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ABSTRACT

FANCI and FANCD2 form a complex, and play
essential roles in the repair of interstrand DNA
crosslinks (ICLs) by the Fanconi anemia (FA)
pathway. FANCD2 is monoubiquitylated by the FA
core complex, composed of 10 FA proteins
including FANCL as the catalytic E3 subunit.
FANCD2 monoubiquitylation can be reconstituted
with purified minimal components, such as FANCI,
E1, UBE2T (E2) and FANCL (E3) in vitro; however, its
efficiency is quite low as compared to the in vivo
monoubiquitylation of FANCD2. In this study,
we found that various forms of DNA, such as
single-stranded, double-stranded and branched
DNA, robustly stimulated the FANCD2 monoubi-
quitylation in vitro up to a level comparable to its
in vivo monoubiquitylation. This stimulation of the
FANCD2 monoubiquitylation strictly required
FANCI, suggesting that FANCD2 monoubiquitylation
may occur in the FANCI-FANCD2 complex. A FANCI
mutant that was defective in DNA binding
was also significantly defective in FANCD2
monoubiquitylation in vitro. In the presence of 5
flapped DNA, a DNA substrate mimicking the
arrested replication fork, about 70% of the input
FANCD2 was monoubiquitylated, while less than
1% FANCD2 monoubiquitylation was observed in
the absence of the DNA. Therefore, DNA may be
the unidentified factor required for proper FANCD2
monoubiquitylation.

INTRODUCTION

Fanconi anemia (FA) is an autosomal recessive disorder,
and 15 FA genes, FANCA, —-B, —-C, —-D1 (BRCA2), —-D2,

-E, -F, -G, -1, —-J (BRIPI), —-L, —-M, —N (PALB2), -O
(RADS51C) and —P (SLX4), have been identified (1-3).
In FA patients, mutations in these FA genes cause
genomic instability with cancer susceptibility, progressive
bone marrow failure and multiple developmental defects
(1-4). These FA gene products are considered to function
in a common DNA damage repair pathway, the ‘FA
pathway’.

In the FA pathway, eight proteins, FANCA, FANCB,
FANCC, FANCE, FANCF, FANCG, FANCL and
FANCM, and two FANCA-associated polypeptides
(FAAPs) form the FA core complex, and FANCI and
FANCD?2 form the ID complex (5-8). When cells are
exposed to DNA crosslinking agents, the ID complex
promptly becomes monoubiquitylated (6-9). This
monoubiquitylation of the ID complex, especially for
FANCD?2, is a central process in the FA pathway, and
the FA core complex is responsible for it, as the E3 ubi-
quitin ligase complex (5,9-11). FANCL was identified
as the catalytic E3 subunit for the FANCD2
monoubiquitylation by the FA core complex (12). On
the other hand, UBE2T, which is required for cellular
resistance to interstrand DNA crosslinks (ICLs), has
been shown to interact with FANCL, and functions as
the E2 ubiquitin-conjugating enzyme required for the
FANCL-dependent FANCD2 monoubiquitylation (13).
An in vitro study showed that E1, UBE2T, and FANCL
are sufficient for FANCD2 monoubiquitylation (14).
However, the efficiency of FANCD2 monoubiquitylation
is extremely low, as compared to that of FANCD2
monoubiquitylation during ICL repair in vivo (9).
Therefore, an essential factor(s) required for mediating
FANCD2 monoubiquitylation is missing in the in vitro
FANCD?2 monoubiquitylation assay.

In the present study, we prepared the ID complex with
recombinant FANCI and FANCD?2, and performed
in vitro monoubiquitylation assays with recombinant El,
UBE2T (E2) and FANCL (E3). We found that FANCD?2
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monoubiquitylation in the ID complex was robustly
stimulated by DNA, such as single-stranded, double-
stranded and branched DNAs, up to the level comparable
to the in vivo monoubiquitylation of FANCD2.

MATERIALS AND METHODS

Purification of chicken FANCD2, FANCI, FANCL and
human UBE2T

The DNA fragments encoding chicken FANCD2
and FANCI were ligated into the Ndel-BamHI and
Ndel-Xhol sites of the pET-15b vector, respectively, and
the proteins were overexpressed in the Escherichia coli
BL21(DE3) strain, which also carried an expression
vector for the minor tRNAs [Codon(+)RIL, Stratagene].
The cells were cultured in LB medium supplemented with
ampicillin (100 pg/ml) and chloramphenicol (35 pg/ml)
at 30°C to an ODyggy = 0.6, and then protein production
was induced by adding 0.5mM Isopropyl B-D-1-
thiogalactopyranoside and culturing the cells overnight
at 18°C. The cells were collected, resuspended in buffer
A containing 50mM Tris—HCI (pH 8.0), 10% glycerol,
0.5M NaCl, I mM PMSF, 12mM imidazole and 5mM
2-mercaptoethanol, and disrupted by sonication. After
disruption, the supernatant was separated from the
cell debris by centrifugation (27200g) at 4°C for 20 min,
and was mixed gently with nickel-nitrilotriacetic acid
(Ni-NTA) agarose resin (3ml; Qiagen) at 4°C for 1h.
Later, the Ni-NTA beads were packed into an Econo-
Column (Bio-Rad), and were washed with 150 ml buffer
A. Hisg-tagged FANCD2 or FANCI was eluted with a
60ml linear gradient of 12 to 400mM imidazole in
buffer A. Since the Hisg-tag may affect the DNA-
binding property of the proteins, the Hiss-tag was
removed by digestion with thrombin protease (GE
Healthcare; 3 U/mg protein for FANCD2, 20U/mg
protein for FANCI) during dialysis against 4 L of buffer
B, containing 20mM Tris—HCI (pH 8.0), 10% glycerol,
SmM 2-mercaptoethanol and 0.2 M NaCl. After
removal of the Hisg-tag, the protein solutions were then
loaded onto a Heparin Sepharose CL-6B column (3 ml;
GE Healthcare) equilibrated with buffer B. The column
was washed with 150 ml of buffer B containing 280 mM
NaCl, and the proteins were eluted with a 60ml linear
gradient of 280 to 1000mM NaCl in buffer B. Peak
fractions were collected, concentrated and then applied
to a Superdex 200 gel filtration column (HiLoad 26/60
preparation grade; GE Healthcare) equilibrated with
buffer B. Purified proteins were concentrated to Smg/ml,
and were stored at —80°C. All of the FANCI and
FANCD2 mutants, except for FANCI Ex6, were
purified by the same method as that used for the
wild-type FANCI or FANCD?2 protein. For the FANCI
Ex6 mutant purification, Q Sepharose Fast Flow column
chromatography (3ml; GE Healthcare) was employed,
instead of Heparin Sepharose column chromatography.
The column was washed with 100 ml of buffer B contain-
ing 215mM NaCl, and the proteins were eluted with a
60 mL linear gradient of 215-450mM NaCl in buffer B.

The subsequent purification procedure for FANCI Ex6
was the same as that for the wild-type FANCI.

The DNA fragments encoding chicken FANCL and
human UBE2T were each ligated separately into the
EcoRI-Xhol sites of the pGEX6P-1 vector, and the
proteins were expressed by the same methods as for
chicken FANCD2 and FANCI. The cells producing
FANCL or UBE2T were collected, resuspended in
buffer C, containing 50mM Tris-HCl (pH 8.0), 10%
glycerol, 0.5 M NaCl, 1 mM PMSF, | mM EDTA, 0.1%
Nonidet P-40 and 5mM 2-mercaptoethanol, and dis-
rupted by sonication. After disruption, the supernatant
was separated from the cell debris by centrifugation for
30min, and was then mixed gently with Glutathione
Sepharose 4B beads (3ml; GE Healthcare) at 4°C for
2h. The Glutathione Sepharose 4B beads were packed
into an Econo-Column, and were washed with 150 ml of
buffer C containing 1 M NaCl. The GST-tagged FANCL
or UBE2T was eluted with 50 ml of buffer C containing
20 mM reduced glutathione. Peak fractions were collected,
concentrated and then applied to a Superdex 200 gel
filtration column equilibrated with buffer B containing
150mM NaCl. Purified GST-FANCL was concentrated
to 3mg/ml, and was stored at —80°C. The GST-tag of
the GST-UBE2T was removed by an overnight treatment
with PreScission protease (GE Healthcare; 1.5U/mg
protein) at 4°C. After the GST-tag removal, the protein
solution was mixed gently with Glutathione Sepharose 4B
at 4°C for 3h. The flow-through fractions containing
purified UBE2T were collected, concentrated to 3 mg/ml,
and stored at —80°C. The protein concentration was
determined by the Bradford method (15), using bovine
serum albumin as the standard protein.

DNA substrates

49-mer single-stranded oligonucleotides, 1, 2, 3 and 4,
(16—-18) with the sequences 5-ATCGA TGTCT CTAGA
CAGCT GCTCA GGATT GATCT GTAAT GGCCT
GGGA-3, 5-GTCCC AGGCC ATTAC AGATC AAT
CC TGAGC ATGTT TACCA AGCGC ATTG-3, 5-TG
ATC ACTTG CTAGC GTCGC AATCC TGAGC AGC
TG TCTAG AGACA TCGA-3' and 5-CCAAT GCGCT
TGGTA AACAT GCTCA GGATT GCGAC GCTAG C
AAGT GATC-3/, respectively, were used to prepare the
synthetic Holliday junction (HJ) (1, 2, 3 and 4) by anneal-
ing. The splayed arm DNA was prepared by annealing
oligonucleotides 1 and 2. The dsDNA was prepared
by annealing oligonucleotide 1 with its complementary
oligonucleotide. The 5 flapped DNA was prepared by
annealing 5-CAATGCGCTTGGTAAACA-3' to the ¥
ssDNA region of the splayed arm DNA. The static fork
DNA was prepared by annealing 5-GCTGTCTAGAGA
CATCGAT-3' to the 5 ssDNA region of the 5 flapped
DNA. All of the oligonucleotides were purified by HPLC,
and the DNA concentrations are expressed in moles of
nucleotides.

DNA binding assay

The synthetic HJ (4.5 uM), splayed arm DNA (4.5 uM),
and dsDNA (4.5uM) were mixed with 0.05-0.20 uM of



the ID complex in 10 uL of reaction buffer, containing
20mM Tris—-HCI (pH 8.0), 70mM NaCl, 2% glycerol,
0.3mM MgCl,, 5SmM dithiothreitol and 10 ug/ml bovine
serum albumin. For the experiments with three-way
branched DNAs, splayed arm DNA (4.5 uM), 5" flapped
DNA (4.5 uM) and static fork DNA (4.5 uM) were mixed
with 0.05-0.20 uM of the ID complex in 10 pl of reaction
buffer. The samples were incubated at 37°C for 15min,
and were then analyzed by 8.0% or 3.5% PAGE in TBE
(18 mM Tris-borate and 0.4mM EDTA) buffer. DNAs
were visualized by SYBR Gold (Invitrogen) staining.

In vitro ubiquitylation assay

The purified FANCD?2 protein (1 tM) or the ID complex
(1 uM) was mixed with UBE2T (2-8 uM), GST-FANCL
(2uM), human recombinant El (75nM) (Boston
Biochem) and HA-tagged ubiquitin (10 M) (Boston
Biochem), in the presence or absence of DNA substrates,
in 20uL of reaction buffer, containing 0.5mM DTT,
2mM ATP, 2mM MgCl,, 50mM Tris—HCI (pH 7.5),
3.6% glycerol and 64mM NaCl. The reactions were
incubated for 90 min at 30°C, and were then stopped by
the addition of 2% sodium dodecyl sulphate. The reaction
products were separated by 7% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE), and
were transferred to a polyvinylidene fluoride membrane.
Ubiquitylated proteins were detected by an anti-HA
antibody (F-7; Santa Cruz Biotechnology, Inc.), and
protein bands were visualized by Coomassie Brilliant
Blue staining.

RESULTS

In vitro monoubiquitylation of the FANCI-FANCD2
complex

Chicken FANCI and FANCD?2 were purified as recom-
binant proteins (Figure 1A, lanes 2 and 4), and the ID
complex was prepared by mixing them in 1:1 stoichiom-
etry. We also purified UBE2T and FANCL, which are
known as the E2 and E3 proteins for FANCD2
monoubiquitylation,  respectively, as  recombinant
proteins (Figure 1B and C). We then performed the
in vitro monoubiquitylation assay (14). The ID complex
was incubated with ElI, UBE2T and FANCL in the
presence of HA-tagged ubiquitin (Figure 2A), and the
ubiquitylated proteins were detected by a western
blotting analysis with an anti-HA antibody (Figure 2B).
As shown in Figure 2B, FANCD2 was
monoubiquitylated in this assay (lane 6). The FANCD?2
K563R mutant, which is defective in monoubiquitylation
in vivo (9), was also defective in this monoubiquitylation
assay (Figure 2B, lane 7), suggesting that the FANCD?2
monoubiquitylation properly occurred in this in vitro
system. The FANCD2 monoubiquitylation may predom-
inantly occur in the ID complex, because only a back-
ground level of FANCD2 monoubiquitylation was
observed in the absence of FANCI (Figure 2B, lanes 2
and 3). Consistently, FANCD2 monoubiquitylation was
not stimulated when the chicken FANCI R1288Q mutant,
corresponding to the human FANCI R1285Q mutant,
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Figure 1. Purification of chicken FANCD2, FANCI, FANCL and
human UBE2T. (A) Purified chicken FANCD2 and FANCI, used for
in vitro assays, were analyzed by 15% SDS-PAGE with Coomassie
Brilliant Blue staining. Lane 1 indicates the molecular mass markers.
Lanes 2 and 3 indicate purified FANCD2 and FANCD2 KS563R,
respectively. Lanes 4-9 indicate purified FANCI, FANCI KS525R,
FANCI R1288Q, FANCI Dx6, FANCI Dx6 K525R and FANCI
Ex6, respectively. (B) Purified human UBE2T, used for in vitro
monoubiquitylation assays, was analyzed by 15% SDS-PAGE with
Coomassie Brilliant Blue staining. Lane 1 indicates the molecular
mass markers. Lane 2 indicates purified UBE2T. (C) Purified
GST-tagged chicken FANCL, used for in vitro monoubiquitylation
assays, was analyzed by 15% SDS-PAGE with Coomassie Brilliant
Blue staining. Lane 1 indicates the molecular mass markers. Lane 2
indicates purified GST-tagged FANCL.

which is reportedly defective in both FANCD2 and
DNA binding (19), was added instead of FANCI
(Figure 2C, lane 7). Interestingly, the FANCI K525R
mutant, which is defective in FANCI monoubiquitylation
in vivo, was proficient in stimulating FANCD2
monoubiquitylation in vitro (Figure 2B, lane 8). In our
in vitro system, FANCI monoubiquitylation was weakly
observed in the presence of FANCD2 (Figure 2B, lane 6).
However, the weak FANCI monoubiquitylation observed
in the ID complex may not properly occur on the Lys525
residue of FANCI, for the following reasons. First, this
weak monoubiquitylation was also observed with the
FANCI K525R mutant (Figure 2B, lanes 8 and 9).
Second, the FANCI monoubiquitylation occurred on the
Lys525 residue without FANCD?2 (Figure 2B, lane 4),
as previously reported (20), but the weakly monoubi-
quitylated FANCI in the ID complex migrated slightly
faster than the Lys525-monoubiquitylated FANCI
(Figure 2B, lane 4 versus lane 6).

DNAs robustly stimulate FANCD2 monoubiquitylation

Upon the induction of DNA crosslinking damage,
40-70% of FANCD?2 was reportedly monoubiquitylated
in cells (11,21). However, we observed less than 1%
monoubiquitylation of the input FANCD2 in vitro
(Figure 2D). This indicated that an essential component
required for the proper monoubiquitylation of FANCD2
was missing in this in vitro system. The FANCD?2
monoubiquitylation site is reportedly buried in the
binding interface with FANCI in the ID complex (22).
Interestingly, the putative DNA-binding path in the ID
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Figure 2. In vitro monoubiquitylation of FANCD?2. (A) Schematic diagram of the monoubiquitylation assay. The monoubiquitylation assay was
performed by incubating FANCD2 (D2) or FANCI (I)-FANCD2 with E1, UBE2T and FANCL (L) in the presence of ATP and HA-tagged
ubiquitin (Ub). (B) Ubiquitylated proteins were separated by 7% SDS-PAGE, and were detected by western blotting with an anti-HA monoclonal
antibody (a-HA). Lanes 1 and 2 indicate control experiments without FANCI-FANCD2 and FANCI, respectively. Lane 3 indicates an experiment
with FANCD2 K563R in the absence of FANCI. Lane 4 indicates an experiment with FANCI in the absence of FANCD?2. Lane 5 indicates an
experiment with FANCI K525R in the absence of FANCD?2. Lane 6 indicates an experiment in the presence of the complete set of proteins. Lane 7
indicates an experiment with FANCD2 K563R, in the presence of FANCI. Lane 8 indicates an experiment with FANCI K525R, in the presence of
FANCD?2. Lane 9 indicates an experiment with FANCD2 K563R and FANCI K525R. Lane 10 indicates an experiment with FANCD?2 and FANCI,
without FANCL. Asterisk indicates the degradation product of monoubiquitylated FANCI. (C) Experiments were performed as in panel (B). Lanes
1 and 2 indicate control experiments without FANCI-FANCD2 and FANCI, respectively. Lane 3 indicates an experiment in the presence of the
complete set of proteins. Lane 4 indicates an experiment with FANCD2 K563R, in the presence of FANCI. Lanes 5 and 6 indicate experiments with
FANCI Dx6, in the presence of FANCD2 and FANCD2 K563R, respectively. Lanes 7 and 8 indicate experiments with FANCI R1288Q), in the
presence of FANCD2 and FANCD2 KS563R, respectively. Asterisk indicates the degradation product of monoubiquitylated FANCI.
(D) Experiments were performed as in panel (B). Enlarged images of the monoubiquitylated FANCD2 band detected by a-HA (upper panel)
and an anti-chicken FANCD?2 polyclonal antibody (lower panel). FANCI-Ub* indicates non-specific monoubiquitylation of FANCI. Lane 1
indicates a negative control experiment in the presence of FANCD2 K563R. Lane 2 indicates an experiment in the presence of the complete set
of proteins.

complex is located near the FANCD2 monoubiquitylation
site (22). This suggested that DNA binding by the ID
complex may induce a conformational change of the ID
complex, and may expose the FANCD2 monoubi-
quitylation site on an accessible surface.

We therefore tested whether the DNA affected the
FANCD2 monoubiquitylation in the ID complex
in vitro. We tested seven DNA structures, including
splayed arm DNA, 5 flapped DNA, 3’ flapped DNA,
static fork DNA, HJ DNA, ssDNA and dsDNA, as
substrates (Figure 3A). To our surprise, we found that
the FANCD2 monoubiquitylation in the ID complex
was robustly enhanced in the presence of these DNAs
(Figure 3B). This FANCD2 monoubiquitylation stimula-
tion by DNA was not observed in the absence of FANCI
(Figure 3B, lanes 1-4) or in the presence of the FANCD?2
K563R mutant, instead of FANCD?2 (Figure 3B, lanes 5,
10, 15, 20, 25, 30, 35 and 40). The ID complex bound to
the 5 flapped DNA, but E1, UBE2T and FANCL did not

(Figure 3C). Therefore, we conclude that DNA binding by
the ID complex is required for the robust stimulation of
the FANCD2 monoubiquitylation. Since about 70% of
FANCD?2 was monoubiquitylated after a 6 h reaction in
the presence of FANCI and 5 flapped DNA, the
FANCD2 monoubiquitylation can be promoted to the
level observed in cells with DNA and FANCI in vitro
(Figure 3D).

The FANCI R1288Q mutant is defective in stimulating
FANCD2 monoubiquitylation

The human FANCI R1285Q mutant, corresponding to
the chicken FANCI R1288Q mutant, is reportedly
defective in both FANCD?2 binding and DNA binding
(19). We found that the FANCI R1288Q mutant was
significantly defective in stimulating the FANCD2
monoubiquitylation in the presence of DNA in vitro
(Figure 3E, lanes 6-10). The DNA-binding activity of
FANCI alone was consistent with that reported previously
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Figure 3. DNA stimulates FANCD2 monoubiquitylation in vitro. (A) Schematic representation of the DNA substrates. (B) FANCD?2 (lanes 1-4) or
FANCI-FANCD?2 (lanes 6-9, 11-14, 16-19, 21-24, 26-29, 31-34 and 36-39) was incubated with E1, UBE2T and FANCL in the presence of ATP
and HA-tagged ubiquitin. The reactions were performed in the presence of splayed arm DNA (lanes 2-5 and 6-10), 5" flapped DNA (lanes 12-15),
static fork DNA (lanes 17-20), 3’ flapped DNA (lanes 22-25), ssDNA (lanes 27-30), HJ DNA (lanes 32-35), and dsDNA (lanes 37-40). The DNA
concentrations were 0 uM (lanes 1, 6, 11, 16, 21, 26, 31 and 36), SuM (lanes 2, 7, 12, 17, 22, 27, 32 and 37), 20 uM (lanes 3, 8, 13, 18, 23, 28, 33 and
38), and 50 uM (lanes 4, S, 9, 10, 14, 15, 19, 20, 24, 25, 29, 30, 34, 35, 39 and 40). Lanes 5, 10, 15, 20, 25, 30, 35 and 40 indicate negative control
experiments with FANCD?2 K563R. Proteins were separated by 7% SDS-PAGE, blotted onto a membrane, and detected by Coomassie Brilliant Blue
staining (upper panel) or a-HA antibody staining (middle panel). The amounts of monoubiquitylated FANCD2 were estimated, and the averages of
three independent experiments are indicated as black bars with the standard deviation values (lower panel). (C) Gel shift assay. 5’ flapped DNA
(5uM) was incubated with ubiquitin (10 uM) (lane 2), El (75nM) (lane 3), UBE2T (2uM) (lane 4), GST-FANCL (2uM) (lane 5), or FANCI-
FANCD?2 (1 pM) (lane 6) at 30°C for 15 min. Samples were analyzed by 3.5% PAGE in 0.2 x TBE buffer (18 mM Tris base, 18 mM boric acid, and
0.4mM EDTA) with SYBR Gold staining. (D) Time course experiments of the FANCD2 monoubiquitylation. Experiments were performed as in
panel (B). FANCI-FANCD?2 (lanes 1-4) or FANCI Dx6-FANCD?2 (lanes 6-9) was incubated with 50 uM 5" flapped DNA. Reaction times were 0 h
(lanes 1 and 6), 1.5h (lanes 2 and 7), 3h (lanes 3 and 8) and 6h (lanes 4, 5, 9 and 10). Lanes 5 and 10 indicate negative control experiments with
FANCD2 K563R and FANCI K525R or FANCI Dx6 KS525R, respectively. The results are presented as in panel B. (E) The stimulation of
FANCD2 monoubiquitylation by FANCI R1288Q and FANCI Dx6. Experiments were performed as in panel (B), with 5 flapped DNA and
FANCI R1288Q (lanes 6-10) or FANCI Dx6 (lanes 11-15), instead of FANCI (lanes 1-5). The DNA concentrations were 0 pM (lanes 1, 6 and 11),
SuM (lanes 2, 7 and 12), 20 uM (lanes 3, 8 and 13), and 50 uM (lanes 4, 5, 9, 10, 14 and 15). Lanes 5, 10 and 15 indicate negative control experiments
with FANCD2 K563R.

(20), in which FANCI preferentially binds to the HI DNA
(Figure 4A and B). The FANCI R1288Q mutant alone
was proficient in the DNA binding (Figure 4A and B),
unlike the human FANCI RI285Q mutant (19);
however, the DNA-binding activity of the ID complex
containing the FANCI RI1288Q mutant was clearly
reduced (Figure 4C and D), as compared to the
wild-type ID complex (Figure 4C and D). Therefore,
both the FANCD2-binding and DNA-binding activities

of FANCI may be required for
FANCD2 monoubiquitylation.

stimulating the

The FANCI Dx6 mutant stimulates FANCD2
monoubiquitylation at a reduced rate

The FANCI Dx6 mutant, in which Ser558, Ser561,
Thr567, Ser598, Ser619 and Ser631 are replaced by
Asp, reportedly induces constitutive =~ FANCD2
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Figure 4. DNA binding activities of the ID complex and FANCI. (A) Competitive DNA-binding assay with FANCI. The synthetic HJ
DNA (4.5pM), splayed arm DNA (4.5uM), and dsDNA (4.5uM) were incubated with increasing amounts (0, 0.1, 0.2, 0.4 and 0.6 uM) of
FANCI (lanes 1-5), FANCI Dx6 (lanes 6-10), or FANCI R1288Q (lanes 11-15) at 37°C for 15min. The samples were then separated by 8%
PAGE in 0.2 x TBE buffer, and the bands were visualized by SYBR Gold staining. (B) Graphic representations of the experiments with FANCI
(left), FANCI Dx6 (center), and FANCI R1288Q (right) shown in panel (A). The DNAs bound to FANCI were estimated, and the averages of three
independent experiments are plotted against the protein concentrations with the standard deviation values. (C) Competitive DNA-binding assay with
the ID complex. Experiments were performed as in panel (B). The FANCI-FANCD?2 (lanes 1-5), FANCI Dx6-FANCD?2 (lanes 6-10), and
FANCI RI1288Q-FANCD?2 (lanes 11-15) concentrations were 0, 0.05, 0.10, 0.15 and 0.20 uM. (D) Graphic representations of the experiments
with FANCI-FANCD?2 (left), FANCI Dx6-FANCD?2 (center), and FANCI R1288Q-FANCD?2 (right) shown in panel (C). The DNAs bound to the
ID complex were estimated, and the averages of three independent experiments are plotted against the protein concentrations with the standard

deviation values.

monoubiquitylation iz vivo (11). We found that the
FANCI Dx6 mutant also supported the stimulation of
the FANCD2 monoubiquitylation in the presence or
absence of DNA, at a reduced rate as compared to
FANCI (Figure 2C, lane 5, and Figure 3E, lanes 11-15).
The FANCD2 monoubiquitylation stimulation by the
FANCI Dx6 mutant was still significant, because about
55% of the FANCD2 was monoubiquitylated in the 1D
complex containing the FANCI Dx6 mutant during the
6h reaction in the presence of 5 flapped DNA (Figure
3D). These results are consistent with the previous
in vivo results, in which the FANCD2 monoubiquitylation
in the DT40 cells harboring the FANCI Dx6 mutant
occurs at a slightly reduced rate, as compared to the
wild-type cells, in the presence of mitomycin C (11). The
FANCI Dx6 mutant alone and the ID complex containing
the FANCI Dx6 mutant were completely proficient in
DNA binding (Figure 4). Therefore, the FANCI phos-
phorylation mimicked by the FANCI Dx6 mutation
may not significantly affect the DNA-binding and
FANCI-FANCD2-binding  activities of  FANCI,
although the mechanism of the constitutive FANCD?2
monoubiquitylation by the FANCI Dx6 mutant in the
absence of DNA damage remains unknown (11).

The DNA-binding activity of FANCI is required to
stimulate FANCD2 monoubiquitylation

Finally, we tested whether the DNA-binding activity
of FANCI is required to stimulate FANCD2

monoubiquitylation in vitro. To do so, we designed the
FANCI Ex6 mutant, in which Lys293, Lys296, Lys305,
Lys333, Arg338 and Lys341 were replaced by Glu.
These amino acid residues are located near the
DNA-binding surface of FANCI (22). As anticipated,
the FANCI Ex6 mutant alone and the ID complex con-
taining the FANCI Ex6 mutant were significantly defect-
ive in DNA binding (Figure 5A-D). Interestingly, the
FANCI Ex6 mutant was also quite defective in the
DNA-stimulated FANCD2 monoubiquitylation in vitro
(Figure 5F). In the absence of DNA, the FANCI Ex6
mutant induced the FANCD2 monoubiquitylation as
well as FANCI (Figure SE), indicating the proficiency of
FANCD?2 binding by the FANCI Ex6 mutant. These
results strongly suggested that the DNA-binding activity
of FANCI plays an essential role in the DNA-stimulated
FANCD2 monoubiquitylation.

DISCUSSION

Monoubiquitylation of FANCD?2 is the central process
for DNA crosslink repair by the FA pathway. FANCL
has been identified as a catalytic component of the E3
ligase FA core complex, containing FANCA, -B, -C,
-E, -F, -G, -L, —-M and two FANCA-associated polypep-
tides (FAAPs). UBE2T has been identified as an
E2 wubiquitin-conjugating enzyme for the FANCD2
monoubiquitylation (13). Alpi et al. (14) successfully
reconstituted the FANCD2 monoubiquitylation in vitro
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Figure 5. The DNA-binding activity of FANCI is required for robust
stimulation of the FANCD2 monoubiquitylation. (A) Competitive
DNA-binding assay with FANCI Ex6. Experiments were performed
as in Figure 4A. (B) Graphic representation of the experiments
shown in panel (A). The DNAs bound to FANCI Ex6 were estimated,
and the averages of three independent experiments are plotted against
the protein concentrations with the standard deviation values.
(C) Competitive DNA-binding assay with FANCI Ex6-FANCD2.
Experiments were performed as in Figure 4C. (D) Graphic representa-
tion of the experiments shown in panel (C). The DNAs bound to the
ID (Ex6) complex were estimated, and the averages of three independ-
ent experiments are plotted against the protein concentrations with the
standard deviation values. (E) In vitro monoubiquitylation assay with
FANCI Ex6 in the absence of DNA. Proteins were separated by 7%
SDS-PAGE, blotted onto a membrane, and detected by a-HA antibody
staining. (F) In vitro monoubiquitylation assay with FANCI Ex6 in
the presence of 5 flapped DNA. Experiments were performed as in
Figure 3E. Proteins were separated by 7% SDS-PAGE, blotted onto
a membrane and detected by Coomassie Brilliant Blue staining (upper
panel) or o-HA antibody staining (middle panel). The amounts of
monoubiquitylated FANCD2 were estimated, and the averages of
three independent experiments are indicated as black bars with the
standard deviation values (lower panel).

with purified UBE2T and FANCL, and in the present
study, we also observed the in vitro FANCD?2
monoubiquitylation in the ID complex with purified El,
UBE2T and FANCL. However, only slight FANCD2
monoubiquitylation (less than 1% of the input
FANCD2) was detected in vitro, although robust
FANCD2 monoubiquitylation (40-70%) has been
detected in vivo (11,21). These results, therefore, indicated
that the factor(s) required for proper FANCD2
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Figure 6. Model for the role of branched DNA in FANCD2
monoubiquitylation. According to the crystal structure of the ID
complex (22), the monoubiquitylation site (K563) of FANCD?2 is
located near the interface with FANCI. Therefore, UBE2T and
FANCL may not allow access to the FANCD2 monoubiquitylation
site in the ID complex (left panel). Branched DNA may bind to
FANCI, as revealed by the crystal structure of the FANCI-DNA
complex (22), and thus induce a conformational change of the ID
complex to expose the FANCD2 monoubiquitylation site for UBE2T
and FANCL (right panel).

monoubiquitylation may be missing in the in vitro
FANCD2 monoubiquitylation system.

The crystal structure of the ID complex was recently
reported (22). In the ID complex structure, however, the
monoubiquitylation site of FANCD?2 is buried in the
FANCI-FANCD?2 interface. This raises a new question:
How does the ubiquitin ligase gain access to its target
sites on the ID complex? This may be explained if a con-
formational change of the ID complex occurs upon DNA
binding, thus relocating the FANCD2 monoubi-
quitylation site on the accessible surface of the complex.
Since the three-way branched DNA is predicted to bind
near the FANCD2 monoubiquitylation site in the 1D
complex (22), it may induce such a conformational
change of the ID complex when it binds (Figure 6).

Consistent with the idea described above, in the present
study, we found that DNA robustly stimulates the
FANCD2 monoubiquitylation, up to a level comparable
to the in vivo FANCD2 monoubiquitylation. This is con-
sistent with the previous observation that DNA fragments
trigger FANCD2 monoubiquitylation in crude Xenopus
laevis egg extracts (23). It has been proposed that the
FA core complex monoubiquitylates FANCD?2, and that
its monoubiquitylation is required to recruit the ID
complex to chromatin (10,24). However, our findings
suggested that FANCD2 monoubiquitylation may occur
after it binds to the damaged DNA. This discrepancy may
be explained, if the FA core complex is considered to
function in the chromatin targeting of the ID complex,
and then the FANCD2 monoubiquitylation occurs after
its chromatin targeting. The FA core complex has been
proposed to have multiple functions within the FA
pathway (10), and thus the ID complex recruitment to
chromatin may be one of them. Alternatively, mono-
ubiquitylation of the ID complex by the FA core
complex in chromatin may prevent the dissociation of
the ID complex from the damaged chromatin. This idea
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is consistent with the previous observation that the
FANCD2 K563R mutant, which was defective in its
monoubiquitylation, did not stably associate with
chromatin (10).

Monoubiquitylated FANCD?2 in chromatin is proposed
to function in recruiting ubiquitin-binding proteins, such
as FANI1 and SLX4, to chromatin (1,25). FANI is the
Fanconi anemia associated nuclease, which is considered
to promote nucleolytic incisions of the crosslink and/or
the processing of HR intermediates (26-29). SLX4 is
considered to function as a scaffold that interacts with
the other nucleases, SLX1, XPF and MUSS81 (30-32).
The DNA-stimulated monoubiquitylation of FANCD2
reported here may occur just before the recruitment of
these nucleases required for DNA crosslink repair.

In the present in vitro assay, unlike FANCD2, FANCI
was not properly monoubiquitylated in the ID complex,
although the FANCD2-free FANCI was properly
monoubiquitylated. This may suggest that the essential
factor(s) for FANCI monoubiquitylation in the ID
complex is still missing in this system. The subunits of
the FA core complex may be potential candidates for
the factor required for proper monoubiquitylation of
FANCI in the ID complex. The development of an
in vitro system for FANCI monoubiquitylation in the ID
complex will be needed to evaluate the significance of
the monoubiquitylations of both FANCI and FANCD?2.
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