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ABSTRACT

The chemical modification of histones at specific
DNA regulatory elements is linked to the activation,
inactivation and poising of genes. A number of tools
exist to predict enhancers from chromatin modifica-
tion maps, but their practical application is limited
because they either (i) consider a smaller number of
marks than those necessary to define the various
enhancer classes or (ii) work with an excessive
number of marks, which is experimentally unviable.
We have developed a method for chromatin state
detection using support vector machines in combin-
ation with genetic algorithm optimization, called
ChromaGenSVM. ChromaGenSVM selects optimum
combinations of specific histone epigenetic marks
to predict enhancers. In an independent test,
ChromaGenSVM recovered 88% of the experimen-
tally supported enhancers in the pilot ENCODE
region of interferon gamma-treated HeLa cells.
Furthermore, ChromaGenSVM successfully
combined the profiles of only five distinct methyla-
tion and acetylation marks from ChIP-seq libraries
done in human CD4+ T cells to predict �21 000 ex-
perimentally supported enhancers within 1.0 kb
regions and with a precision of �90%, thereby im-
proving previous predictions on the same dataset
by 21%. The combined results indicate that
ChromaGenSVM comfortably outperforms previ-
ously published methods and that enhancers are
best predicted by specific combinations of histone
methylation and acetylation marks.

INTRODUCTION

The differential regulation of genes allows cells to respond
to a number of changing external and internal stimuli
that eventually determine a cell’s developmental fate, its

function as part of a complex tissue or its ability to
respond to invading pathogens. Genetic information can
be regulated at many levels from DNA transcription to a
vast array of protein post-translational modifications (1).
However, the regulation of gene transcription appears to
be the primary and most important level of control, as
Derman and colleagues suggested over 30 years ago (2).
The regulation of a gene is an exceedingly complex

process controlled by interacting proximal and distal
DNA sequence elements usually placed in a cis configur-
ation. The proximal element is the basal promoter where
the general transcription machinery assembles. A
promoter is always located in close proximity to the
50-end of a gene and is necessary but not sufficient for
its transcription (3). Distal elements are either enhancers
or silencers. Enhancers are thought to be composed of
binding sites for transcription factors (TF) that upon re-
cruitment to the enhancer loop over to the promoter, thus
activating the transcription of the target gene. Enhancers
may also be transcribed into non-coding RNAs that
together with cohesin are thought to control specific
long-range enhancer–promoter interactions (4). The func-
tional mechanism of enhancers seems to be independent of
their location and orientation, and enhancers are known
to work at a great distance. For instance, a key enhancer
of the Ssh gene lies within another gene (Lmbr1) located
1Mb away from the Ssh promoter, and its disruption
causes a limb malformation known as preaxial polydac-
tyly (5). In another example, a 2.1 kb enhancer, located
1.1Mb upstream of the male sexual development SOX9
gene, has been reported to regulate its expression (6).
Silencers, on the other hand, negatively regulate the
activity of target promoters and are much more difficult
to characterize as their study requires a more complex and
sophisticated experimental design (3).
Enhancers have traditionally been studied using experi-

mental techniques such as electrophoretic mobility shift
assays (EMSA), molecular cloning with a reporter gene
and mutation analyses. The observation that a number
of experimentally well-defined enhancers share sequence
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conservation with orthologous regions in other mamma-
lian genomes led to the assumption that regulatory se-
quences are under negative evolutionary selection (7–11).
This concept spearheaded the global identification of
putative enhancers by computational means alone. In
practice, however, this approach is limited for three
reasons: (i) even if we could identify bona fide enhancers
by such means alone, we would not know when, where or
under what conditions such enhancers will be active; (ii)
conservation might be indicative of function of many sorts
(e.g. matrix attachment regions) and thus may not be ne-
cessarily indicative of enhancer activity; and (iii) we would
miss rapidly evolving enhancers that are not found in evo-
lutionarily conserved regions. In fact, the subsequent
targeted deletion of four independent ultra-conserved
elements of the mouse genome (12) had no obvious pheno-
type under the detection assays applied.
The experimental investigation of the proteins and

chemical modifications associated with enhancers and
promoters, especially by ChIP-chip (13), and later by
ChIP-seq (14), showed that the post-translational modifi-
cation of the histones, including phosphorylation, acetyl-
ation and methylation, is linked to specific events,
including transcriptional activation, silencing, heterochro-
matin formation (15–19), DNA damage sensing and repair
(20) and chromosomal segregation (21). In fact, the acetyl-
ation and methylation of specific histones is of particular
interest in the field of gene regulation as these effects
determine the activation, inactivation and poising of cis-
acting regulatory DNA elements, such as promoters,
enhancers and insulators, which in turn control gene ex-
pression programs both in tissue-specific and temporal
manners (22–25). Genome-wide chromatin epigenetic
maps have shown that enhancers, but not promoters,
display the largest variability in their activation states
across diverse cell types (26). Therefore, enhancers must
be responsible for the development and differentiation of
the many different cell types in the body by activating cell
type-specific gene expression programs. This is clearly
illustrated in haematopoiesis, where specific TFs are
known to direct developmental fates, and the various
haematopoietic progenitors are characterized by distinct
gene expression programs (27,28).
The recent discovery of a broad domain of histone H3

lysine 4 monomethylation (H3K4me1) specific to enhan-
cers, combined with low amounts of trimethylation on the
same amino acid residue (H3K4me3) (25), has encouraged
the genome-wide identification of enhancers. This
approach involves the identification of chromatin methy-
lation patterns by ChIP-seq, followed by the application
of pattern recognition algorithms trained with specific
chromatin profile signatures.
Although peak discovery tools perform well at identify-

ing specific TF binding events in ChIP-seq libraries, the
accurate identification of functional enrichment regions in
chromatin modification maps has demanded the imple-
mentation of sophisticated pattern recognition algorithms
(25,29–31). In these methods, the aligned tag counts from
ChIP-seq libraries are processed into profiles of specified
window sizes with positive profiles centered at enhancer
marker-enrichment regions, and background profiles are

generated at random loci. Classifiers are then implemented
to discriminate functional from non-functional profiles.
These methods are nevertheless limited as they either
consider only a small number of epigenetic marks, or
need far more marks to make accurate predictions than
are experimentally viable for most laboratories. The
profile method (PM) (25) and the hidden Markov model
method (HMM) (29) only explored datasets using a
limited number of chromatin modifications, mainly
focusing on H3K4 methylations, whereas the artificial
neural network method CSI-ANN (31) combined �40
datasets of methylation and acetylation signatures. To
overcome these limitations, we have developed a novel
method for chromatin state detection combining support
vector machines (SVM) with genetic algorithm (GA) op-
timization (ChromaGenSVM). ChromaGenSVM auto-
matically selects the types of histone epigenetic marks
that best characterize active enhancers. The GA optimizes
the window size of the epigenetic profiles and the SVM
hyperparameters. ChromaGenSVM was initially trained
with a small set of ChIP–chip chromatin maps from the
pilot ENCODE region in untreated HeLa cells (25).
ChromaGenSVM successfully predicted 88.0% of the ex-
perimentally supported enhancer regions in IFN-g treated
HeLa cells (independent test set). Our method managed to
recover higher numbers of supported functional regions
both in untreated and IFN-g-treated HeLa cell libraries
in a parsimonious way.

In a second exercise, ChromaGenSVM was trained with
38 distinct chromatin marks derived from genome-wide
(ChIP-seq) histone methylation and acetylation maps
done in human CD4+ T cells. Our method selected an
optimum combination of only five epigenetic marks that
accurately characterize active enhancers. These marks
include both activating and repressive methylations and
acetylations that combine in putative enhancers in
various ways. This suggests that well-trained signal detec-
tion algorithms are in principle better at locating enhan-
cers than simpler methods that look for the presence or
absence of specific marks. About 90% of the enhancers
predicted in human CD4+ T cells were supported by at
least one type of experimental evidence. This demonstrates
ChromaGenSVM’s high sensitivity and specificity for the
identification of active enhancers from specific combin-
ations of chromatin epigenetic marks.

MATERIALS AND METHODS

Datasets

Our first SVM model was built to recognize enhancers
found in the pilot ENCODE region in untreated HeLa
cells (25). This was done in order to compare the perform-
ance of ChromaGenSVM to previously published
methods (PM, HMM and CSI-ANN), and also to dem-
onstrate its applicability to ChIP-chip libraries. For this,
the six distinct ChIP-chip chromatin modification maps
reported by Heintzman et al. (25), both in untreated and
treated HeLa cells, were used. These include the core
histone H3 (H3), the acetylation of lysines 9 and 14 of
histone H3 (H3Ac), the acetylation of lysines 5, 8, 12
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and 16 of histone H4 (H4Ac), the mono-methylation of
lysine 4 of histone H3 (H3K4Me1), the di-methylation of
lysine 4 of histone H3 (H3K4Me2) and the tri-methylation
of lysine 4 of histone H3 (H3K4Me3).

From the original ENCODE data, we derived a positive
class set (called E1) with epigenetic profiles centered at
TSS-distal regions (� 2.5 kb upstream and downstream
of the TSS) that were enriched in p300 binding. p300 is
a transcriptional coactivator that works by binding to
transcription factor activation domains to then position
histone acetyltransferases (HATs) near specific nucleo-
somes in target gene promoter regions (32) and found to
localize to many active enhancers (25), but not all. The E1
set includes 74 TSS-distal high-confidence peaks
as described in Heintzman et al. (25) (Supplementary
Table S1).

A second SVM model was implemented to predict en-
hancers from 20 and 18 genome-wide ChIP-seq histone
methylation and acetylation maps done in human CD4+

T cells (33) (Supplementary Table S2). The methylation
and acetylation maps were combined to build the
enhancer predictor. A set of positive class examples
(called E2) was built with regions that were also
enriched in p300 binding in CD4+ T cells, as described
by Wang et al. (33). The E2 dataset includes 527
TSS-distal p300 peaks (Supplementary Table S3). The
peak centers were selected from p300 regions spanning
less than 1 kb.

For both SVM models, the epigenetic profiles of the
positive class examples were computed at various
window sizes (1, 2.5, 5, 7.5, 10, 12.5 and 15 kb). Tag
reads were averaged in 100 bp and 200 bp bins for each
window size. A background dataset (negative class
example) was built for each SVM model, with a size
10-fold the number of p300 peaks in E1 and E2.
Background profiles were centered at random chromo-
somal positions.

Support vector machines

SVMs are a machine learning method of broad applicabil-
ity to many types of pattern recognition problems. Since
an excellent introduction to SVMs exists (34), here we will
briefly describe SVMs as applied to our specific case. In
SVMs, the input vectors are first mapped onto one feature
space (possibly with a higher dimension) by means of a
kernel function. Then, a hyperplane is built to separate the
positive and negative examples within this feature space.
Only relatively low-dimensional vectors in the input space
and dot products in the feature space will evolve by a
mapping function. SVMs have been designed to
minimize structural risk whereas other machine learning
methods, such as artificial neural networks (ANN), are
based on the minimization of empirical risk. Therefore,
SVMs are less vulnerable to the over-fitting problem,
and so they can typically deal with a large number of
features. There are several important parameters in an
SVM, including the kernel function (and its specific par-
ameters) and the regularization parameters. Neither the
kernel function nor the regularization parameters can be
defined from the optimization problem but must be

manually tuned. This can be done by applying Vapnik-
Chervonenkis bounds, cross-validation, an independent
optimization set, or Bayesian learning (35). GA was
used to automate the selection of optimum SVM hyper-
parameters through cross-validation. Since nucleosomes
are dynamically allocated and their positions oscillate in
small locus ranges, it is possible that the state of chroma-
tin shifts around at certain loci (36). Thus, we try to
improve profile/peak detection by adding a shift term to
the Gaussian kernel. In this way, the similarity between
profiles was computed by comparing profiles at different
shift steps from 100 to 1000 bp. SVMs were implemented
using the Python programming language and the
SHOGUN toolbox (37).

ChromaGenSVM

SVM models were first trained to recognize the histone
modification profiles associated with putative enhancers
of the ENCODE region in untreated HeLa cells, and
then in human CD4+ T cells. For each dataset, the most
discriminating epigenetic marks and profile sizes were
selected using the GA strategy described in Figure 1.
GAs are stochastic optimization methods that have been
inspired by evolutionary biology principles, and as such
are governed by the rules of natural selection (38). The
most relevant aspect of GAs is their ability to search for
many possible solutions simultaneously, each of which
explores different regions in parameter space (39).
The GA output was also used to tune both the SVM

regularization and the Gaussian kernel parameters. For
this, an initial population of SVM models was first
generated with regularization and kernel parameters that
were randomly selected from a pool of adequate values
(ranging from 10�4 to 103). Next, SVM models were
trained with combinations of unique chromatin modifica-
tion profiles randomly selected from a pool of epigenetic
profiles computed at seven fixed window sizes (1, 2.5, 5,
7.5, 10, 12.5 and 15 kb). In the GA framework, a model
was represented as a fixed-length bit string. Each binary
‘gene’ in the bit string encoded the inclusion (1) or exclu-
sion (0) of an epigenetic mark in the training data. This bit
string was concatenated with two other bit strings
encoding the window size and the SVM hyper-parameters.
The fitness or cost function of each model was computed
as the F-score of enhancer over background classification
in three-fold-out (TFO) cross-validation tests.
Furthermore, crossover and mutation operators were
applied to the top-ranked predictors in a reproduction
step to create a new population of models. The crossover
operator combines the information from two parent
models to generate children models. On the other hand,
the mutation operator takes a single parent model to
generate a child by randomly changing part of the infor-
mation derived from the parent. Seventy percent (70%) of
the new generation was created by binary crossover of the
bit strings of progenitor pairs and the rest by mutating the
single parent ‘genes’. A copy of the best-ranked model in
the new population was also kept. Based on experimental
and previous computational evidence, we set to penalize
combinations of more than five marks during GA
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optimization. This means that models including more than
five epigenetic marks needed to increase their accuracy by
at least 0.01 AUC units per extra epigenetic mark to rank
on top of five-mark models during evolution. The repro-
ductive cycle continues until the best fitness score remains
unchanged for 90% of the generations, or the maximum
number of generations is reached. This algorithm was run
100 times training 100 models in each population for a
maximum of 100 generations. The best model of each
run was selected from the population of the final gener-
ation. The statistical analysis of the most informative epi-
genetic marks was done by histogram density plots of the
chromatin methylations in the models of the final gener-
ation. The algorithm was implemented in Python using the
SHOGUN toolbox (37) and the Pyevolve module (40).

Performance evaluation

A trained SVM model returns a vector of scores between 0
and 1 for a combined epigenetic profile. These scores are
then transformed to a binary state indicating a ‘regula-
tory’ or ‘non-regulatory’ region by choosing a cut-off.
For each combination of profiles, the existence of a regu-
latory element is considered positive (P) or negative (N)
otherwise. True (T) means that the predicted and observed
functional states are identical, and false (F) implies other-
wise. The notations TP, FP, TN and FN combine these
labels to return the number of data points (combined
profile) in each category. These values correspond to a
cut-off at which SVM analog values are transformed
into binary predictions. The predicted functional scores

are transformed into binary predictions by using different
cut-offs yielding sensitivity and specificity over the entire
score range. The F-score in Equation 4 was used as the
fitness score or cost function in the GA optimization.
ROC plots display the FP (1-specificity) values on the
x-axis, and the TP (sensitivity) values on the y-axis.
ROC plots show the direct relationship between the FP
and TP rates. The total AUC (area under the curve)
for ROC plots was used as a measure of the prediction
performance of our method:

Sensitivity ¼ TP=ðTP+FNÞ ð1Þ

Specificity ¼ TN=ðTN+FPÞ ð2Þ

Precision ¼ TP=ðTP+FPÞ ð3Þ

F�score ¼ 2� ½ðSpecificity� SensitivityÞ=

ðSpecificity+SensitivityÞ�
ð4Þ

Positive predicted value (PPV) (same as precision)

Recall (same as sensitivity)

A prediction located within a number of kb equal to the
profile window size of an experimental mark of enhancers
was recorded as a TP hit, as done by Heintzman et al. (25).
Three types of experimental evidence were used to classify
predictions as TP hits. These include (i) DNase I hyper-
sensitivity regions (DHS), which are indicative of
an ‘open’ chromatin state (41); (ii) p300 binding sites;
and (iii) regions marked with the mediator complex com-
ponent TRAP220 (42,43). DHS, p300 and TRAP220

Figure 1. ChromaGenSVM workflow. Different SVM models are trained using different epigenetic marks, profile window sizes and SVM parameters
generated by GA rules. The optimum SVMs are selected by cross-validation after 100 GA runs.
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regions are all known to mark subsets of enhancers. Our
predictions were further validated computationally by as-
sessing their localization within evolutionarily conserved
regions and the local clustering of TF binding sites
(TFBS). Predicted regions were considered to be compu-
tationally supported when they either (i) overlapped with
regions with normalized PhastCons (44) scores �0.5 and/
or (ii) overlapped with regions of TFBS clusters according
to the PReMod database (45). The PhastCons (44) scores
measuring the evolutionary conservation across 17 verte-
brate genomes were extracted from the UCSC Genome
Browser. Genome regions with TFBS clusters were down-
loaded from the PReMod database (45) available at
http://genomequebec.mcgill.ca/PReMod/.

RESULTS

Enhancer prediction in the pilot ENCODE region of
HeLa cells from ChIP-chip histone modification maps

The ENCODE project was developed to provide a func-
tionally informative representation of the human genome
by using high-throughput methods to identify and catalog
its functional elements. In its pilot phase, the project
targeted �30Mb of DNA, equivalent to 1% of the
human genome. Of this, �50% of the DNA regions
were manually selected whereas the other half was
selected at random (46). The manually selected DNA
regions included a number of well-studied loci for which
comparative data in other species exist.

ChromaGenSVM was trained on a subset of
high-confidence putative enhancers from six ENCODE
ChIP-chip chromatin maps (H3, H3Ac, H4Ac,
H3K4Me1, H3K4Me2, H3K4Me3) in untreated HeLa
cells (25) (see Materials and Methods). The optimum
ChromaGenSVM predictor for the ENCODE region
combines H3, H3K4Me1 and H3K4Me3 methylation
profiles generated at 5.0 kb windows with a signal shift
of 400 bp. Figure 2 shows the cross-validation ROC
curve for enhancer predictions in HeLa cells with a
maximum F-score of 0.928, and an AUC, specificity and
sensitivity of 0.97, 0.944 and 0.912, respectively.

The ENCODE genome region was scanned both in un-
treated and in IFN-g-treated HeLa cells using the
optimum ChromaGenSVM model at different classifica-
tion thresholds. Enhancers were predicted from histone
modification profiles computed at 5.0 kb windows and
with a 1.25 kb resolution. If more than one region was
predicted within a 5.0 kb window, only the best-scoring
region was recorded. The quality of our predictions was
evaluated by counting the number of predicted regulatory
regions lying within 2.5 kb of a DHS, p300 or TRAP220
region (‘overlap’), as explained above. The predicted
regions were also characterized according to their evolu-
tionary conservation across 17 vertebrate genomes using
PhastCons scores (44) and the presence of TF binding site
(TFBS) clusters from the PReMod database (45).

The definition of a non-functional genomic region (a
true negative) is not straightforward, because a region
may appear to be non-functional under a specific set of
experimental conditions, but not in others. Therefore, the

evaluation of the predictive ability of the method was
determined by the recovery of regions whose functionality
is inferred from external experimental datasets or compu-
tational analyses (true positives). The precision of our
method was thus calculated from the number of predic-
tions that presented either experimental or computational
support and the sensitivity as the proportion of supported
enhancer regions recovered by our predictions.
The enhancers predicted both in untreated and in

IFN-g-treated HeLa cells were found to overlap exten-
sively with experimental and computational enhancer
marks characteristic of functional regulatory regions.
Figures 3 and 4 show the plots of total predictions
versus predicted regions overlapping different enhancer
marks and functional evidences (supported predictions),
both in untreated and in IFN-g-treated HeLa cells,
respectively.
The number of supported predictions increases as we

augment the total number of predictions with the corres-
ponding decrease in the cut-off value. The selection of the
optimum cut-off for a binary classifier is a trade-off
between a predictor’s specificity and its sensitivity.
Depending on the experimental datasets, predictions can
be computed at different recall (or sensitivity) and speci-
ficity levels. So far, experimental evidences for enhancers
cover only a fraction of the total number of existing en-
hancers, and the vast majority of the distal functional
regions most likely remain unknown. For this reason,
we selected the cut-off of the maximum F-score to
ensure a good coverage of putative enhancers. A total
of 1022 distal regulatory elements were predicted in un-
treated HeLa cells at this cut-off value. ChromaGenSVM
successfully recovered 85.1% of the high-confidence p300
peaks reported by Heintzman et al. (25) in untreated HeLa

Figure 2. Cross-validation ROC plot of the optimum SVM model to
predict enhancers in the pilot ENCODE region of HeLa cells using the
H3, H3K4Me1 and H3K4Me3 epigenetic signatures.
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cells. Our predicted regions overlap with 38.2% of the
DHS sites and 71.1% of the TSS-distal regions enriched
in the mediator complex component TRAP220 (Supple-
mentary Figure S1). Additional computational evidences
supported our predicted set of enhancers. About 30% of
the predicted enhancers are found within ENCODE
regions that are conserved across vertebrate genomes ac-
cording to PhastCons scores (44) and 34% of these regions
contain computationally predicted TFBS clusters accord-
ing to the PReMod database (45). Finally, �66% of the
enhancers predicted in untreated HeLa cells were sup-
ported by at least one type of experimental or computa-
tional evidence (Supplementary Figure S1).

The ChromaGenSVM scan of the ENCODE ChIP-chip
regions of IFN-g-treated HeLa cells yielded a set of 1001
putative enhancers (Supplementary Figure S2). These pre-
dicted regions overlap with 88.0% of the distal p300
binding sites found in these stimulated cells. Although
p300 is the only bona fide enhancer mark available in the
IFN-g-treated HeLa cell dataset, the predicted regions
were well supported by other types of computational
evidence. Twenty-seven percent of the enhancers predicted
in IFN-g-treated HeLa cells are conserved across verte-
brates, and TFBS clusters are found in 40% of these
regions. Overall, 55% of the enhancers predicted in
IFN-g-treated HeLa cells were supported by at least one
type of computational evidence.

Performance comparison of ChromaGenSVM
with other published methods

Table 1 summarises a comparative analysis of the per-
formance of our method and three other predictive
approaches on the same ENCODE region of HeLa cells.
Using statistical criteria, the PM method reported a total
of 389 and 324 predictions in untreated and IFN-g-treated
HeLa cells, respectively. The HMM and CSI-ANN
methods reported the same number of predictions for
the sake of comparison. In this regard, we also produced
a reduced set of 391 and 325 enhancers in untreated and
IFN-g-treated HeLa cells. In our top 391 predictions in
untreated HeLa cells, our model recovered �70% of the
p300 peaks, �26% of the DHS regions and �53% of the
TRAP220 binding regions. We consider the lower sensi-
tivity of our model in the training data as a sign of a
higher parsimony rather than evidence of underperform-
ance. Our optimum SVM was set to yield optimum pre-
dictions in cross-validation experiments rather than simple
fitting of the training data. Regardless of the lower sensi-
tivity, our model had the second highest precision (57%)

Figure 3. Plots of total predictions versus supported predictions in un-
treated HeLa cells using the H3, H3K4Me1 and H3K4Me3 epigenetic
signatures. The dashed line represents an ideal predictor. (A) Experi-
mental evidences of functional regions: square (p300), circle (DHS),
triangle (TRAP200) and cross (any experimental); (B) Computational
evidences of functional regions: square (PReMod), circle (PhastCons)
and triangle (any computational).

Figure 4. Plot of total predictions versus supported predictions in
IFN-g treated HeLa cells using the H3, H3K4Me1 and H3K4Me3
epigenetic signatures. The dashed line represents an ideal predictor.
Evidences of functional regions: square (p300), circle (PReMod),
triangle (PhastCons) and cross (any computational).
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in untreated HeLa cells, outperforming the PM and
HMM methods by 4% and 3%, respectively. CSI-ANN
reported the highest precision in untreated HeLa cells
(66.3%) but did not report enhancer predictions in the
independent dataset of IFN-g-treated HeLa cells. The im-
plementation of CSI-ANN that is publicly available can
only be trained and tested on the same epigenetic library,
thus hampering the analysis of the prediction performance
of this method in an independent dataset. In contrast, our
method predicted enhancers in IFN-g-treated HeLa cells
with a higher sensitivity of 72.0%, very similar to that of
the HMM method. This result indicates a high sensitivity
for the prediction of enhancers in an independent dataset
that is yet 4% lower than that of the PM method.
However, it is worth mentioning that the PM method
predicts enhancers within 10 kb windows whereas
ChromaGenSVM defines functional regions twice as
precisely within 5.0 kb regions.

Table 1 also reflects the prediction performance of
ChromaGenSVM at the optimum cut-off of the
maximum F-score, yielding 1022 predicted enhancers in
untreated HeLa cells. ChromaGenSVM improved the dis-
covery of p300 enrichment regions by 3% and 1% with
respect to the PM and CSI-ANN methods, respectively.
We also observed that the number of predictions by the
PM and HMM methods that were supported by DHS
evidence were surpassed by ChromaGenSVM by �10%
and �8%, respectively. Moreover, the number of
TRAP220 regions recovered in untreated HeLa cells is
greater than those of the PM and HMM methods by
�15% and �10%. The performance analysis for the
1001 predicted enhancers in IFN-g treated HeLa cells
shows that ChromaGenSVM makes an improvement of
�12% and �16% over the PM and HMM methods for
the recovery of p300-enriched regions.

Genome-wide enhancer prediction in human CD4
+ T cells

from ChIP-Seq histone modification maps

ChromaGenSVM was implemented to predict enhancers
in human CD4+T cells by exploring their chromatin epi-
genetic landscape. ChromaGenSVM is likely to yield more
accurate and robust enhancer predictions when exploring
a more diverse epigenetic landscape (i.e. with a larger
number of epigenetic maps). We can fully exploit the
power of GA to unveil robust functional relationships

from complex information spaces (38). In this context, a
vast collection of ChIP-seq epigenetic maps (including 20
chromatin methylations and 18 acetylations, Supple-
mentary Table S2) profiled in human CD4+ T cells (33)
was explored in order to predict enhancers genome-wide.
ChromaGenSVM was run on the combined histone

methylation and acetylation maps. Then, we analyzed
the relative relevance of each epigenetic signature to char-
acterize the chromatin state across the entire genome of
human CD4+T cells. The probability density histogram in
Figure 5 depicts the frequency density of every epigenetic
mark in the pool of models in the final generations from
100 independent ChromaGenSVM runs. The acetylation
and tri-methylation of the lysine 4 residue of histone H3
(H3K4Ac and H3K4Me3) were the most frequent profiles
in the top-ranked models. In addition, the acetylation of
the lysine 5 residue of the histone H2B (H2BK5Ac) was
found to be the next most frequent profile.
ChromaGenSVM yielded other interesting epigenetic

Table 1. Comparative performance analysis of the enhancer predictions in the pilot ENCODE region of untreated and IFN-g treated HeLa cells

showing the number of regions recovered over the number of total predictions and sensitivity values in parentheses

Cell Method Marker PM(%) HMM(%) CSI-ANN(%) ChromaGenSVM(%)

Adapted cut-off Optimum cut-off

Untreated HeLa cells P300 (n=94) 77/389 (81.9) 82/389 (87.2) 79/389 (84.0) 66/391 (70.2) 80/1022 (85.1)
DHS (n=587) 165/389 (28.1) 179/389 (30.5) 243/389 (41.4) 152/391 (25.9) 224/1022 (38.2)
TRAP220 (n=76) 43/389 (55.8) 47/389 (61.0) 54/389 (71.0) 40/391 (52.6) 54/1022 (71.1)
p300 or DHS or TRAP220 206/389 (52.9)* 213/389 (54.8)* 258/389 (66.3)* 223/391 (57.0)* 299/1022 (30.1)*

IFN-g treated HeLa cells P300 (n=151) 116/324 (76.8) 109/324 (72.2) – 109/325 (72.0) 133/1001 (88.0)

Note. ChromaGenSVM also reports the number of predictions in untreated HeLa cells at the cut-off of maximum F-score.
*Precision [TP/(TP+FP)] in brackets (Equation 3).

Figure 5. Probability density histogram of the epigenetic signatures in
the pool of top-ranked SVM predictors selected after 100 GA runs for
the prediction of distal regulatory elements in human CD4+T cells. The
most frequent signatures in the top-ranked predictors were H3K4Ac,
H3K4Me3 and H2BK5Ac.
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features of enhancers including the activating
mono-methylation of the lysine 4 residue of histone H3
(H3K4Me1).
Similarly, the probability density histogram of the

optimum window size is depicted in Figure 6. The exten-
sion and boundaries of the unique epigenetic landscape
associated with functional regions in human CD4+ T
cells were best encoded in epigenetic profiles spanning
1.0 kb.
In fact, several types of histone modifications coexist as

shown by the preliminary inspection of the histone acetyl-
ation and methylation data from human CD4+ T cells.
This analysis uncovered strong inter-correlations among
the epigenetic profiles associated with the putative p300
enhancers of the training set (Supplementary Figure S3).
This suggests that several, overlapping, combinations of
epigenetic marks could yield similar prediction perform-
ances. Therefore, it has been difficult to assess the nature
and number of necessary marks that uniquely define the
functional state of a particular genomic region. In our
computational analyses, we control the number of chro-
matin marks in a single model by penalizing predictors
combining more than five histone methylations.
Figure 7 depicts the ROC of the optimum SVM model

generated by ChromaGenSVM that recognizes enhancers
in human CD4+T cells with an AUC, specificity and sen-
sitivity of 0.975, 0.935 and 0.966, respectively, and a
maximum F-score of 0.950. This predictor was trained
with three methylations and two acetylations marks
computed at 1.0 kb windows: H3K4Me1, H3K4Me3,
H3R2Me2, H4K8Ac and H2BK5Ac. The optimum
Gaussian kernel has a shift parameter of 400 bp. This
optimum combination of methylation and acetylation
marks includes two of the most frequent marks
(H2BK5Ac, H3K4Me3) accompanied by two other

methylation marks (H3K4Me1, H3R2Me2) that comple-
ment the epigenetic landscape at TSS distal regulatory
regions along with another acetylation mark (H4K8Ac).

Using this optimum combination of five epigenetic
marks, we predicted enhancers genome-wide in human
CD4+ T cells. Epigenetic signals were scanned using
1.0 kb windows with a resolution of 400 bp, retaining
only the highest scoring element within every 1.0 kb
region. Here we report 23 574 predicted enhancers in
human CD4+ T cells (Supplementary Table S4). The
quality of the predictions in CD4+ T cells was evaluated
by counting the overlap with 72 646 DHS regions and
3989 p300 binding sites. The clustering of TFBS and the
evolutionary conservation of the predicted regions were
also analyzed. Figure 8 shows the plots of the total
number of predictions versus supported predictions in a
range from 5000 to 24 000 predicted enhancers.
Substantial overlaps with DHS regions and p300 binding
sites (in the ranges 88–91% and 28–34%) were observed
for different subsets of predicted enhancers. Taken these
data together, 88–91% of the predictions were supported
by at least one of the experimental lines of evidence.
Moreover, 10–12% of the predicted regions were found
to be evolutionarily conserved according to the PhastCons
scores (44), and TFBS clusters were detected in a similar
fraction of these regions according to the PReMod
database (45). About 19% of the predictions were at
least supported by one of the computational lines of
evidence.

A large set of 20 953 enhancers, selected by
ChromaGenSVM at the optimum cut-off of the
maximum F-score, had a very good rate of supporting
evidence. Eighty-nine percent of the enhancers in this pre-
dicted dataset are located in open chromatin regions

Figure 7. Cross-validation ROC plot of the optimum SVM model to
predict enhancers in human CD4+ T cells using the histone modifica-
tion maps H3K4Me1, H3K4Me3, H3R2Me2, H4K8Ac and H2BK5Ac.

Figure 6. Probability density histogram of profile window sizes in the
pool of top-ranked SVM predictors selected after 100 GA runs for
the prediction of distal regulatory elements in human CD4+ T cells.
The most frequent window size in the top-ranked predictors was 1.0 kb.
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according to DHS evidence and 31% overlap with
p300-binding regions. TFBS clusters were found in 11%
of these loci and 10% were found to be conserved across
17 vertebrates genomes.

Performance comparison of the genome-wide enhancer
predictions by ChromaGenSVM with other published
methods in human CD4+ T cells

Table 2 shows a comparative performance analysis
between the 23 574 enhancers predicted by our method
(Supplementary Table S4) at the optimum cut-off and
the 36 769 enhancers predicted by CSI-ANN. Larger frac-
tions of our predictions overlapped with experimental evi-
dences. We predicted a total of 20 953 enhancers located at
open chromatin regions versus the 23 017 reported by
CSI-ANN. The number of p300-associated regulatory
regions increased by 2414, indicating an improvement of
50% over CSI-ANN. Moreover, 90% of Chroma
GenSVM’s predictions (versus 69% of CSI-ANN’s

predictions) overlapped with at least one of the experimen-
tal evidences, demonstrating that our method represents an
improvement in precision of 21% as determined by the
presence of experimental marks. The evolutionary conser-
vation and presence of TFBS clusters in our predicted en-
hancers were slightly smaller than those the reported by
CSI-ANN (31). However, these types of evidence have
been shown to overlap weakly with cell-type specific and
environment-dependent enhancer activation (47).
Enhancers have tissue-specific activity, and therefore we

expected that our predicted set of enhancers possess
specific functions in human CD4+ T cells. According to
the gene ontology (GO) analysis using the GREAT tool
(48), the genes closest to the predicted regions are signifi-
cantly (P< 10�4) related to immune system processes and
cell types (Supplementary Figure S4). This analysis reflects
that a significant set (P< 10�4) of the discovered enhan-
cers are involved in the regulation of differentiation and
activation of T cells. Thus, we would also expect that our
set of enhancers is associated with genes having
T-cell-specific expression compared to non-specific genes.
In this regard, we found that the genes associated with our
predicted set of enhancers (by proximity) were also differ-
entially regulated in CD4+T cells according to the analysis
of the data in the Gene Expression Atlas (49). We found
that 112 genes associated with the discovered enhancers
belong to the top 1000 upregulated genes in CD4+T cells,
whereas only 73 would be randomly expected (P< 10�4).
Meanwhile, the top 1000 downregulated genes included
145 of the genes associated with the predicted enhancers
in comparison to 182 randomly expected (P< 10�4). This
represents a 1.5-fold enrichment in upregulated genes and
a 1.3-fold decrease in downregulated genes in comparison
to what would be randomly expected (Supplementary
Figure S4).

DISCUSSION

A large body of evidence suggests that genetic programs
and cellular states are tightly controlled by the chemical
modification of histones and other proteins that package
the genome (43,50,51). Accordingly, the chromatin
states for a wide variety of cell types and environmental

Figure 8. Plots of total predictions versus supported predictions in
human CD4+ T cells using the histone modification maps of
H3K4Me1, H3K4Me3, H3R2Me2, H4K8Ac and H2BK5Ac. The
dashed line represents an ideal predictor. (A) Experimental evidences
of functional regions: square (p300), triangle (DHS) and cross (any
experimental); (B) Computational evidences of functional regions:
square (PReMod), triangle (PhastCons) and cross (any computational).

Table 2. Comparative performance analysis of the genome-wide

enhancer predictions in human CD4+ T cells according to

experimental evidences

Method CSI-ANN
Total number of
predictions: 36 769

ChromaGenSVM
Total number of
predictions: 23 574

Enhancer marker S.P. Precision
(%)

S.P. Precision
(%)

p300 4964 13.5 7378 31.3
DHS 23 017 62.6 20 953 88.9
p300 or DHS 25 444 69.2 21 122 89.6
PReMod 9037 24.6 2695 11.4
PhastCons 8124 22.1 2274 9.6
PReMod or PhastCons – – 4337 18.4

S.P.: Supported predictions; Precision [TP/(TP+FP)] (Equation 3).
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conditions have been mapped, allowing the computa-
tional modeling of these epigenetic landscapes.
ChromaGenSVM was designed to predict enhancers by
combining the minimum possible number of epigenetic
marks. In the tests reported here, ChromaGenSVM
yielded optimum combinations of three and five histone
modification marks that best predict enhancers in the pilot
ENCODE region of HeLa cells and in human CD4+ T
cells (genome-wide), respectively.
Similarly to previously published methods (25,29,31),

ChromaGenSVM discovered enhancers from histone
modification data by recognizing the epigenetic signals
associated with p300-enrichment regions. The coactivator
p300 only targets a reduced subset of enhancers and the
total number of real enhancers is thus unknown (47).
Thus, limiting the analysis of our method’s performance
to a reduced fraction of the predictions has little biological
basis. Since non-functional regions (true negatives or false
positives) are difficult to define, the experimentally and/or
computationally supported regions (true positives) should
be regarded as part of the real enhancer repertoire. In this
context, the quality of a method should be better assessed
by the precision [Equation (3)] rather than by its sensitiv-
ity [Equation (1)] or specificity [Equation (2)]. When the
positive examples available constitute a very reduced
subset of the positive space, it is crucial to avoid
over-fitting of the training data. The methods HMM
(29) and CSI-ANN (31) recovered large fractions
(�85%) of p300-associated enhancers in the top 389 pre-
dictions from the training data of untreated HeLa cells.
Nevertheless, these performances could suggest an
over-fitting of the training data while evidence of
improved performance should rather be provided by the
enhancer predictions in an independent dataset. This is
clear from the lower sensitivity of HMM (29) predictions
in IFN-g-treated HeLa cells. The precision of our predic-
tions in untreated HeLa cells was 57%, the second highest
among all the methods under analysis. In addition,
ChromaGenSVM predicted similar top sets of 391 and
324 functional regions in untreated and treated HeLa
cells (with an accuracy of 72% in the latter case) and
yielded 1022 well-supported enhancers at the optimum
cut-off value in untreated HeLa cells. We have shown that
ChromaGenSVM is a parsimonious and robust SVM im-
plementation that surpasses previously published methods
in predicting enhancers in the pilot ENCODE region.
Besides the positive and conclusive results from the

modeling of ChIP-chip histone methylation maps,
ChromaGenSVM also outperformed other existing
methods at genome-wide enhancer prediction in human
CD4+ T cells. Instead of combining all the methylation
and acetylation maps available for this cell type,
ChromaGenSVM automatically selected an optimum
subset of (ChIP-seq) histone modification maps to
identify functional regions. The discovery of regulatory
regions by profiling a very large number of histone modi-
fication maps is experimentally unviable for most
laboratories. CSI-ANN (31) used a feature extraction
step to combine 39 histone modification marks for ANN
training, thereby predicting regulatory elements using
pieces of information coming from all the available

epigenetic maps. Thus, ranking the epigenetic modifica-
tions according to their statistical relevance is difficult.
CSI-ANN condensed the information in a smaller set of
input variables to facilitate the implementation of compu-
tationally intensive machine-learning techniques such as
ANNs. However, its downside is that it provides no bio-
logical insight into the role of the epigenetic landscape in
transcriptional regulation. In sharp contrast,
ChromaGenSVM only needed to combine five histone
modifications, including three methylations and two
acetylations, to predict 23 574 enhancers with a precision
much higher than that of CSI-ANN (90% versus 69%).
The GA feature selection identified three distinct histone
methylations (H3K4Me1, H3K4Me3 and H3R2Me2), and
two histone acetylations (H4K8Ac and H2BK5Ac), which
points to the existence of a complex epigenetic pattern
associated with TSS-distal regulatory elements. These
unique methylation patterns at enhancers include the
activating marks H3K4Me1 and H3K4Me3 (25), and a
transcriptional silencing flag (H3R2Me2) (52). The enhan-
cers also contain an acetylation mark (H2BK5Ac) that
strongly correlates to gene expression profiles (53). The
five epigenetic mark rule was implemented as a penalty
function rather than as a priori cut-off: the models are
actually allowed to combine more than five epigenetic
marks as long as every extra mark is associated with an
increase of at least 0.1 units in the AUC so that any
five-mark model is substantially out-performed by a six
(or more) mark model. In summary, ChromaGenSVM
outperformed CSI-ANN using much less experimental
information and much less computation time, making
our method an ideal tool for enhancer discovery from
chromatin epigenetic maps.

ChromaGenSVM: code implementation and
availability

The current version of ChromaGenSVM is freely available
as a stand-alone Python application. ChromaGenSVM is
implemented to predict functional regions genome-wide
using SVMs, and starting with (ChIP-seq) epigenetic
libraries and a set of putative functional regions. Prior
to the computation of the epigenetic profiles (see
Materials and Methods), the script uses a modified
version of the ChIP-seq enrichment discovery tool
SICER (54) to filter and pre-process the epigenetic
libraries with a positive control. A list of target loci can
be directly provided by the user or otherwise generated by
the modified version of SICER (54) from a custom library
mapping functional regions (e.g. p300-enrichment
regions). The epigenetic profiles associated with the
target loci are labeled as positive class examples while a
background set of negative class profiles are derived from
randomly selected loci (see ‘Materials and Methods’
section). The program trains an SVM model with the
positive and negative epigenetic profiles from all libraries.
Finally, functional regions are predicted genome-wide at
the cut-off of the maximum F-score from cross-validation
experiments, or by using a user-defined cut-off. The script
yields not only a list of putative regulatory loci at the
chosen cut-off as main output, but also generates two
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other files listing all the scanned loci per chromosome and
their corresponding scores as computed by the model. The
ChromaGenSVM Python code is freely available at http://
sysimm.ifrec.osaka-u.ac.jp/download/Diego/.

CONCLUSIONS

The discovery of cell type-specific enhancers is ideally ac-
complished by the computational modeling of the chro-
matin epigenetic landscape rather than by evolutionary
conservation sequence analysis. From a pool of epigenetic
marks, the GA part of ChromaGenSVM systematically
trained SVMs with relevant chromatin epigenetic marks
associated with enhancers. ChromaGenSVM is the first
successful implementation of SVMs to discover functional
regulatory regions from histone methylation maps with an
excellent performance, as indicated below:

(1) The enhancers predicted in the pilot ENCODE
region using three histone methylations maps re-
covered 85.1% and 88.0% of the p300-enrichment
sites in untreated (training set) and IFN-g-treated
(test set) HeLa cells, respectively.

(2) When predicting enhancers in IFN-g-treated HeLa
cells (test set), ChromaGenSVM improves on the
PM and HMM methods by �12% and �16% for
the recovery of p300 regions, with the added advan-
tage that ChromaGenSVM defines functional regions
more precisely (within 5.0 kb windows).

(3) In a second exercise, the automatic selection of
relevant epigenetic marks in human CD4+ T cells
yielded a very select combination of only five
histone methylation and acetylation marks (from a
pool of 38 histone epigenetic maps) encoding the ac-
tivation, inactivation, transcription and silencing of
the DNA. Several types of histone modifications
coexist at regulatory regions.

(4) ChromaGenSVM predicted 23 574 enhancers in
human CD4+ T cells (within only 1.0 kb windows,
400 bp resolution), of which �90% overlapped with
at least one type of experimental evidence. This is an
improvement in precision of 21% over the CSI-ANN
method as determined by the presence of experimen-
tal marks, and using much less experimental infor-
mation or computation time.

(5) Our set of 23 574 predicted enhancers is specifically
associated with genes involved in the differentiation
and/or regulation of T-cell activation, and the ex-
pression of these genes is differentially regulated in
such cells.

(6) ChromaGenSVM is a parsimonious and robust SVM
implementation that surpasses previously published
methods for enhancer prediction from chromatin epi-
genetic maps.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–4 and Supplementary Figures
1–4.
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