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Abstract
Genome-wide data sets are increasingly being used to identify biological pathways and networks
underlying complex diseases. In particular, analyzing genomic data through sets defined by
functional pathways offers the potential of greater power for discovery and natural connections to
biological mechanisms. With the burgeoning availability of next-generation sequencing, this is an
opportune moment to revisit strategies for pathway-based analysis of genomic data. Here, we
synthesize relevant concepts and extant methodologies to guide investigators in study design and
execution. We also highlight ongoing challenges and proposed solutions. As relevant analytical
strategies mature, pathways and networks will be ideally placed to integrate data from diverse -
omics sources in order to harness the extensive, rich information related to disease and treatment
mechanisms.
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The search for pathways in complex diseases: a seminal moment
Since 2005, over 1000 human GWAS (genome-wide association study) publications have
described genetic associations to a wide range of diseases and traits [1]. However, extending
GWAS findings to mechanistic hypotheses about development and disease has been a major
ongoing challenge. In particular, the focus on single loci has been confounded by two
insights: (i) most GWAS-implicated common alleles and differentially-expressed genes on
expression arrays have exhibited modest effect sizes; and (ii) genes function within
biological pathways and interact within biological networks [2]. As such, genome-wide data
sets are increasingly viewed as foundations for discovering pathways and networks relevant
to phenotypes [3]. This trend is vital, given that pathway mechanisms are natural sources for
developing strategies to diagnose, treat, and prevent complex diseases. In this context, it is
not surprising that pathway-based analyses have exploded in use during the last 3–5 years
(Figure 1).

In pathway analysis, gene sets corresponding to biological pathways (Box 1) are tested for
significant relationships with a phenotype. Primary data for pathway analysis is commonly
sourced from genotyping or gene expression arrays, though in theory any data elements that
could be mapped to genes or gene products could be used. Importantly, analyzing genomic
data through functionally-derived gene sets can reveal larger effects that are otherwise
concealed from gene- or SNP-based (single nucleotide polymorphism) analysis. For
example, high-profile studies in breast cancer [4], Crohn’s disease [5], and type 2 diabetes
[6] demonstrate that functionally-related genes can collectively influence disease
susceptibility, even if individual loci do not exhibit genome-wide significant association. As
such, pathway analysis represents a potentially powerful and biologically-oriented bridge
between genotypes and phenotypes.

Despite their popularity and potential, strategies for pathway-based studies have progressed
in the absence of guidelines, leading to ambiguity regarding optimal methods, high
variability in results, and barriers to further application. With surging interest in pathway
analysis and the emergence of next-generation sequencing data which will inevitably
broaden its application, this is an ideal moment for a critical synthesis of current approaches
and outlining targets for future development. Here, we clarify fundamental concepts about
pathways and networks and their relationships to study design and execution. We also
review extant strategies to detect pathway-phenotype association and highlight
methodological challenges. Finally, we describe how pathways and networks are ideal
vehicles for leveraging multi-omics data for discovery.

Selecting an overall study design
Broadly, there are two approaches to pathway-based genomic studies. Candidate pathway
analysis is hypothesis-driven: pathways are preselected based on prior knowledge and
insight. While the number of candidate pathways may vary with study goals (e.g. different
effects may be seen within a large, complex pathway compared to numerous, smaller
pathways), this approach is marked by its use of a biologically-targeted subset of genomic
data. The other approach, genome-wide pathway analysis (GWPA), interrogates a complete
genomic data set through pathways representing an extensive range of biology. Notably, the
line between “targeted” and “extensive” biological coverage is not precisely drawn. While
methods limited to GWPA have been used on data sets with only 1000 genes (~5% of the
total number of human genes) [7], the optimal point of delineation between these two
approaches warrants further examination.

There are several advantages to the candidate pathway approach. Focusing the scope of
analysis can enable otherwise intensive procedures like genotype imputation and manual
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pathway curation; by maximizing annotation coverage and quality, these procedures can
bridge differences in genotyping platforms across cohorts for replication or meta-analysis.
Unfortunately, targeted biological coverage may fail to detect unexpected relationships, such
as the association between inflammatory pathways and age-related macular degeneration
[8]. Further, poor annotation of one pathway can be particularly limiting when only a few
pathways are assessed. These traits make candidate pathway analysis most appropriate
where computational resources are limited and where specific pathways are of a priori
interest.

By contrast, GWPA maximally utilizes the available genomic data. As a result, this
approach can more readily detect unexpected relationships, including those across diseases
operating in different body systems [9]. However, GWPA is computationally intensive,
requiring more stringent corrections for multiple comparisons and making procedures like
imputation more challenging. While strategies to reduce the dimensionality of genome-wide
data for pathway analysis are in active development [10, 11], they will need to be evaluated
further ahead of widespread use. Finally, GWPA benefits from systematic follow-up to deal
with the often high overlap of genes across multiple pathways and to evaluate results in view
of prior knowledge.

Obtaining input genomic and pathway annotation data
Pathway analyses can utilize raw genotype data for individual subjects [6, 12, 13] or a list of
p-values relating genes or SNPs to a phenotype [14–16]. Pathway-based tools for raw
genotypes do not effectively include covariates but can naturally correct for linkage
disequilibrium (LD) through permutation. In contrast, p-value distributions are readily
accessible via other researchers and can be generated with application of covariates, but
require corrections for LD based on reference populations. Investigators should consider
their resources and study goals when selecting the most appropriate genomic data source.

In parallel, a pathway analysis is only as good as the functional information underlying its
pathway definitions. Prominent pathway annotation databases exhibit diverse features
(Table 1; also see the online resource Pathguide [17]). The ideal choice of database depends
on several variables and their impact on study goals. For example, freeware databases are
commonly used due to their ease of access, transparency of features, and visibility in
publications. Commercial databases may require a significant investment; however, they are
typically linked to user-friendly statistical analysis software and often include high-quality
pathway graphics which can be exported to manuscripts. Investigators should weigh the
relative importance of these factors during selection.

Pathway curation methods can also impact analyses. Most databases rely on expert review
for pathway curation; however, users of these databases should be aware of their update
intervals and criteria used as evidence for inclusion in pathways. Alternatively, electronic
curation employs text-searching algorithms to infer functional relationships. While these
inferred annotations can be useful for hypothesis generation, their accuracy is unreliable
[18], making them unsuited to many pathway analyses. Finally, targeted manual curation
can be particularly appropriate when an investigator has expertise in a biological realm that
is poorly annotated in databases. While potentially time-consuming, manual curation can
synthesize recent results with established relationships to produce novel candidate pathways
[19, 20] or gene sets representing positive controls for pathway analysis [21].

Lastly, the biological coverage of pathway annotations should be considered. Across
databases, similarly-named pathways can exhibit vast differences in constitution while
differently-named pathways can exhibit significant overlap. As a result, investigators should
attempt to match study goals with database coverage. For example, specialized, high-
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granularity databases are most useful for candidate studies of intricate signaling pathways,
while canonical pathway collections (representing well-established pathways) provide a
broad biological scope well-suited for screening-oriented studies.

This collective diversity of features is a major factor in explaining why different databases
can yield divergent results from the same input data [22]. As such, an early discussion of
pathway analysis recommended the use of multiple databases for each analysis [23]. This
approach can balance the relative characteristics of each database used and can yield a
measure of validation when different databases yield similar results. However, this strategy
is most effective when it is supplemented by a systematic review of the results.
Alternatively, further analyses can reveal broader findings that drive association signals
across multiple smaller pathways: for example, one study analyzed pathway sets obtained
through hierarchical clustering and identified an association between the canonical RAS/
RAF/MAPK signaling pathway and breast cancer [4].

Preparing data for association testing
Systematic processing of input genomic data and pathway annotation data are vital for
pathway analyses. While some relevant methods are actively evolving, optimized
approaches to major issues can minimize variation in results and interpretation.

Pathway size
Most pathway analyses place constraints on pathway size: small pathways can exhibit false
positive associations due to large single-gene or single-SNP effects [24], whereas large
pathways are more likely to show association by chance alone [22]. The most common
minimum threshold for pathway size appears to be ten genes [4, 6, 13, 25]. It is important
for analysts to note that this threshold may exclude highly-specific and potentially-
informative functional sets, including those involving protein complexes and DNA sequence
motifs. Frequently-used maximum thresholds for pathway size include 100 genes [4] and
200 genes [6, 25]. Notably, in the latter two studies, upper limits of 300 genes [6] and 400
genes [25] did not alter the results. However, larger pathways are relatively rare and often
derive their size from being more general in scope; thus, their exclusion may not
significantly affect analyses or downstream biological interpretation. Overall, investigators
should consider their study goals when applying such thresholds and should evaluate results
in that context. While future efforts might develop size-dependent statistical corrections, at
present the reporting of pathway size and related summary statistics (e.g. [26]) alongside
association data can aid interpretation.

Pathway overlap
Genes and their products typically act in multiple pathways [2], and each role is potentially
important to a disease or treatment mechanism. As a result, analyses can expect to have
some degree of pathway overlap. However, high pathway overlap can obscure the true
source of an association signal. While this problem can exist with any pathway analysis,
Gene Ontology (GO) annotations are particularly susceptible due to the database’s large,
hierarchical structure [27]. Some studies have restricted analysis of GO terms to certain
levels in the hierarchy [13, 28], while a new Bayesian method incorporates the structure of
the hierarchy as prior information into its pathway association metric [29]. However, users
of these approaches should be aware that the information content at particular GO levels is
unpredictable [30]. Pathway overlap can also be addressed during post-analysis to prioritize
related pathways for further exploration. Extant strategies include hierarchical clustering in a
study of breast cancer [4], overlap-based network creation in the visualization tool
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Enrichment Map [31], and the listing of overlapping pathways alongside results in the
analytical software PARIS [32].

Assigning data elements to genes
Genomic data has historically been integrated into pathways by mapping assayed elements
to genes. For SNP-based genotyping arrays, this is not straightforward because many array
SNPs are not located in known coding or regulatory regions. In one study, all SNPs that
were not be mapped to a single gene through a reference genome build were discarded, but
this resulted in a loss of more than 25% of assayed SNPs [33]. Alternatively, each unmapped
SNP can be assigned to its nearest gene [34]. However, evolving theories suggest that
sequences may not be associated to genes based on closest proximity, and may not even be
solely associated to one gene [35, 36]. Hence, many studies assign unmapped SNPs to all
genes within a distance window, ranging from 10 kb to 500 kb [13, 25, 26, 37]. Studies
taking this approach should beware that some SNPs may not be functionally related to their
assigned gene(s). In addition, SNPs that map to multiple genes in the same pathway can
yield spurious pathway association. This issue is particularly important for genes (such as
the MHC/HLA genes) that cluster in the genome and belong to the same pathway, because
variants in those genomic regions can potentially map to all genes in the pathway. Finally,
given the importance of SNP-to-gene mapping for pathway analyses, investigators should be
aware that imputation can increase gene coverage by characterizing SNP genotypes that are
not directly available in a particular data set. Imputation can be particularly useful for
bridging differences in genotyping platforms across cohorts for replication and meta-
analysis, and can also enable investigation of rare alleles and copy number variants (CNVs)
that are less-represented on standard platforms [38].

Calculating gene significance and accounting for LD
Most pathway analysis tools utilize one association signal per gene. While expression arrays
yield a single p-value for each gene, SNP arrays include multiple signals per gene, some of
which are correlated. As such, some studies use the minimum SNP-level p-value within a
gene as the operative signal [4, 25, 33, 34]; however, this approach will not detect additive
effects among SNPs with moderate individual association. For methods that combine SNP-
level signals, including those based on the truncated product method [14], LD must be
accounted for to prevent highly-correlated SNPs from biasing gene-level significance.
Strategies to accomplish this include discarding SNPs that depart from LD at a preset
threshold [25, 26, 39] and adapting principal component analysis to extract the most
independent signals within a gene [10, 11, 26]; unfortunately, these methods can eliminate
substantial information. Alternatively, the SNP ratio test [40] and the “set-based analysis” in
PLINK [41] use phenotype permutation to naturally correct for biases introduced by LD and
gene size; however, these tools require raw genotype data and are computationally
demanding, making them better suited for studies of candidate pathways with relatively few
genes. Notably, recently-developed methods that accept p-values as input and account for
LD through simulations [42, 43] or genotype permutation [32] are computationally efficient
and may represent new paradigms as their power is honed and evaluated.

Analytical methods to detect pathway-phenotype relationships
Following data processing, analytical methods can be applied to test for significant pathway-
phenotype relationships. Prominent examples of pathway-based analytical tools and their
salient features are provided in Table 2. Notably, one class of tools employs text-mining of
published abstracts to identify potential pathway-phenotype relationships. These tools query
a list which may include SNPs meeting a p-value threshold, genes from candidate pathways,
or pathways themselves, among other possibilities. Text-mining approaches have efficiently
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identified potential interactions among genes associated with neurodegenerative brain
changes [20] and have equally been applied to generate a candidate pathway based on
regulation or interaction with BRCA2 [44].

By contrast, pathway enrichment tools assess for a statistically-significant distribution of
association within a pathway. Competitive enrichment methods compare the collective
association within a pathway to the collective signal among genes not in the pathway [45].
As a result, competitive methods are not suitable for candidate pathway analyses that do not
have an appropriate complement of data from outside of the candidate pathways.
Meanwhile, self-contained enrichment methods test the signal within a pathway against
simulated data sets which are expected to have no significant phenotype association [45, 46].
Self-contained methods can be challenging to use in a screening-oriented GWPA due to the
computational demand of generating simulated data sets. In addition, self-contained
approaches are particularly susceptible to false positives through genomic inflation, as each
pathway is evaluated independently from any other data on the source assay. While one
study [47] normalized all association statistics to a genomic inflation factor calculated by
PLINK, best practices in this area have not yet been settled. Competitive tests are more
robust in controlling genomic inflation, but they can also relinquish power in data sets with
diffuse association signal [45]. As such, the optimal method depends on study goals, data set
properties, and computational resources.

Among extant competitive enrichment methods, three analytical frameworks predominate.
In the first of these, threshold-based approaches, hypergeometric, chi-square, or Fisher’s
exact test statistics are used to identify pathways that are overrepresented among the
“significant” markers under study. Notably, the threshold for “significance” is arbitrary and
can affect results [48]; observed SNP-level thresholds have ranged from p < 0.05 [37] to p <
5 × 10−8 [34]. In contrast, rank-based approaches order all of the markers being studied by
their significance and then test for pathways that have lower rankings than the overall
distribution. While the rank-based tools GenGen [49] and GSEA-SNP [50] use a
Kolmogorov-Smirnov-like running sum that gives greater weight to more significant
markers, others rely on MAXMEAN-related statistics as potentially powerful and efficient
alternatives [51–53]. Compared with threshold-based methods, rank-based approaches more
naturally account for differences in significance among markers [24] but may also be
heavily influenced by a few highly-significant markers [54]. Finally, z-score methods infer
enrichment based on deviation from a normal distribution that accounts for the size of each
pathway [52, 55]; while these methods are sensitive and fast, their error rates have not been
well characterized. Self-contained enrichment methods employ even more diverse statistical
methods to combine the p-values within a pathway into an aggregated measure (Table 2).
However, in the absence of large-scale power comparisons among related methods across
several well-characterized data sets, the choice of a particular enrichment tool may be less
important than understanding the relative strengths and limitations of these broader
categories.

An alternative to enrichment methods are module-based approaches, which examine sets
defined by other biological characteristics for meaningful pathways contained therein. For
example, one study used hierarchical clustering to form modules of co-expressed genes
across multiple inflammatory diseases; subsequent analysis of these modules suggested a
role for interferon-inducible signaling in tuberculosis [56]. Gene modules can also be
defined through protein interaction networks, as in a study that associated genetic variants in
glutamate pathways to brain glutamate concentration in multiple sclerosis [57]. Importantly,
recent studies are combining enrichment and module-based methods to point to broader
findings. For example, network analysis of enriched pathways revealed major roles for
antigen presentation and interferon signaling in rheumatoid arthritis [58].
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Finally, developing strategies are targeting specific pathway-based challenges. For example,
machine learning approaches [11, 59] attempt to identify the most informative subsets of
genes within pathways for association. Networks have been effective in studies of rare
variants, as with the identification of a synaptogenesis gene network affected by rare CNVs
in autism [60]. Pathway-based methods for studying rare variants using genomic-region-
based mapping and self-contained tests are also evolving [61, 62]. Indeed, the appeal of
pathways and networks will continue to expand as their associated tools progress to analyze
a variety of data through user-friendly platforms.

Post-analysis considerations
Following pathway analysis, appropriate data reporting and interpretation are imperative.
Currently, bias introduced by gene size is less commonly addressed than bias from pathway
size. In particular, large genes containing many SNPs are more likely to contain significant
SNPs by chance alone [63]; for analyses, this can favor pathways containing large genes.
Analytical tools that employ permutations naturally control for gene size by comparing the
actual association data to the distribution of association statistics generated from randomly
permuted data sets expected to reflect chance-based confounding effects. Other approaches
[41, 42] allow users to restrict analysis to a subset of the most significant SNPs in each gene:
for large genes, this may eliminate some spuriously-associated SNPs and thus limit their
impact on the pathway analysis. At minimum, studies should discuss potential impacts of
gene and pathway size on their results. Other sources of bias that should be addressed
include the capacity for strongly-associated markers to drive pathway association and the
possible effects of SNPs being assigned to multiple genes.

Correction for multiple comparisons must also be applied to pathway p-values to control for
false positives. As in other areas of statistical genomics, optimizing methods for correction
is a work in progress. Bonferroni-related methods seem too conservative for pathway
analyses because they do not allow for dependence across pathways. False discovery rate
(FDR) approaches [64] are frequently-applied in pathway analyses [6, 26, 48], while newer
FDR-based [65] and bootstrapping [39] methods that permute on raw genotypes can better
account for pathway overlap but require large computational capacity.

Fundamentally, these approaches to bias are best complemented by replication of pathway
analysis findings in independent data sets. Strategies for pathway analyses can flexibly adapt
to differences across data sets, and while these differences might impact SNP- or gene-level
statistics [66], legitimately-associated pathways would be expected to exhibit significance or
a strongly-trending signal across multiple studies. In this effort, a systematic framework
illustrating key choices in pathway analyses (Figure 2) will limit major contributors of
variance across studies and will guide investigators in selecting approaches that fit their
study goals.

Future developments in genomic data analysis
Development of methods and tools related to pathway analysis is ongoing and dynamic. In
particular, because pathways are of broad interest, targeted adaptations to their associated
databases would expand their utility for investigators from a variety of backgrounds. These
adaptations might include simpler search and download mechanisms, consistency in
pathway names and classifications, and methods for describing pathway overlap. In
addition, a universal format for annotation files might encourage interoperability among
analytical tools, allowing investigators flexibility to precisely match their databases and
statistical methods of choice.
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Two recent trends among databases are also promising. Specialized disease databases, such
as AlzGene [67] and the UCSC Cancer Genomics Browser [68], can aggregate salient
information from diverse studies on a particular disease. These targeted resources are
particularly up-to-date and can facilitate collaboration within highly-investigated diseases.
Functional annotation of genes is also becoming prominent. These annotations draw on
experimental data that indicates function, location of action, or physiological region of
association [69], and can allow investigators to develop candidate pathways related to
localized anatomical or physiological derangements. Extensions of this concept across
disciplines will likely be a prime area of advancement.

In future pathway analysis platforms, computational efficiency will be highly-valued given
the impressive granularity of next-generation sequencing data. In addition, investigators may
wish to use different genomic data sets, pathway annotation databases, and analytical
parameters depending on study resources and goals; as such, tools that are flexible to various
study approaches will maximize their impact. Finally, given that genes constitute only 1–2%
of the human genome, strategies to leverage both genic and non-genic data for pathway
analysis may provide increased power to detect meaningful functional sets.

Meanwhile, complementary methods can extend the biological reach of pathway-based
results. For example, it is not yet understood whether gene interactions are more likely
within a given pathway or across different pathways in a network. A comparative study of
epistasis in pathways and networks, perhaps utilizing novel techniques for its detection
within population data [70–73], could inform future strategies in this area. A related area of
development involves using known protein interactions to generate subnetworks from
enriched pathways; these subnetworks can highlight novel candidate genes [74] or
regulatory relationships [75] from significant pathways.

Nevertheless, the ongoing development of pathway-based tools would benefit from further
empirical evaluation of current approaches. For example, a creative meta-analysis might
examine how various association metrics affect the likelihood of replication of findings. In
addition, testing association methods against well-calibrated positive and negative control
datasets might illuminate their relative capabilities. Notably, one study employed multiple
pathway analysis algorithms using an extensively-explored Crohn’s disease data set [76];
however, the algorithms chosen were highly-disparate in their null hypotheses and
approaches to LD, making it difficult to uniformly compare their results. Alternatively,
multi-site collaborations might simultaneously analyze several large data sets using a small
number of analytical tools in the same conceptual category; comparisons of the results
would advance the underlying science and critically evaluate tools against closely-related
options.

Finally, methods for integrating different types of association signals are developing. A
nascent view proposes that combining genome-wide expression and genotyping data into a
joint quantitative signal can increase power for discovery [6, 37, 77, 78]. One particularly
attractive feature of this view is that it augments structure (genotype) with function
(expression). Indeed, one study demonstrated that SNPs correlated with gene expression
changes (expression quantitative trait loci = eQTLs) were more likely to show disease
association than other SNPs from a GWAS array [79]. Relatedly, visualization tools can
graphically overlay association metrics onto other data in order to prioritize markers.
Visualization has been used to integrate SNP association with quantitative imaging
phenotypes [80], among other examples.
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Pathways and networks: bridging multi-omics data
As pathway analysis of genomic data has exploded in use, its methods have matured, its
results are beginning to meet its potential, and points of consensus are emerging for its
continued application and future development. In the coming years, we anticipate that
pathways and networks will assume a farther-reaching role in view of the need to integrate
multi-omics data through systems biology approaches [81, 82]. A variety of large-scale
strategies are being used to study complex diseases, including genomic, transcriptomic,
proteomic, and metabolomic approaches, and data from all of these sources can be analyzed
through pathways and networks representing coordinated functions and relationships.
Importantly, while gene associations do not always indicate therapeutic targets [83],
pathways and networks implicated by analyses at multiple levels would be prime targets for
therapies. Integrating large-scale data assayed through diverse strategies related to structure
and function would provide a fertile process for exploring connections between replicable,
statistical association and meaningful biology. As such, the role of pathways and networks
as the hub for this integration will be vital in the years to come.
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Glossary

Bootstrapping a method that assesses the uncertainty of a statistical estimate
through recalculation of the statistic using repeated, random
sampling of the original data set

Commercial
pathway database

a collection of pathway annotation data that is available for private
purchase by investigators

Covariate a variable that is possibly predictive of the outcome under study; for
example, genetic analyses often attempt to account for the effects of
variables such as age and gender in order to precisely determine
statistical relationships between genetic factors and phenotypes

Freeware
pathway database

a collection of pathway annotation data that is publically available
without cost to the user

Genome-wide
association study
(GWAS)

a large-scale study that assays genetic variants across the entire
genome along with quantitative or categorical phenotype status in
order to detect genotype-phenotype associations

Genomic inflation the systematic increase of association statistics from a genome-wide
study due to population stratification or other confounding factors

Genotype
imputation

the process of probabilistically predicting genotypes that are not
directly assayed (by not being represented on that genotyping
platform or via localized experimental failure) with a particular
array

Granularity a description of the scale or level of detail in a set of data
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Linkage
disequilibrium
(LD)

the non-random association of alleles at two or more loci; in other
words, the occurrence of combinations of alleles at different
frequencies than would be expected through a random formation of
haplotypes

Permutation the process of calculating the distribution of a test statistic under the
null hypothesis through repeatedly rearranging the labels in a
dataset; for example, in case-control studies, phenotype statuses of
subjects are randomly rearranged in order to assess the distribution
of an association statistic under the null hypothesis of no significant
association between a marker and phenotype status

Replication the repetition of a research study in an independent sample in order
to verify firstline results and to determine whether effects can be
generalized beyond the initial sample
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Box 1

Fundamental concepts about biological pathways and networks

While unstated notions predate it, the first explicit description of a pathway as the events
by which intermediates are processed in a defined sequence was provided in 1973 [84].
Recently, broader notions of pathways as collections of biologically-related genes [24]
have attempted to fit evolving scientific theories and analyses. A systematic
conceptualization of biological pathways (Figure Ia) posits that pathways are vector-
driven toward an essential goal (i.e., their constituents as a whole are directed to a
common, specific endpoint). Viewed this way, molecular pathways have an essential goal
of basic biochemical action on molecules or compounds. Overarching this are cellular
pathways that regulate global cellular status and organ/system pathways that execute
broader physiological functions. The constituents of these pathways are typically
connected through known or proposed mechanisms. Of note, the particular constituents
of a pathway may be context-dependent – specifically, in relation to the biological
outcome an investigator wishes to study.

In addition, two other types of pathways are important in the study of genetically-
complex diseases (Figure Ia). Disease pathways have an essential goal of the
pathogenesis of a disease and its features. For example, the Alzheimer’s disease pathway
plausibly includes components from the organ/system pathway of memory, which itself
has cellular and molecular underpinnings. By contrast, intervention pathways are defined
within the setting of a therapy that targets disease features or pathogenesis, as in a
pathway-based study of cisplatin sensitivity in ovarian cancer [85]. Importantly, disease
and intervention pathways may include constituents with documented associations to a
phenotype, but whose precise mechanistic roles are not yet known.

Networks can also collect genes and other biological elements for quantitative and visual
assessment of relationships [86]. Unlike pathways, biological networks are not vector-
driven toward an essential outcome (Figure Ib). Instead, networks are characterized by
nodes that are connected by edges representing defined relationships. In a particular
network, nodes may represent nearly any biological element, including genes, gene
products, non-gene DNA sequences, pathways, diseases, therapies, or combinations
thereof. Common examples of network relationships include binding in protein
interaction networks and regulation by common factors in gene interaction networks.
Finally, statistical networks display relationships, such as correlation, that are inferred
from computational analyses [70]. A central outstanding question involves understanding
the degree of connection between statistically-inferred networks and biological networks
[87]. Software platforms for network analysis include IPA (Ingenuity Systems,
http://www.ingenuity.com/) and Cytoscape (http://www.cytoscape.org/); two recent
reviews discuss these and other module-based tools in detail [88, 89].
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Figure 1.
PubMed citations for “pathway analysis”: 2001-present. The use of pathway analysis has
grown exponentially in the last 3–5 years. This explosion in use has followed major
developments (shown in boxes) in characterizing the human genome and in performing
genome-wide studies of complex diseases and traits. Data points represent the total number
of references displayed through a PubMed search for “pathway analysis”, using date limits
of January 1, 2001 and December 31 of the calendar year denoted on the x-axis.
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Figure 2.
An Informed Guide to Pathway Analysis. Broadly, there are two approaches to pathway
analysis. In candidate pathway analysis, prior knowledge is used to select pathways
hypothesized to have a relationship with a phenotype. In contrast, genome-wide pathway
analysis is designed to uncover significant pathway-phenotype relationships within a large
data set; insight and prior knowledge are then used to interpret the findings. In both
approaches, care must be taken in acquiring pathway annotations and in selecting an
appropriate analytical test for association. In addition, other methodological issues (red box)
guide the choice of approach and impact strategies for confounding factors. Finally,
replication of pathway analysis findings in independent data sets is imperative in validating
results to extend their impact.
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Figure I.
A primer on biological pathways and networks. (a) The major types of biological pathways
are shown along with a representation of their relationships among each other. Each type of
pathway is defined by its essential goal. Molecular pathways have an essential goal of basic
biochemical action (biosynthesis, biodegradation, translocation, transformation, activation,
or inactivation) on molecules or compounds. Cellular pathways regulate global cellular
status, while organ/system pathways execute higher-order physiological functions. (b)
Pathways and networks, while complementary sets of biological elements, differ in key
respects. Pathways can include directional regulation (shown in red and green) and
branching, but are nevertheless vector-driven to an essential outcome. While elements in
pathways are typically connected mechanistically, network elements are connected through
shared relationships that may not indicate an action. As such, networks are not vector-driven
from a starting point to an essential outcome. Networks can be divided into subnetworks
(shown in blue) exhibiting all elements connected to a central node (“A” in this example) or
into modules (shown in purple) that exhibit a high density of connections.
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Table 1

Prominent pathway annotation databases

Name Curationa Major Features URL

Biocarta M Driven by user input with expert review
of some pathways http://www.biocarta.com/

DAVID M/E Augments and integrates annotations
from other databases http://david.abcc.ncifcrf.gov/

Gene Ontology (GO) M/E Largest database; hierarchical structure;
can filter data by evidence codes http://www.geneontology.org/

Ingenuity M/E Large collection of canonical pathways;
high-quality pathway maps http://www.ingenuity.com/

Kyoto Encyclopedia of
Genes and Genomes
(KEGG)

M

Reference pathways (mosaics from
several organisms) and organism-
specific annotations; pathway maps link
to closely-related genes

http://www.genome.jp/kegg/

MetaCore M Extensive disease pathways; can edit
pathway maps for publication http://www.genego.com/

MetaCyc M Metabolic pathways; can visualize
connections among pathways http://metacyc.org/

Molecular Signatures
Database (MSigDB) M/E

Can download pathways from several
other databases as a collection for input
to analytical software; novel groupings
(e.g., motif gene sets)

http://www.broadinstitute.org/gsea/msigdb/index.jsp/

PANTHER M Can predicts protein functions from
sequence and evolutionary data http://www.pantherdb.org/

Pathway Interaction
Database (PID) M/E

Broad range of cellular pathways with
special focus on cancer signaling; can
generate interaction maps from a list of
genes

http://pid.nci.nih.gov/

Reactome M

Pathways are extensively cross-
referenced to PubMed, HapMap, and
other resources; can overlay expression
or other data onto pathway maps

http://www.reactome.org/ReactomeGWT/entrypoint.html/

ResNet Series M/E

Regular updates through web server;
optional user editing or text scanning of
user documents; links to reference
articles

http://www.ariadnegenomics.com/

a
Abbreviations: M = manual, M/E = manual and electronic
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