pi,j,0 :

SP{

k,j
~

1

L{kz1
:
XL{kz1

i~1

Pi,j
2
,Pi,j~

1

k
:
Xizk{1

2

l~i{k{1
2

Pl,j(Pl,jv0; j~1,2,3,:::,20; k~7,9,11)

ð3f 0Þ

7) 20*4 features measuring the mutation position preference of AA

type j:

Dj,k~

PL{k

i~1,L=3

(Pi ,j{Pizk,j)

k

(j~1,2,3,:::,20; i~1,k~L=3,L=2,2L=3; i~L=3,k~L=3)

ð3gÞ

Iterative multiple linear regression (MLR)
Assuming that the structural vector Vshaps are a linear

combination of those of the sequence vector Vseq, then the

following equation holds:

Vshaps~Ashaps,seq|Vseq,

Ashaps,seq~VshapsV
T
seq

VseqVT
seq

{1

ð4Þ

In this equation, Ashaps,seq is a 46441 coefficient matrix linking

Vshaps to Vseq, and consequently, 1764 coefficients require estima-

tion. Using the 4D structural feature vectors and the 440D

sequence feature vectors of the domains in the training set, all of

the coefficients can be estimated using the MLR method to

minimize the sum of the squares of the deviations between the left-

and right-hand sides of Eq. 4, as previously described [35]. In the

present work, a two-step iterative MLR procedure was employed

to optimize the coefficient matrix. Once the coefficient matrix is

obtained, the 4D structural feature vector for any structure-

unknown domain can be calculated from the PSSM of its AA

sequence, and its structural class can then be predicted.

Sequential Forward Stepwise Regression
When testing the method on a dataset of limited size, over-

fitting becomes a problem and will heavily affect the prediction

accuracy. In the present work, we used a simple sequential forward

stepwise regression method to search for the optimal group of

features for such datasets. For each dimension of the structure

vectors, the sequence feature that correlated most strongly with it

was chosen first. We note that the chosen sequence features for the

four dimensions of the structure vectors need not be the same.

Sequentially, the remaining feature that performed the best with

the combined chosen features was added to the MLR model, until

all of the features were included.

Performance Measures
In the present work, 10-fold cross-validation and jackknife tests

[36] were employed to evaluate the performance of the 4D

structural feature vectors over the large D8244 dataset selected

from SCOP40 v. 1.73. Furthermore, a blind test was also

performed on another independent dataset, D1185, containing

low-identity domains that were updated between SCOP v. 1.73

and SCOP v. 1.75 to assess the unbiased prediction performance.

To evaluate the performance comprehensively, the standard

prediction accuracies and Matthews correlation coefficients

(MCC) over each of the four structural classes were reported, as

were the overall accuracy and the generalized squared correlation

(GC2) over the entire dataset. Both the MCC and GC2 are related

to x2 statistics [38]. The MCC is used to measure the quality of

binary classifications, and returns a value ranging between 21 and

1, with 0 representing random correlation, and greater positive

(negative) values indicating a higher (lower) prediction quality for a

given class. When there are more than two classes for prediction,

the GC2 is required instead, and its value ranges between 0 and 1

in which, 0 corresponds to the worst classification (no correct

predictions) and 1 corresponds to a perfect classification [38].

These parameters are detailed in the following equations:

Sni~
TPi

TPizFNi

,Spi~
TNi

TNizFPi

Accall~

P
i TPiP
i Ni

MCCi~
TPi

:TNi{FPi
:FNiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TPizFPi):(TPizFNi):(TNizFPi):(TNizFNi)
p

GC2~
XK

i~1

XK

j~1

zi,j{ei,j

� �2

ei,j

 !
: 1

N(K{1)
N~

XK

i~1

Ni,K~4

ð5Þ
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