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Abstract
During the last two decades, the importance of human genome copy number variation (CNV) in
disease has become widely recognized. However, much is not understood about underlying
mechanisms. We show how, although model organism research guides molecular understanding,
important insights are gained from study of the wealth of information available in the clinic. We
describe progress in explaining nonallelic homologous recombination (NAHR), a major cause of
copy number change occurring when control of allelic recombination fails, highlight the growing
importance of replicative mechanisms to explain complex events, and describe progress in
understanding extreme chromosome reorganization (chromothripsis). Both non-homologous end-
joining and aberrant replication have significant roles in chromothripsis. As we study CNV, the
processes underlying human genome evolution are revealed.
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Introduction
Genome instability contributes tremendously to mutational processes during human genome
evolution [1], in association with human diseases [2] and manifesting as polymorphic
variation in populations [3–5]. Recent knowledge gained through studies of genomic
disorders [2,6] and the development and clinical implementation of genome-wide assays for
copy number variation (CNV) detection [7,8] enabled large-scale fine mapping and
nucleotide level ascertainment of rearrangement breakpoint junctions in human populations,
providing an invaluable resource with which to study rearrangement mechanisms. Several
major mechanisms have been proposed for human genome rearrangements and these include
nonallelic homologous recombination (NAHR), nonhomologous end-joining (NHEJ),
replicative mechanisms, and long interspersed element (LINE) - mediated retrotransposition
or mobile element insertions (MEIs). Of these, NAHR and replicative mechanisms have
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figured prominently in explaining a wide variety of germline and somatic rearrangement
events.

NAHR results in recurrent rearrangements, i.e. rearrangements that include the same
genomic interval occurring in unrelated individuals. Such recurrence is mediated by a
common genomic structure or architecture in which the rearranged interval is flanked by
paralogous repeat sequences or low-copy repeats (LCRs, also known as segmental
duplications [9]). Since the NAHR model was proposed ten years ago [10], dozens of
NAHR-mediated genomic disorders have been documented. Replication mechanisms, on the
other hand, are a major contributor to nonrecurrent genomic rearrangements wherein the
rearrangement size, genomic extent, and breakpoint position at a genetic locus can differ
amongst unrelated subjects. Although replication mechanisms can explain both simple
(usually a single deletion, duplication, inversion or translocation) and complex (a
combination of more than one simple event) nonrecurrent rearrangements, perhaps their
major contribution has been to provide a parsimonious explanation for complex human
genomic rearrangements that cannot be readily explained by alternative mechanisms such as
NHEJ, because of their characteristics.

Here we provide an overview of insights accumulated and knowledge gained from recent
studies of both recurrent and complex rearrangements, summarize known recurrent genomic
disorders, and highlight lessons learnt regarding NAHR and replication mechanisms.

NAHR mediates recurrent CNVs and chromosomal rearrangements
Nonallelic homologous recombination, or ectopic recombination, was one of the earliest
mechanisms identified to be responsible for genomic disorders [2,6,10]. Recombination
between paralogous LCRs in direct orientation can result in deletions and duplications, often
occurring as de novo mutations and associated with recurrent sporadic genomic disorders,
whereas inverted repeats can mediate inversions (Figure 1A). The NAHR mechanism favors
deletions over duplications, because deletions can result from crossovers both in cis and in
trans, whereas duplications can only result from crossovers in trans (Figure 1B). Turner et
al. measured germline rates of de novo deletions and duplications directly at three autosomal
and one Y chromosome loci and showed that, at least in male meiosis, deletions are
observed to occur approximately twice as frequently as duplications on autosomes [11].

If crossing-over occurs between LCRs in nonhomologous chromosomes, recurrent
translocation may be produced (Figure 1C). Ou et al. demonstrated experimentally that
NAHR mediates constitutional recurrent translocations t(4;11) and t(8;12) [12]. They also
predicted computationally that 1143 LCR pairs fulfill empirically derived criteria (LCR
pairs of > 5 kb in length, > 94% identity, proper substrate orientation dependent on
centromere position) to mediate recurrent translocations [12].

NAHR can also act on paralogous LCR substrates located on sister chromatids leading to
isochromosome formation (Figure 1B), i.e. a structurally abnormal chromosome with one
arm partially deleted and the other arm duplicated. Such NAHR-generated isochromosomes
are isodicentric (idic) and are observed as somatic events (usually in tumors) first described
for i(17q) [13] or as constitutional events including i(Xq) [14] and idic(Y) [15].

With knowledge of human genome-wide LCR architecture, one can potentially predict
regions prone to NAHR. Sharp et al. analyzed the NCBI34/hg16 build of the human
reference genome and identified 130 regions of hypothesized genomic instability (flanked
by LCR pairs of > 10 kb in length, > 95% identity, with intervening sequence between 50 kb
and 10 Mb), spanning 274 Mb of non-redundant sequence that could predispose to
interstitial deletion/duplication [16]. Since then, many of the predicted regions have been
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reported to be associated with genomic disorders. We now construct an updated map of
genome-wide NAHR-prone regions using the aforementioned parameters plus one
additional requirement that the predicted region should not span centromeres. LCR data
were downloaded from the Segmental_Dup track in the UCSC genome browser (CRCh37/
hg19). A total of 89 merged, non-redundant regions were identified, spanning ~189 Mb
(Figure 2). Until now, 37 genomic regions have been reported to be associated with genomic
disorders caused by NAHR (Figure 2). The majority of these regions (32/37) are predicted
by this computational NAHR map. Amongst the most recent, is a chromosome 12 locus that
deletes DPY19L2 and causes male infertility due to globozoospermia [17].

Ectopic synapsis – a prerequisite for NAHR?
Despite the fact that the phenomenon of NAHR in association with genomic disorders has
been defined for twenty years [18,19], limited efforts have focused on understanding why
crossing-over can occur at ectopic positions. Studies exploring the frequencies of different
types of recurrent de novo deletions and duplications at 17p11.2 revealed that NAHR
frequency is highly correlated with length of flanking repeats and influenced by the distance
between repeats [20]. The length of flanking LCR (hundreds of kilobases) is much greater
than the length of homology required to implement a homologous recombination event
(hundreds of bp); i.e. the so-called Minimum Efficient Processing Segment or MEPS
[21,22]. Thus, such an observed length dependence correlation with crossover frequency
suggests that pairing of the flanking repeats may be a novel rate-limiting step prior to
ectopic crossing-over. If NAHR predominantly occurs in meiosis, this pairing may be
achieved by a faulty synapsis between nonallelic sequences, or ectopic synapsis [20]. One
prediction of the ectopic synapsis model is that mutations in proteins required for synapsis
might affect the rates of ectopic crossing-over or NAHR. Interestingly, recent research from
yeast showed that deletion of a key component of the synaptonemal complex almost
completely abolishes ectopic crossing-over (M Shinohara et al., personal communication),
reinforcing the idea that ectopic crossing-over depends on synapsis. If ectopic synapsis is
also required for NAHR events at genomic loci other than 17p11.2, investigations to
pinpoint specific regions prone to abnormal synapsis, or specific factors involved in this
process may further improve prediction of NAHR hotspots.

PRDM9 as a global regulator contributing to NAHR hotspot specification
Evidence suggests that specific nucleotide sequence level features may have a role in
stimulating homologous recombination, i.e. recombination hotspots may be facilitated by
DNA sequence motifs in cis. When examining historical recombination sites in HapMap
samples, Myers et al. identified a degenerate 13-mer motif (5′-CCNCCNTNNCCNC-3′)
that is crucial for recruiting crossovers in 40% of all human hotspots [23]. This cis-acting
sequence motif is potentially analogous to an E. coli chi sequence [24]. This human HR
hotspot motif, although identified from allelic recombination data, is also observed in
proximity to crossover regions in NAHR products [25,26]; it has been well established that,
as might have been anticipated [27], NAHR and allelic homologous recombination (AHR)
hotspots coincide [28–30]. Following the discovery of this motif, three groups, using
evidence from human and mouse experiments, independently reported that the motif is
likely the binding site of a zinc-finger protein, H3K4 trimethylase, PR domain-containing
protein 9; PRDM9 [31–33]. PRDM9 may be a major trans determinant of meiotic
recombination hotspots. Berg et al. reported that variation in the zinc-finger repeat array in
PRDM9 can strongly affect meiotic recombination hotspot activity, minisatellite instability
and genomic instability resulting from NAHR [34,35]. These findings suggest that variation
in PRDM9 may be one of the major regulators of certain human pathological genomic
rearrangements. Intriguingly, the DNA sequence motif that encodes the hotspot binding

Liu et al. Page 3

Curr Opin Genet Dev. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



element of PRDM9 is itself a minisatellite sequence; such DNA sequences are highly
variable, a property that led to DNA fingerprinting and a human personal identification
revolution [36].

Recurrent and complex triplications in the human genome
Improved CNV detection methods and lower cost, higher resolution arrays in clinical
screening assays are unveiling an increasing number of triplications associated with disease
phenotypes. Like duplications, triplications can be recurrent or nonrecurrent and may fall
into two general structural categories (Figure 3A). The first category, which we designate
type I, is represented by a recurrent structure of three copies of genomic segments in
tandem, each with a head to tail orientation, separated and flanked by LCRs (three copies of
the identical genomic interval that is triplicated and four copies of the flanking LCR on the
rearranged chromosome in total). The general features of the type I triplication structure,
tandem triplication due to unequal crossing-over, were outlined and proposed 75 years ago
to explain the ‘double Bar’-phenotype studied by Calvin Bridges [37], decades before DNA
was elucidated. The molecular details of this structure were reported recently in subjects
with Xp22.31 triplications, potentially formed by a two-step NAHR event as evidenced by
the double crossover mapped at breakpoints [26]. The second category (type II) consists of a
triplicated segment inserted in an inverted orientation between two copies of the duplicated
segments: i.e. DUP-TRP/INV-DUP. This DUP-TRP/INV-DUP configuration is found to
contribute to most of the triplications observed at the MECP2 and PLP1 loci reported thus
far [38]. By inverting a segment of the genome, breakpoints can be brought within spatial
proximity and a remarkably complex structure is generated with only two breakpoint
junctions. Furthermore, novel gene functions can be created by breakpoint junctions due to
the fusions generated and the involvement of the reverse complement DNA strand in the
rearrangement. A common genomic architecture, wherein a pair of inverted LCRs flanks
one of the genomic intervals subsequently duplicated, is proposed to underlie formation of
the complex type II triplications by both a homology-driven step (between inverted repeat
substrates) and a second nonhomologous or microhomologous step [38]. This simple
configuration of inverted repeats, frequently observed throughout the human genome, is
proposed to predispose other genomic regions to formation of the complex type II
triplication structure.

Replication mechanisms and complex rearrangements
Complex genomic rearrangements (CGR) are those that consist of more than one simple
rearrangement, and have two or more breakpoint junctions. The phenomenon was initially
reported when complex patterns of duplications (showing discontinuities, mixed with
deletions, triplications or inversions, etc.) were identified from studying nonrecurrent
duplications at the PLP1 locus [39]. Features including multiple copy number changes,
evidence for long-distance template switching, insertion of short sequences at breakpoints
apparently ‘templated’ from nearby genomic intervals, and microhomology at the breakpoint
junctions all were consistent with such rearrangements being generated by a DNA
replication mechanism. The mechanism describing this phenomenon was termed Fork
Stalling and Template Switching or FoSTeS [39,40]. Based on experimental observations
from bacteria, yeast and human studies, microhomology-mediated break-induced
replication, or MMBIR, was proposed to explain the molecular details that contribute to the
origin of human copy number variation [40,41]. This model expanded on the lessons learnt
from break-induced replication or BIR [42–45] and even earlier work first elucidated in the
bacteriophage T4 system [46]. Other similar replication models, such as microhomology-
mediated replication-dependent recombination (MMRDR), have also been proposed [47].
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Microhomology is a characteristic trace left at the breakpoint by the proposed replicative
repair mechanisms. Breakpoint sequencing of both locus-specific rearrangements and
genome-wide benign or pathological CNV revealed that a substantial proportion of CNV
events showed microhomology (Table 1). Other experimental evidence to support
replicative mechanisms comes from studies on the effect of replication stress and replication
timing on de novo structural variation formation. Arlt et al. showed that treatment of human
cells with aphidicolin or hydroxyurea, two chemicals that inhibit DNA replication through
distinct mechanisms, resulted in increased CNV formation. Such ‘induced-CNVs’ have
breakpoint and other features that mimic those observed in association with polymorphic
and pathogenic CNV formation [48,49]. It has recently been shown that end points of
somatic CNVs tend to be in three-dimensional spatial proximity, and they tend to replicate
simultaneously [50,51]. All of these findings indicate that replicative mechanisms contribute
to human genomic rearrangements far more than anticipated. Recent work suggests that such
‘replicative repair’ might be ‘mutagenic’ beyond CNV mutagenesis as it can be associated
with a 1000 fold increase of point mutations [52]. Such an increase in point mutations stems
from a low fidelity replication during BIR in comparison to a ‘normal’ DNA replication.

Although replication mechanisms have been used to explain a wide range of complex
rearrangements, especially copy number gains, on the X chromosome [26,53] and
autosomes [54–56], nonhomologous mechanisms, such as multiple NHEJ, may still account
for some portion of complex rearrangements [57].

Chromosome catastrophe: chromosome shattering or replication collapse?
How can the complexity of rearrangements increase in both range and scale, to a
chromosome-wide level? Such highly complex genomic rearrangements were revealed in
cancer samples by next-generation sequencing techniques [58,59]. However, the fact that the
observed complexity in cancers apparently consists of a mixture of progressively altering
rearrangements hindered further characterization of rearrangement mechanisms.

Whole genome sequencing of hundreds of cancer genomes has unexpectedly revealed that
massive cancer-associated genomic rearrangements can occur in a very short time interval as
a ‘one-off’ event. This novel phenomenon, termed chromothripsis, was reported to occur in
2–3% of the cancers studied [60]. Strikingly, multiple cancer genes can be disrupted by a
single complex genomic rearrangement in chromothripsis, thus representing multigenic
events. Although it was neither clear what causes such chromosome catastrophes nor what
repair mechanisms might be operative, Stephens et al. proposed that perhaps chromosome
shattering and re-ligation by NHEJ were involved [60]. Recent evidence has suggested
potential involvement of TP53 in generating such complexities [61].

In parallel with the elucidation of the phenomenon of chromothripsis in association with
many cancers, a similar chromosome catastrophe phenomenon was reported to occur as a
constitutional event [62]. Using high-density oligonucleotide array comparative genomic
hybridization, chromosome analysis, and breakpoint-sequencing methods, Liu et al.
identified region-focused, multiple copy number change, highly complex rearrangement
events occurring de novo in several patients with developmental disabilities [63]. Several
characteristic features of the rearrangements indicate that the observed constitutional
chromosome catastrophe was likely generated by a replication mechanism involving
multiple template switches such as FoSTeS or MMBIR. First, rearranged genomic regions
are localized to a single chromosome or confined to a chromosome arm, rather than
scattered throughout the genome, suggesting that the affected region may be the site where a
replication fork collapse occurred. Second, multiple copy number and structural changes are
observed, including deletion, duplication, triplication, inversion and insertion, which can be
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explained by multiple strand switches during MMBIR [41]. In particular, the presence of a
triplication amongst the complexity can be readily explained by MMBIR, not by NHEJ as
generation of new DNA material is involved. Third, junction clustering is observed, i.e.
chromosomal segments bounded by widely scattered breakpoints are joined together in a
single complex arrangement, leaving their original loci untouched [63]. The interrelatedness
of multiple breakpoints suggests a simple underlying mechanism MMBIR, instead of NHEJ
occurring multiple times. Fourth, small templated insertions and microhomologies are
frequently found at breakpoint junctions. These distinctive features or patterns suggest that
the increases in copy number (duplication and triplication) observed in the subjects may be
generated by the MMBIR repair.

In contrast, Kloosterman et al. using next-generation sequencing techniques identified a
single case with a germline chromosome catastrophe showing extensive translocations and
inversions [62]. A key feature from this complex rearrangement is that breakpoints found in
different junctions can be paired with each other to reconstitute sites where a double-strand
break is proposed to have occurred. The same phenomenon has been described in highly
complex events in prostate cancer: multiple endpoints relate together as though they arose
from two-ended double-strand breaks [64], in contrast to the one-ended double-strand breaks
that result from replication fork collapse and are repaired by BIR or MMBIR. Such two-
ended double-strand breaks would necessarily be repaired by NHEJ or by homologous
recombination. Thus, there appear to be at least two distinct mechanisms underlying
chromothripsis-like complex events. A possible explanation for the extreme rearrangement
of a few chromosomes while others remain unaltered is provided by observations on events
occurring in micronuclei [65]. Micronuclei are formed when some chromosomes lag at
anaphase and are excluded from the nucleus. Chromosomes are very unstable in
micronuclei. The altered chromosomes can later be reincorporated into the nucleus which
has not experienced instability [65].

Genome-level complex rearrangements
Investigations into constitutional complex rearrangements stimulate ideas regarding
potential mechanisms beyond locus specific events and allow for genome - scale
complexity. In addition to the region-focused one-off event illustrated by chromosome
catastrophes discussed in the previous section, two other hypothetical types of genome-level
complex rearrangements may exist (Figure 3B). In a potential ‘mutator phenotype’ model,
perhaps analogous to the microsatellite instability that accompanies mutation in mismatch
repair genes, multiple rearrangements might occur scattered throughout the genome. In
contrast to the one-off event, these rearrangements might arise independently from each
other via individual events. Such a rearrangement phenotype may be caused by a stochastic
environmental stimulus or a genetic impairment in key processes related to CNV formation.
Similar phenomena have been observed in genetic syndromes, including Bloom syndrome,
Fanconi anemia and ataxia telangiectasis, which are caused by mutations in DNA damage
and repair pathways. However, the multiple de novo CNV model may reflect mutations in
proteins involved in novel replication pathways related to CNV formation, such as the
human ortholog of yeast Pol32 [66]. Exploring the primary genetic lesion/mutation in this
type of rearrangements may allow identification of genes important for DNA repair,
recombination, or replication. In an ‘abnormal segregation’ model (Figure 3B), genomic
defects are represented by multiple mosaic aneuploidies. The cause of such an outcome
could be mutations in genes important for chromosome segregation.
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Conclusion
In summary, recent experimental findings from studies of disease associated recurrent and
complex rearrangements reveal further insights into NAHR and DNA replication
mechanisms for generating DNA rearrangements. NAHR is a well-established mechanism
that explains and predicts a growing number of recurrent genomic disorders and even
selected recurrent chromosomal rearrangements in association with both genomic disorders
and cancers. Recent research unveils factors required for facilitating NAHR, pointing to a
possibility of improved prediction of NAHR hotspots in the human genome, or even in
personal genomes. Whilst a role for the genomic architecture of direct repeats is now firmly
established in the NAHR mechanism, the importance of inverted repeats in susceptibility to
human genomic rearrangements other than inversions [67] is only beginning to be unveiled
[38]. Replication mechanisms are demonstrated to provide a parsimonious explanation for a
wide range of rearrangement types, particularly complex genomic rearrangements.
However, it is becoming clear that multiple mechanisms are operating. Understanding these
mechanisms may provide insights into not only human genome evolution, genomic
disorders, and cancers, but potentially various other biological processes.
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Figure 1.
NAHR as the mechanism for recurrent genomic rearrangements. (A) Ectopic crossing-over
between directly oriented repeats in trans can lead to deletion and reciprocal duplication;
whereas ectopic crossing-over between inversely oriented repeats in cis can result in an
inversion. (B) NAHR can produce deletion or duplication in three ways, interchromosomal
crossover, intrachromosomal (or interchromatidal) crossover, and intrachromatidal
crossover. Note that intrachromatidal recombination can only produce deletion, not
duplication. NAHR between inverted LCRs on sister chromatids can also result in
isochromosome formation. (C) This panel is adapted from Ou et al [12] showing a genome-
wide recurrent translocation map mediated by NAHR. In this circularized genome-wide
view, LCRs fulfilling the criteria for recurrent translocations are connected by lines. The red
line denotes recurrent translocations that are observed and experimentally verified, whereas
the grey and green lines (olfactory receptor factor gene families) denote predicted recurrent
translocations that could be mediated by paralogous LCRs.
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Figure 2.
Genome-wide map of computationally predicted NAHR-prone regions and empirically
verified NAHR-associated disease regions. LCR pairs fulfilling chosen criteria (> 10 kb in
length, > 95% in identity, directly oriented, with intervening sequence between 50 kb and 10
Mb, not spanning the centromere) are considered as potential substrates for NAHR. They are
linked by an inverted V-shaped line as illustrated above the chromosome ideograms.
Genomic regions flanked by such lines are merged into non-redundant sites, and illustrated
as the 89 red bars below the ideograms. Regions of known genomic disorders are shown as
green (only deletion associated with disease) or blue (both deletion and duplication
associated with disease) bars. a, the 17q21.31 rearrangement occurs on an alternative
haplotype [73]. b, the Xp22.31 rearrangement was not predicted by the NAHR map because
the flanking LCR substrate is ~ 9 kb in length (< 10 kb) [26,74]. c, the Xq28 rearrangement
was not predicted by the NAHR map because the flanking LCR is ~ 9.5 kb in length (< 10
kb) [75]. d, the rearrangement involving AZFa [76] was not predicted by the NAHR map
because the deletion is mediated by a pair of HERV repetitive elements.
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Figure 3.
Triplications and genome-scale complex rearrangements. (A) Two types of structures of
triplications; the reference structure is illustrated above the novel structure formed upon
triplication below. Red or blue horizontal bars represent regions that are duplicated or
triplicated in the novel structure, respectively. Black arrows denote LCRs involved in this
process with the orientation indicated by the arrowhead. Note that in type II triplication, the
triplicated segment in the middle is inserted in an inverted orientation with respect to the
flanking regions. The inversion is indicated by blue dashed lines. (B) Three distinct types of
genome-level complex rearrangements. Shown in the figure are three hypothetical array
CGH genome-view results representing three types of complex rearrangements. The labels
on the X-axis denote chromosome numbers. The numbers on the Y-axis denote the log2
fluorescence intensity ratio of the hypothetical aCGH results. Red dots represent de novo
copy number gains; green dots represent de novo copy number losses. Black dots at zero on
the X-axis represent hybridizing oligonucleotide signals with no copy number change.
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