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Abstract

The objective of this study was to describe: the time of onset and offset of bone mineral density
(BMD) loss relative to the date of the final menstrual period (FMP); the rate and amount of BMD
decline during the 5 years before and the 5 years after the FMP; and the independent associations
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between age at final menstrual period (FMP), body mass index (BMI) and race/ethnicity with rates
of BMD loss during this time interval. The sample included 242 African-American, 384
Caucasian, 117 Chinese and 119 Japanese women, pre- or early perimenopausal at baseline, who
had experienced their FMP and for whom an FMP date could be determined. Loess-smoothed
curves showed that BMD loss began 1 year before the FMP and decelerated (but did not cease) 2
years after the FMP, at both the lumbar spine (LS) and femoral neck (FN) sites. Piece-wise, linear,
mixed effects regression models demonstrated that during the 10-year observation period, at each
bone site, the rates and cumulative amounts of bone loss were greatest from 1 year before through
2 years after the FMP, termed the transmenopause. Postmenopausal loss rates, those occurring
between 2 and 5 years after the FMP, were less than those observed during transmenopause.
Cumulative, 10-year LS BMD loss was 10.6%; 7.38% was lost during the transmenopause.
Cumulative FN loss was 9.1%; 5.8% was lost during the transmenopause. Greater BMI and
African American heritage were related to slower loss rates, while the opposite was true of
Japanese and Chinese ancestry.
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INTRODUCTION

Bone loss begins prior to the cessation of menses. Dual energy X-ray absorptiometry detects
unequivocal decline in bone mineral density during late perimenopause, when women have
experienced between 3 and 11 months of amenorrhea, whereas little, if any, loss is seen
during early perimenopause, when menstrual cycles are irregular but there has not yet been a
gap of at least 3 months between periods (1-3). Menstrually-defined menopause transition
(MT) categories, which classify stages of the menopause according to menstrual irregularity
or number of months of amenorrhea, are imprecise predictors of when the final menstrual
period (FMP) will occur. Women who are in early or late perimenopause may be more or
less proximal to their FMP and rates of bone mineral density (BMD) loss may therefore
differ within menstrually-defined stages. Similary, the time at which bone loss decelerates
after the FMP cannot be discriminated using menstrually-classified MT stages.

A more precise description of onset and offset of bone loss can be obtained my modeling
BMD change in relation to the FMP date. Using this approach, two longitudinal studies of
Caucasian women found BMD loss accellerated about 2 year before to the FMP and slowed,
but did not cease, about 2 years after it (4, 5). However, sample sizes in these investigations
were modest and neither included minority women, one important consideration, because
ethinic-specific patterns of bone loss during the MT could contribute to the known ethnic
variation in fracture rates (6-9).

This analysis examines rates of BMD change in relation to the observed date of the FMP, in
contrast to menopause transition stages, in a multiethnic cohort of African-American,
Caucasian, Chinese and Japanese mid-life women. The objectives of this study were to: 1)
describe the timing of the onset and offset of accelerated BMD loss in relation to FMP date;
2) quantify the rate and amount of BMD decline at the lumbar spine (LS) and femoral neck
(FN) during the 5 years before and after the FMP; and 3) assess whether body mass index,
ethnic/racial origin or age at FMP influenced the rate of BMD loss.
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Study sample

Outcomes

SWAN is a multi-site, community-based, longitudinal cohort study of the MT (10).
Eligibility criteria were: age between 42 and 52 yr, intact uterus and at least one intact
ovary, not currently using hormone therapy, at least one menstrual period in the 3 months
before screening, and self-identification as a member of one of 5 eligible ethnic groups.
Participants were enrolled at 7 sites: Boston, Chicago, Detroit, Pittsburgh, Los Angeles,
Newark, and Oakland (N=3302). All sites enrolled Caucasians. Boston, Chicago, Detroit,
and Pittsburgh enrolled African-Americans and the remaining 3 sites enrolled Japanese,
Hispanic and Chinese women, respectively. The Chicago and Newark sites did not measure
BMD, leaving a potential of 2413 participants for the SWAN bone density cohort. Of these,
2335 were enrolled in the bone cohort at baseline. The current analysis includes data from
baseline to follow-up visit 10; only bone cohort participants who had a determinable natural
(not surgical) FMP date were eligible. Hormone therapy use and other pharmacological
agents that affect bone (i.e., tamoxifen, raloxifene, GnRH agonists, corticosteroids or
osteoporosis treatments) were exclusions, applied at baseline. The inception cohort size was
862. Data from women who initiated bone-active medicine were censored at the time of first
use. Please see the supplemental Figure (Web-only) for a flow diagram of the sample
derivation. Participants gave written informed consent and sites obtained IRB approval.

LS and FN BMD (g/cm?) were measured annually using Hologic instruments (Hologic, Inc.,
Waltham, Massachusetts). Three sites used Hologic 4500A models throughout. Two sites
upgraded from 2000 to 4500A models at follow-up visit 8. These sites scanned 40 women
on both their old and new machines to develop cross-calibration regression equations. A
standard quality control program, conducted in collaboration with Synarc, Inc., included
daily phantom measurements, 6 month-cross-calibration with a circulating anthropomorphic
spine standard, local site review of all scans, central review of scans that met problem-
flagging criteria and central review of a 5% random sample of scans. Short-term in vivo
measurement variability was 0.014 g/cm? (1.4%) for the LS and 0.016 g/cm? (2.2%) for the
FN.

Primary predictor

The primary exposure, the number of months before or after the FMP that the BMD was
taken, was computed using the month and year of the FMP and the month and year of each
annual BMD assessment. FMP date was determined by annual, standardized interview. FMP
date was defined as the last menstrual bleeding date reported during the visit immediately
prior to the first visit when the participant was classified as post menopausal (had 12 months
of amenorrhea).

Other predictors

Age [years], self-defined race/ethnicity [African-American, Caucasian, Chinese, Japanese],
menstrual bleeding patterns, hormone therapy use [yes/no, time-varying], use of any
medication that affects bone density [yes/no, time-varying]) were obtained using annual,
standardized interviews. Menopause transition stages [time-varying, based on reported
annual bleeding patterns] were defined as: premenopausal (regular menses, no change from
individual’s pattern), early perimenopausal (menses within the prior 3 months but less
predictable than individual’s pattern), late perimenopausal (at least 3 months but less than 12
consecutive months of amenorrhea) and postmenopausal (12 or more months without
menses). Weight (kilograms, time-varying) and height (meters) were assessed annually,
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using calibrated scales and stadiometers. Body mass index (BMI, [weight in kilograms/
(height in meters) 2]) was calculated annually.

Data Analysis

Characteristics of bone cohort participants included and excluded from analysis were
compared using t-tests (continuous variables) and chi-squared tests (categorical variables).
To analyze change in BMD in relation to FMP date, we used a staged approach, consisting
of 1) non-parametric, loess-based selection of the functional form of the BMD trajectory in
relation to FMP date, 2) piece-wise linear regression to determine knot placement for the
parametric BMD trajectory and 3) piece-wise linear regression with fixed knots to estimate
BMD decline rates during each phase of the trajectory. First, the loess method was used on
repeated annual LS or FN measurements; each participant’s BMD was normalized to her
baseline (11).

In steps 2 and 3, we used mixed effects regression to fit piece-wise linear models to repeated
measurements of baseline-normalized LS or FN BMD (in separate models) as functions of
time before or after FMP, using linear splines with fixed knots at FMP minus 1 year and
FMP plus 2 years. To account for within-woman correlation between repeated observations,
we included random effects for the intercept and 3 slopes (allowing the intercept and slopes
to vary from woman to woman). In step 2, we tested model adequacy and appropriateness of
knot locations by running null models with only random effects and no fixed effects. The
fraction of within-woman variance in BMD explained by the 3-segment, piecewise-linear,
null model was 84.2% for LS BMD and 71.7% for FN BMD. We evaluated knot selection
by examining the change in the explained proportion of within-woman variance (pseudo R-
square) when the knots were varied around FMP minus one year and FMP plus 2 years. The
amount of explained variance was unambiguously lessened by knot movement (in 6 month
intervals) away from FMP minus 1 year. However, the explained fraction was unaltered by
subtracting or adding 6 months to the knot at FMP plus 2 years. We therefore chose FMP
plus 2 years for the knot placement, because it represented the mid-point (indicating gradual
deceleration, in contrast to the fairly rapid acceleration at FMP minus 1 year). The explained
fraction of within woman variance also did not change when we used raw (un-normalized)
or log transformed BMD instead of baseline-normalized BMD. We present baseline-
normalized BMD for ease of interpretation: the regression slopes are equivalent to
percentage changes in BMD from baseline. Because we adjusted the models for baseline
BMD, individual differences in starting BMD do not influence estimated percentages.

In the third step, we added age at FMP, race/ethnicity and baseline BMI to the mixed effects
piece-wise models, as fixed effects on the intercept and 3 slopes, to assess how each
influenced the rate of BMD decline during each segment of the longitudinal, piece-wise
model. The BMD trajectories were divided into 3 linear segments in relation to FMP date
(time 0): years -5 to -1 relative to the FMP, termed pre-transmenopause; years -1 to +2
relative to the FMP, termed transmenopause; and years +2 to +5 after the FMP, termed
postmenopause. We also modeled the effect of change in BMI since baseline on BMD
values at follow-up. Models were adjusted for baseline BMD and clinical site. The effects of
each predictor on the slopes for each segment were combined to obtain total effects on BMD
decline during the 10 year period. Results are expressed as means and 95% confidence
intervals; 95% confidence intervals that exclude 1 are considered statistically significant.
Analyses were conducted using SAS version 9.2.

The analytic sample consisted of 242 African-American, 384 Caucasian, 117 Chinese and
119 Japanese women. At baseline, mean value of age was 46.7 years (standard deviation,
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[SD] 2.6 years), mean age at FMP was 51.6 (SD, 2.4 years) and average body mass index
was 27.4 kg/m2 (SD, 7 kg/m2). The baseline percentages of premenopausal and early
perimenopausal women were 58% and 41%, respectively; 16% were current smokers. These
characteristics were similar to those of the SWAN bone cohort participants who were not
included (data not shown). In the analysis sample, the mean number of BMD’s per woman
was 9 and the median was 10 (of a maximum possible 10).

Figures 1 and 2 illustrate the longitudinal loess plots of mean LS and FN BMD as a function
of number of months before or after the FMP (based on the date each BMD was obtained
and the FMP date). At both bone sites, there appeared to be no decline in BMD prior to one
year before the FMP, bone loss began one year before the FMP and decelerated, but did not
cease, 2 years after the FMP. The loess plots also showed that trajectories were essentially
linear within each of these 3 time intervals. To construct piece-wise regressions, we
therefore divided the BMD trajectories into 3 linear segments in relation to FMP date. The
first segment consisted of the period from 5 years prior to the FMP to 1 year prior to the
FMP, termed pre-transmenopause. The second segment spanned the interval from 1 year
prior to the FMP through 2 years after the FMP, termed transmenopause. The final segment
started 2 years after the FMP and ended 5 years after the FMP, termed postmenopause. (See
methods for tests of adequacy of break-point [knot] selections).

Table 1 summarizes the results of the piece-wise linear models that quantified LS BMD loss
in each of the 3 segments, i.e., pre-transmenopause, transmenopause and postmenopause.
Caucasian women with average baseline LS BMD of 1.066 gm/cm?, average baseline BMI
of 27.1 kg/m? and average age at FMP of 51.6 years are the reference sample. The slopes
shown for the Caucasian referent (row 1) are absolute slopes, reflecting the average rate of
change in BMD during each segment. Caucasian transmenopausal change in LS BMD was
-2.46% per year and postmenopausal change was —1.04% annually; summed 10-year
change was —10.6%.

Also shown in Table 1 are the associations of BMI (per kg/m?), race/ethnicity and age at
FMP with slopes in each of the segments. The figures shown in rows 2 to 6 are relative
slopes: when added to the slope values of the Caucasian referent, the figures in rows 2 to 6
of the table yield the average slopes in women who have that alternate characteristic. For
example, higher BMI was associated with less bone loss in all segments of the curve,
indicated by positive coefficients in pre-transmenopause, transmenopause and
postmenopause (+0.008%, +0.063%, +0.018%, respectively, per BMI unit). These positive
coefficients do not indicate that women with greater BMI gained bone. Rather, they show
that average rates of bone loss (given in row 1 of Table 1) were lessened by these amounts
in women with a BMI 1 unit higher than the sample average. Caucasians with BMI values
one standard deviation (7.5 kg/m?) above average would still lose bone —a ten year total of
8.50% —but a statistically smaller amount than the sample average 10-year loss of 10.6%.
Being African-American was associated with less transmenopausal spinal BMD loss (2.19%
per year) and a 10-year BMD change of —9.6%, borderline statistically significantly lower
that the Caucasian 10-year rate. During the pre-transmenopausal segment, Chinese women
lost LS BMD at a faster rate than Caucasians and Chinese 10-year LS BMD loss was 12.6%.

Results for FN BMD are presented in Table 2. Caucasian women with sample-average BMI,
age at FMP and baseline FN BMD (0.832 gm/cm?) lost 1.76% annually during the
transmenopausal interval. They lost 1.15% of FN BMD annually during the postmenopausal
segment. Total 10-year FN loss was 9.1%. Higher BMI was related to less BMD loss, but
only during the transmenopausal interval. The transmenopausal annual FN FMD loss rate
was 1.42% in African Americans, 2.13% in Japanese and 2.17% in Chinese women.
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Compared to Caucasians, 10-year FN BMD loss was greater in Asians and less in African
Americans.

Later age at FMP was related to greater loss of both bone sites during the transmenopause,
but had no effect on the 10-year cumulative loss (Tables 1 and 2). Not shown in the tables,
women whose BMI changed during the 10-year period had an ending LS BMD that was
higher by 0.10% per increasing BMI unit [95% CI = 0.06, 0.14%] and FN BMD that was
higher by 0.35% per unit increase in BMI [95% CI = 0.30, 0.40%].

It is not possible to know the FMP date prospectively. Menstrually-defined menopause
transition categories, based on bleeding patterns, are therefore used to in an attempt to stage
the transition. The inference is that the later the transition stage, the closer to the FMP. To
assess the usefulness of stages based on bleeding patterns (i.e., premenopause, early
perimenopause, late perimenopause and postmenopause) in gauging where women are in the
bone loss trajectory, we mapped the menstrually based stages onto each yearly interval prior
to and after the FMP (Table 3). During the year before the FMP, when bone loss accelerated,
68% of participants who were observed were still classified as early perimenopausal based
on bleeding patterns. Even in the year following the FMP, 30% of observations were in
women still classified as early perimenopausal according to bleeding patterns. In the year
immediately preceding the FMP, only 30% of BMD observations were in women classified
as late perimenopausal. In the year immediately after the FMP, 62% of observations were in
women classified as late perimenopausal. Table 3 also provides the crude mean BMD values
during each yearly time interval prior to and after the FMP. The patterns of crude mean bone
loss correspond closely to the loess plots (Figures 1 and 2) and to the piece-wise regression
models (Tables 1 and 2).

DISCUSSION

In the time span consisting of 5 years before and 5 years after the FMP, change in BMD was
divisible into 3 linear phases. Bone loss was not evident during the pre-transmenopause,
except in Chinese women, who had a small annual decline. At both the LS and FN, BMD
loss began 1 year before the FMP and slowed 2 years after it and this transmenopausal loss
was greater at the LS than the FN. Postmenopausal loss rates, defined here as starting 2
years after the FMP, were of similar magnitude at each bone site and were less than
transmenopausal rates of loss. Cumulative, 10-year LS BMD loss was 10.6%; 7.38% was
lost during the transmenopause. Cumulative, 10-year FN loss was 9.1%; 5.8% was lost
during the transmenopause. Base-case estimates of bone loss rates were based on Caucasians
with sample-average characteristics. Greater BMI and African American heritage were
related to slower loss rates, while the opposite was true of Japanese and Chinese ancestry.

The trajectory of menopause-related bone change is best captured by anchoring it to the
FMP, as was done a decade ago in an 8-year longitudinal study of 75 initially-
premenopausal, Caucasian women, in which an exponential curve was used to characterize
BMD loss relative to FMP date (4). In that study, LS and FN bone loss accelerated 2 years
before the FMP. Loss continued for 3 to 4 years after the FMP at the LS and for about 1.5
years after the FMP at the FN. These estimated times of onset and offset of transmenopausal
loss ostensibly differ from SWAN’s, but the former study did not report parametric testing
of the acceleration and deceleration points. Due to differences in statistical modeling used in
the former and the current study, it is not feasible to compare their estimates of
transmenopausal bone loss. However, in the former study, cumulative BMD losses in the
period spanning 4 years before and 4 years after the FMP were 10% at the spine and 9.5% at
the hip, similar to SWAN’s 10-year cumulative losses. Using a combination of splines and
piece-wise linear models in a longitudinal sample of 183 Caucasian women, the Michigan
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Bone Health and Metabolism Study (MBHMS) found that spine BMD loss accelerated 2
years before and continued for the 2 years after the FMP, while the FN BMD acceleration
began about 2-3 years before the FMP and lasted for 2 years after it (5). Differences in
estimated acceleration and deceleration times between MBHMS and SWAN may be due in
part to the smaller sample size in the former study and to the challenge of estimating
velocity changes when these are gradual. In the MBHMS, spine and hip losses during the
interval spanning 1 year prior to through 2 years after the FMP were 8.3% and 4.7%,
respectively, concordant with SWAN’s estimates of 7.3% and 5.3% during the same interval
at the same bone sites. Dissimilarities in estimated timing of transmenopausal acceleration
and deceleration are less important than similarities among these 3 analyses, each of which
demonstrate a period of rapid bone loss in the few years before and after the FMP, more
pronounced at the LS than at the FN.

Transmenopausal BMD loss was greater at the LS than at the FN, concordant with the
higher proportion of trabecular bone at the former compared to the latter site (12, 13). Riggs,
Khosla and Melton originally proposed that accelerated, early postmenopausal bone loss
affected trabecular bone to a greater degree than it affected cortical bone and that the
subsequent, slower rate of BMD loss was similar in both bone compartments (14). The
initial, accelerated phase was ascribed to the loss of a tonic estrogen effect on bone turnover;
the slower phase to estrogen-deficiency-caused secondary hyperparathyroidism. Newer, CT-
based studies still find a menopausal acceleration of trabecular bone loss (more pronounced
at the lumbar spine than at the distal tibia or radius) but newly report that trabecular loss
begins in women during their 20’s while tibial and radial cortical bone losses do not differ
from no loss until the MT (15). We did not observe bone loss before the transmenopause,
likely due to the lesser sensitivity of DXA compared to CT. The MT (and concomitant
change in estradiol and other factors) appears to play a major role in onset of cortical bone
loss and the amplification of trabecular bone loss in midlife women (16, 17).

Body mass, racial/ethic origin and age at FMP were each associated with to bone loss rates,
but their effects were manifest during different segments of the bone loss curves and
differed at the LS and FN sites. Higher baseline BMI was related to slower rates of LS bone
loss during all phases, while at the FN it was associated with slower loss during the
transmenopause. Nonetheless, when cumulated over 10-years, higher BMI predicted slower
bone loss rates at both bone sites, in accord with most (1, 3, 5, 18), but not all (1),
longitudinal studies of the MT. Unlike SWAN’s initial longitudinal findings, we found
BMI-independent, racial/ethnic variation in cumulative 10-year bone loss, mainly due to
differences in the rates of transmenopausal bone loss. The discordance between SWAN'’s
first longitudinal report and the current one is likely due to a doubling of the follow-up time
and also to our use of the FMP-date-based primary predictor. Racial/ethnic differences in
cumulative, 10-year bone loss were small, on the order of 1-2%. This absolute difference in
amount of bone loss is unlikely to explain racial/ethnic variations in fracture rates (6-9).
However, it is intriguing that the racial/ethnic variations in bone loss rates were almost
entirely confined to the transmenopausal segment, which may have long-term impact on
structural integrity (discussed below). Finally, the effect of increasing age at FMP on bone
loss rate, also isolated to the transmenopause, was quite small and is not likely to be of
clinical or biological significance.

Mapping the menstrually-defined MT stages onto the number of years before or after the
FMP (Table 3) pointed out that menopause transition stages were not useful clinical signals
of the onset of transmenopausal BMD loss. In the year before to the FMP, 70% of women
were classified as early perimenopausal and only 30% of women were in late
perimenopause. This result appears counter to prior reports that found minimal BMD loss
during early perimenopause and a dramatic increase in BMD in late perimenopause—but
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careful scrutiny will demonstrate that the findings are indeed compatible and provide
complementary information (1-3). In the current study, 60% to 80% of the BMD measures
that were made in the years spanning 5 years to 1 year before the FMP (when no BMD loss
occurred) were in early perimenipausal women; therefore, when one computes average
BMD loss among all women classifed as early perimenopausal, it is predominantly
influenced by this 4-year period of with no loss. The time span during which women were in
late perimenopause was shorter, mainly one year before and one year after the FMP,
consistent with the higher rates of BMD loss computed for this stage when menstrually-
based classifications are used. But only 28% of women had reached late perimenopause
when rapid BMD loss began, demonstrating that late perimenopause is not a clinically
sensitive indicator that substantive BMD loss is starting. Finally, it may seem
counterintuitive that 30% of participants were classified as early perimenopausal the year
after their FMP occurred. However, the FMP date can only be known in retrospect; these are
women who have “more abrupt” natural menopause—i.e., who transition directly from
irregular menses to no menses without having had a menstrual gap of at least 3 months.

Does accelerated BMD loss during the transmenopause have clinical implications? On
average, the absolute quantity of BMD lost during the 3-year transmenopausal phase, 7.4%
at the LS and 5.3% at the FN, is unlikely to result in a BMD value sufficiently low to meet
even the most conservative treatment recommendations. For example, a Caucasian woman
with a baseline FN BMD at the 5™ percentile for SWAN Caucasians, 0.69 g/cm2 (a T score
-1.4), would have a femoral neck BMD of ~0.64 g/cm? two years after the FMP (a T score
of —1.8). But absolute decline in BMD may be less critical than the rapid bone turnover that
it signals. Rapid turnover may damage skeletal structural integrity, though loss of trabecular
elements, diminished trabecular connectivity, weakened trabeculae and erosion of the
endosteal cortex (19). During the MT, histomorphometry and 3-D micro CT demonstrate
declines in trabecular number, enlargement of trabecular spacing and conversion of
trabecular plates to rods, in direct correspondence with increases in activation frequency (19,
20). Concern about irreparable architectural damage to bone has led some to advocate for
short-term anti-resorptive therapy during the MT in an attempt to prevent such damage (21).
While we concur that the major import of transmenopausal accelerated bone loss may be its
threat to microarchitecture, we do not believe that the currently available data are sufficient
to recommend treatment. Rather, further characterization of this phenomenon is essential.

Strengths of this analysis include its large sample size, number of FMP’s observed, ability to
compare patterns of bone loss directly among women from four ethic/racial groups and
multiple longitudinal measurements. The analysis method, linking patterns of bone loss to
the FMP, newly points out the incapacity of menstrually-defined MT stages to signal the
onset of transmenopausal BMD loss. Study limitations include some uncertainty the in the
timing of the acceleration and deceleration of BMD loss, especially the latter, which was
much less distinct. Ten year loss rates were computed to militate against this uncertainty in
knot placement. Because SWAN enrolled women who were in their mid-forties, we cannot
capture the period of time earlier than 5 years before the FMP; additional follow-up will
permit us to extend observations beyond 5 years post-FMP. Non-Caucasian sample sizes
were large enough to detect racial/ethnic differences in BMD trajectories, but not large
enough for us to test for interactions within race. Two sites changed Hologic bone
densitometer models; however, in-vivo cross-calibration protocols were done.

In conclusion, this analysis confirms that there is a period of rapid BMD loss that brackets
the FMP and commences about one year before it and newly reports that transmenopausal
BMD loss is independently influenced by ethnicity and body mass. Future work should
determine whether rapid transmenopausal bone loss permanently damages bone

J Bone Miner Res. Author manuscript; available in PMC 2013 January 25.



1X31-)lew1a1ems 1X31-){Jewiaremsg

1Xa1-)lewarems

Greendale et al. Page 9

microarchitecture or bone strength. Clinically useful signals that presage the onset of
transmenopausal BMD loss also require elucidation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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illustrates the longitudinal trajectory of baseline-normalized lumbar spine bone mineral
density (BMD) values in relation to the amount of time before (negative numbers) or after
(positive numbers) the final menstrual period (FMP [time zero]). This loess plot illustrates
no measurable decline in lumbar spine BMD during the interval between 5 years and 1 year
before the FMP, BMD loss starting 1 year prior to the FMP that continued for 2 years after

the FMP, and a deceleration, but not cessation, of BMD loss 2 years after the FMP.
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Loess smoothed value of baseline normalized femoral neck bone mineral density

Figure 2.
presents the longitudinal trajectory of baseline-normalized femoral neck bone mineral

1.01000

0.99000 1

0.97000 1

0.95000 1

0.93000 1

0.91000 1

0.89000 g

Page 12

-60

T
-48

-36

24

36

T
48

Number of months before or after final menstrual period

60

density (BMD) values relative to time before or after the FMP (FMP [time zero]). The span
between 5 years and 1 year before the FMP was characterized by no measurable drop in
BMD. This loess plot illustrates no measurable decline in femoral neck BMD during the
interval between 5 years and 1 year before the FMP, BMD loss starting 1 year prior to the
FMP that continued for 2 years after the FMP, and a deceleration, but not cessation, of BMD
loss 2 years after the FMP.
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