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Abstract
There is a rapidly growing interest in the neuroimaging field to use functional magnetic resonance
imaging (fMRI) to explore brain networks, i.e., how regions of the brain communicate with one
another. This paper presents a general and novel statistical framework for robust and more
complete estimation of brain functional connectivity from fMRI based on correlation analyses and
hypothesis testing. In addition to the ability of examining the correlations with each individual
seed as in the standard and existing methods, the proposed framework can detect functional
interactions by simultaneously examining multiseed correlations via multiple correlation
coefficients. Spatially structured noise in fMRI is also taken into account during the identification
of functional interconnection networks through noncentral F hypothesis tests. The associated
issues for the multiple testing and the effective degrees-of-freedom are considered as well.
Furthermore, partial multiple correlations are introduced and formulated to measure any additional
task-induced but not stimulus-locked relation over brain regions so that we can take the analysis of
functional connectivity closer to the characterization of direct functional interactions of the brain.
Evaluation for accuracy and advantages, and comparisons of the new approaches in the presented
general framework are performed using both realistic synthetic data and in vivo fMRI data.

Index Terms
Functional connectivity; functional magnetic resonance imaging (fMRI); hypothesis testing;
multiple correlation; multivariate statistical analysis; noncentral F random fields; partial
correlation; spatial noise modeling; time series analysis

I. Introduction
Functional magnetic resonance imaging (fMRI) is a powerful technique that noninvasively
measures and characterizes brain functions in humans under various cognitive and
behavioral tasks. A thorough understanding of the neural mechanisms not only requires the
accurate delineation of activation regions (“functional segregation or specification”) but
demands precise description of function in terms of the information flow across networks of
areas (“functional integration”). Various approaches have been proposed to extract
association information from fMRI datasets, most of which rely on either functional or
effective connectivity [1]. Functional connectivity has been identified as “temporal
correlations between spatially remote neurophysiological events” [2]. In this work,
motivated by the following four factors, we present a novel and general statistical
framework for robust and more complete estimation of functional connectivity or

© 2009 IEEE
*Y. M. Wang is with the Departments of Statistics, Psychology, and Bioengineering, University of Illinois at Urbana-Champaign,
Champaign, IL 61820 USA (ymw@illinois.edu)..

NIH Public Access
Author Manuscript
IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 June 20.

Published in final edited form as:
IEEE Trans Med Imaging. 2009 August ; 28(8): 1296–1307. doi:10.1109/TMI.2009.2014863.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interactivity. In addition, we provide comprehensive comparisons of the proposed methods
in our framework, including using multiple and partial correlation analyses of fMRI data,
and the single-seed based method using marginal correlation, with and without accounting
for the spatial noise correlations.

First, for functional connectivity studies, a common approach is to calculate the temporal
correlation coefficients of a fMRI signal from a selected voxel or region (so-called “seed,”
or “seed region”) in a region of interest with all other voxels in the brain [3]. Different
strategies have been developed in the literature to select the seed voxel or region [4]. Each
correlation map is resulting from the cross correlation of only one seed region. However,
when areas with quite different time series patterns are used as seed regions for brain
connectivity inference, they should not be grouped as a single region; in some applications,
functional co-activation to multiple seeds rather than a single one would be of particular
interest. Multiple seeds can be chosen to calculate multiple correlation maps to separately
discover the functional connectivity to different seeds. But how to reasonably integrate
multiple connectivity maps for brain function inference is still unresolved and ambiguous.
Furthermore, it is often unrealistic to examine all pair-wise correlations. Therefore, it is
desirable to have a single correlation map resulting from the cross correlation of two or more
seed regions simultaneously. A related goal is achieved in [5], which studies hippocampal
connectivity in the brain by using a multiple regression analysis. However, in addition to
accounting for the spatial correlation of the fMRI data through the postprocessing of
multiple comparison correction as in the typical univariate analysis (for example, through
Gaussian kernel smoothing and random field theory based multiple testing correction [6]),
we are also interested in accounting for the spatial correlations of the noise while we
estimate the functional connectivity at each voxel through temporal correlation analyses.

Second, when investigating effective connectivity, the first level of information required
concerns the regions involved in the process and forming the spatial support of the network,
which is in fact nontrivial. Functional connectivity developed in this work can serve as a
technique for such purpose. Compared to existing approaches such as principal or
independent component analysis, or correlation maps [2], [7]–[9], the advantage of the
present methods is that the identified functionally connected regions can then be used as
additional new seed regions for recursive and further connectivity exploration due to a major
feature of our method—the ability to handle multiple seed regions simultaneously. Using
one seed region to identify functional connectivity may detect only a subset of a specific
neural system, and would not recover co-activation networks or regions to multiple seeds
due to the fact that the correlations to only one of the seeds may not be high enough to be
shown as significant. Also, it may underestimate the size and number of areas involved in a
task performance. Our functional connectivity framework offers the possibility of more
complete and powerful detection of specific neural systems by allowing one and multiple
regions as seed(s).

The third motivation of the present work is related to the spatial correlations of the noise in
the fMRI data. Dynamic connections in fMRI are thought to be reflected by high temporal
correlations of the time series. The strong correlation between the time series of each region
in the network with that of another distant region implied by the functional interactions may
be related to the spatially structured noise in fMRI [10]. The spatial correlations of the noise
must therefore be taken into account when dealing with sensitive and reproducible
estimation of the network. Recently, an approach for large-scale network identification in
fMRI was proposed in [11] by considering the noise structure in the data. However, this
method is again entirely restricted to connectivity detection between pair-wise (one to one)
brain areas through regular Pearson's linear correlation (i.e., marginal correlation) analysis
and can not handle multiple regions simultaneously [12]. Other efforts in modeling the
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spatial dependencies in fMRI [13], [14] are successful in activation detection but have yet
been incorporated into brain connectivity studies.

Finally, brain functional connectivity based on marginal correlation can be dominated by the
stimulus-locked responses. For example, if visual and auditory stimuli are presented
concurrently, the stimulus-locked neural responses would cause increases in the BOLD
signal in the primary auditory cortex (A1) and the primary visual cortex (V1)
simultaneously. Correlation between A1 and V1 would thus be high, though not due to any
intrinsic task-induced functional couplings but due to the responses in both regions to
externally driven stimuli. Partial correlation is the conditional correlation which estimates
any remaining correlation between time series after taking into account the relationship of
each to one or more reference time series. The stimulus-locked responses can then be
accounted for by choosing the reference functions to model the external stimuli. This allows
us to measure any additional task-induced, but not stimulus-locked relation over brain
regions. Recently, methods using partial correlation (or coherence) have been proposed [15],
[16], though they are for pair-wise correlation (or coherence) analysis and not applicable to
multiple seeds. In addition, the partial correlation in [16] is for subtracting and removing
mutual dependencies on common influences from other brain areas rather than from
stimulus-locked responses. How to apply the partial correlation concept to multiple seed
regions to brain connectivity study while considering spatial partial correlations in noise to
those seed regions is challenging and has not yet been pursued in the literature. Here, we
propose a novel procedure to achieve this as one of the goals of this work.

The objective of the present paper is to develop new and general statistical framework to
estimate brain networks based on multiple correlations and partial multiple correlations of
fMRI data. To the best of our knowledge, this work shows for the first time an innovative
application of multiple and partial multiple correlation analyses to study brain connectivity
caused by multiple seed regions. Note that a special case of our multiseed framework is the
single-seed method. The remainder of the paper is organized as follows. In Section II, we
describe our strategy of determining seed regions. The novel methods and our mathematical
formulations for functional connectivity estimation based on multiple seeds using multiple
correlations and partial multiple correlations are proposed in Sections III and IV,
respectively. Experiments and results on both simulated and real fMRI data are presented in
Sections V and VI, followed in Section VII by conclusions and discussions for this work.

II. Determining Multiple Homogeneous Seed Regions
We select multiple seed regions based on their respective functional homogeneity as well as
their known involvement in the functional or behavioral task and our interest in
characterizing their interactions with other regions of the brain. The functional homogeneity
is achieved with a region growing algorithm, and the related techniques have been applied in
[11] for finding homogeneous brain regions. More specifically, in this work, through the
standard general linear model analysis [17] using contrasts of interest (i.e., categorical
comparisons), we can identify activation regions of interest by thresholding the parametric t
statistic maps. Among the activation regions, we can have the approximate locations of the
seed regions based upon their known involvement in characterizing brain networks of
interest. For example, we might be interested in using the hippocampus or the primary visual
cortex (V1) as the seed. For each of the activation regions that we use as a seed, we
determine its precise location or choose the voxels (among those above the threshold),
whose time series will be utilized as seeds for the connectivity analysis, with the following
technique. Starting from a peak activation voxel (i.e., the maximum t statistics voxel), we let
the seed region grow by merging with other neighboring voxels based on a similarity
criterion, such as the Pearson's linear correlation between the time series of the peak voxel
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and the candidate voxel considered to be merged. The procedure is repeated for each of the
activation regions to be used as seeds so that we can precisely localize the seed regions (i.e.,
the associated voxels for each of the seed regions). Let the identified seed regions be
denoted as S1, S2, …, SP, where P is the total number of regions. For subsequent statistical
analysis, the mean time series of any seed region (i.e., the average time course for all time
courses of the voxels within a seed region) is utilized as the time series of that seed region,
and the centroid of the region is considered to be the position of the corresponding seed
region. Using the mean time series can make the results more robust to the imprecise
localization of the seed regions.

III. Functional Connectivity Using Multiple Correlations
A. Estimating Temporal/Sample Multiple Correlations

The temporal or sample multiple correlation coefficient considers the fMRI time series
correlation between a given voxel X and a combination of seed regions, S1, S2, …, SP. Its
estimation is based on the variance–covariance matrix

where varX and varSP are the time series variances for voxel X and seed SP(p = 1, 2, …, P),
respectively; and covX, Sp is their covariance. Their estimation can be achieved through

where T is the total number of time points; yX(i) and ySp(i) (for i = 1, 2, …, T) are,
respectively, the time series for voxel X, and seed Sp (i.e., the mean time series of seed

region Sp); and  and  are the corresponding averages over T. The temporal multiple

correlation coefficient  between voxel X and the multiple seeds [S1, S2, …, SP]′ can be
calculated as [18]
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B. Estimating Spatial Multiple Correlations in Noise
The main factors contributing to the spatial correlation of the noise include fMRI data
preprocessing, the point spread function, which causes data from an individual voxel to
contain some signal from the tissue around that voxel, an effect compounded by motion
correction techniques, and the smoothness introduced by interpolation in motion correction
[19]. Despite the strategies and efforts to reduce such structured noise [20], [21], some
residual and further corrections are still essential for robust fMRI data analysis.

1) Voxel-Based Spatial Correlograph of Noise—We assume the spatial noise is
stationary and has a multivariate Gaussian distribution with variance–covariance matrix

, where M is the total number of voxels; σi and σj are positive standard deviations
for voxels Xi and Xj. The spatial correlations in noise then depend only on the spatial
distance between voxels: σij = σiσjρ(∥i − j∥), where ∥i − j∥ denotes the spatial distance or lag
between Xi and Xj; and ρ is the spatial correlogram, a real-valued function that satisfies ρ(0)
= 1 and is bounded by − 1 and 1. Such a spatial model is valid if and only if the resulting
variance–covariance matrix Σ is positive-definite [22].

Since it is unknown what voxels or regions are predominantly influenced by the noise, the
entire set Dh = {(Xi, Xj)|∥i − j∥ = h} of pairs of voxels at lag h over the whole brain area is
considered for the nonparametric estimate based on the median:

, where rij is the Pearson's linear correlation between the
time series of the two voxels. As in general the empirical estimator  of the correlogram
does not provide a positive-definite correlation matrix, we focus on a parametric class of
valid matrices, based on the empirical values  estimated from the fMRI data. The rational-
quadratic model ρθ(h) in [22] is utilized for such purpose

(1)

where θ = (θ1, θ2, θ3) is a parameter vector of three nonnegative real values with θ1 + θ2θ3
< 1. The derived spatial correlogram of noise, ρθ(h), decreases rapidly from a correlation
level between nearby voxels, ρ0+, towards an asymptotic correlation, ρ∞. A critical distance

 can be determined beyond which the correlogram is almost equal to the asymptote, with a
tolerance of ε. The parameterization of the rational-quadratic model using ρ0+, ρ∞,  is
given as below [11]

Note that the Bartlet interval argument [23] could potentially be utilized as an alternative
way to determine .
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2) Spatial Multiple Correlations in Noise—The spatial multiple correlations of the
noise consider the correlations between any voxel X and a combination of multiple seeds S1,
S2, …, SP. As shown in Fig. 1, suppose the distances between the voxel X and the seeds S1,
S2, …, SP are, re-spectively, h1, h2, …, hP and the distances between any pair-wise seeds are
hij(for Si and Si, hij = hji). The noise spatial correlation matrix for [X, S1, S2, …, SP]′ can
then be constructed as

where ρθ(h) is the correlogram estimated above. Let  and , respectively, denote the
noise variance for voxel X, and seed Sp p = 1, 2, …, P (see the Appendix for their
estimation). Then the corresponding variance–covariance matrix, Σspa is shown in the
equation at the bottom of the page. The spatial multiple correlation coefficient of the noise
between any voxel X and the seeds [S1, S2, …, SP]′ is computed as

, and can be reformulated to

(2)

C. Identifying Functional Connectivity of Brain
Given the estimation of multiple correlations in noise, we use hypothesis testing to search
for significant correlations between any voxel and the seed regions that are statistically
unlikely to be due to noise.

1) Statistical Hypothesis Testing—We would like to test whether the temporal

multiple correlation  is likely to be found only by chance from the noise correlation. The
hypothesis is

Under the null hypothesis that the temporal multiple correlation, , arises from a
population whose multiple correlation equals the spatial multiple correlation of the noise,
Rspa, the following quantity is a noncentral F [18, p. 153–154]

(3)

Here, the degrees-of-freedom are P and T − 1 − P, and the noncentrality parameter is

, where we condition on the seeds' time series. In
the present work, due to the reformulated Rspa in (2), the noncentrality parameter can be

shown to be: , where Ψ is a P × P diagonal

Wang and Xia Page 6

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



matrix with diagonal element , for p = 1, 2, …, P. In this way, the p-value for each
voxel can be calculated from this noncentral F distribution. A

voxel shall be included in the functional connectivity network if the corresponding p-value
is smaller than a prechosen type I error α (note: α = 0.05 is used in this paper).

It can also be shown that under the null hypothesis of the population multiple correlation,
Rspa, is zero (i.e., our hypothesis becomes: H0 : Rtem = 0 vs · H1 : Rtem > 0), the F in (3) is a
central F[18, p. 149–150], with P and T − 1 − P degrees-of-freedom. In fact, this is
equivalent to multiple correlation analysis of multiseed functional connectivity but without
taking the spatial correlations of the noise into consideration.

2) Effective Degrees-of-Freedom for Temporal Autocorrelation—A departure
from the temporally independent and identically distributed (i.i.d.) assumption due to the
temporal autocorrelation will result in a decrease in the degrees-of-freedom in the above
hypothesis testing. To correct such possible bias, we estimate the effective degrees-of-
freedom Teff. This can be achieved through the context of the general linear model [24].
Note that the Teff estimated this way assumes voxelwise spatial independence, which can be
considered as an upper-bound estimation of our effective degrees-of-freedom. More relaxed
or more precise estimation accounting for the spatial correlation can be a future work. In this
paper, we approximate the effective degrees-of-freedom as Teff, and use the estimated Teff to
replace the T − 1 in the F statistic's calculation in (3).

3) Multiple Testing Using Noncentral F Random Field—We need to perform
numerous tests equal to the total number of voxels over the brain area. In order to correct
this multiple testing problem, different strategies can be potentially applied, such as
Bonferroni correction, cluster-size thresholding, random field theory or false discovery rate
control [25]–[30].

The Random field theory (RFT) correction on the t-field, Hotelling's T2 field, χ2 field,
central F field, and the correlation field has been developed by Worsley et al. [6], [31]. RFT
estimates the number of independent statistical tests based upon the spatial correlation, or
smoothness, of the experimental data. With even small to moderate amounts of smoothness
in the data, the number of resels (resolution elements) will be much less than the original
number of voxels. From the number of resels, one can estimate how many clusters of
activity should be found by chance at a given statistical threshold. This number is known as
the Euler characteristic of the data. RFT correction is less conservative than the Bonferroni
correction. Recently, Hayasaka et al. [32] has derived the noncentral F RFT for the
calculation of power and sample size. In this paper, we use the noncentral F RFT to correct
the multiple comparison problems.

Suppose α is the type I error (false–positive rate) of the whole procedure
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where F is noncentral F test statistics, Reselsd is the number of d-dimensional resels in the
region and ECd(tf) is the d-dimensional Euler characteristic density. The above
approximation is based on the fact that left-hand side is the exact expectation of Euler
characteristic of region above the threshold tf. The formulas for the calculation of Reselad
are given in [3]. The EC0, EC1, EC2 and EC3 for a noncentral F-random Field have recently
been derived in [32]. Based on the desired α, Reselsd and α, we can find the threshold tf for
the noncentral F random field given by our (3) for multiple comparison correction.

IV. Functional Interactivity Using Partial Multiple Correlations
Based on our multiple correlation formulations in Section III, we describe in this section our
multiseed method and mathematical formulations using partial multiple correlations.

A. Estimating Temporal Partial Multiple Correlations
The temporal partial multiple correlation coefficient considers the fMRI time series
correlation between a given voxel and a combination of seed regions S1, S2, …, SP
conditioned on fixed stimuli (experimental paradigms or reference functions, i.e., the
convolution functions of the hemodynamic response with the 0–1 boxcar stimulus functions
in the case of the block-design experiments), V1, V2,…, VN. Its estimation is based on the
matrix the equation shown at the bottom of the page, where varVn is the time series
variances of the stimulus Vn (n = 1,2,…, N); cov X,Vn is the covariance between voxel X,
and Vn, and cov Sp, Vn is the covariance between the seed Sp and Vn. Their estimation can
be achieved through time series and reference function samples of size T (as the one for
var X, varSp and covX,Sp Lgiven in Section III-A), though here they are

not technically variances and covariances because the Vn are fixed stimuli. With the
assumption that the conditional distribution (X, S1,…, Sp|V1 = v1,…, V2 = v2…, VN = vN)′
is a multinormal distribution [18], its variance-covariance matrix can be calculated as
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Let the components of  be divided into four groups

where  and  are variances of volex X and the seeds holding the reference functions

(stimuli) fixed,  is their corresponding covariance under the same condition. Based on
Section III-A, the temporal partial multiple correlation is thus

B. Estimating Spatial Partial Multiple Correlations in Noise
In Section III-B, we estimate the voxel-based spatial correlograph of noise using the median
of Pearson's linear correlation, i.e., marginal correlation. Here, we take the similar approach
but replace the marginal correlation with partial correlation because the stimuli are now

considered to be fixed, i.e.,  where rij·V is the partial
correlation coefficient between voxels Xi and Xj holding V1, V2,…, VN fixed, and its
calculation is as below. Let the variance–covariance matrix of (Xi, Xj, V1, …, VN)′ be

is assumed to be multinormal and its variance–covariance matrix is calculated as

The partial correlation coefficient is thus given by [18]

The corresponding parametric correlogram  based on rij·V can then be estimated as in
Section III-B.

The noise spatial partial correlation matrix for [X, S1, S2, …, SP]′ holding V1, V2, …, VN
fixed can be constructed as
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where  is the correlogram estimated above. Let  denote the residual standard
deviation of the noise for seed Sp, p = 1, 2,…, p, holding V1, V2, …, VN fixed (see the
Appendix for its estimation). As in Section III-B, the spatial partial multiple correlation
coefficient of the noise between any voxel and the seeds [S1, S2,…, SP]′ holding the stimuli
fixed is computed as

C. Identifying Conditional Functional Connectivity of Brain

We would like to test whether the temporal partial multiple correlation  is likely to be
found only by change from the noise correlation. The hypothesis is

Here, we can show that the following quantity is a noncentral F

(4)

with the degrees-of-freedom and P and the T − 1 − N − P, and the noncentrality parameter

where we condition on the seeds' time series; Ψ* is a P × P diagonal matrix with diagonal

element  for p = 1,2,…, P. Note that the temporal autocorrelation can be handled in a
similar way as in the multiple correlation case by computing the associated effective
degrees-of-freedom (see Section III-C); the multiple testing correction is similarly based on
noncentral F random field theory as described in details in Section III-C.

Similar to the multiple correlation case (Section III-C), under the null hypothesis of the
population partial multiple correlation, Rspa·V, is zero (i.e., our hypothesis becomes: H0 :
Rspa·V = 0 vs · H1 : Rspa·V > 0) the F in (4) is a central F with P and T − 1 − N − P degrees-
of-freedom. This is then equivalent to partial multiple correlation analysis of multiseed
functional connectivity but without taking the spatial partial correlations of the noise into
consideration.
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V. Simulated Data Results
In the absence of any ground truth about the functional connectivity in the human brain, the
validation of a new method for the analysis of fMRI data is always problematic. We propose
therefore to first validate our approach with realistic simulated data in this section. We then
proceed to the evaluation of our method using in vivo data in Section VI.

A. Data Generation
The simulated time series were composed of time- and space-correlated noise (see below for
the detailed generation strategies), added on a base 3-D brain image with size 64 × 64 × 20.
First, the space correlation was simulated based on a rational-quadratic parameter model
described in Section III-B, with ρ0+ = 0.4, ρ∞ =0.001, and  (ε = 0.01). The
parameters θ = (θ1, θ2, θ3) of (1) were determined through the following equations [11]:

The space correlation matrix was then derived by calculating ρθ(h) according to (1) and at
the desired h lags. Temporally independent Gaussian data sets with this space correlation
were generated as described in [22, p. 201–203] using a Cholesky decomposition of the
space correlation matrix and Gaussian random samples generated using Matlab1. Next, the
time series were added with the autoregressive moving average ARMA(1,1) temporal noise
[33], [34] to simulate the block-design fMRI(T =128). In addition, some randomly selected
regions were further summed with different types of signal time series (boxcar functions
convolved with the hemodynamic response function as defined by the SPM5 software
package2; signal amplitude: 3%~ 5%) to simulate functional networks with multiple seed
regions. We generated the data at four different noise levels, with the signal-to-noise ratios
(SNR), respectively, 0.0 dB, −0.5 db, −1.0 db, −1.5 db. The SNR is defined as: SNR(dB) =
10log10 (Varsignal/Varnoice), where Varsignal and Varnoice are the empirical variances of the
signal and noise.

B. Validation of Our Multiseed Method Using Multiple Correlations (Fig. 2)
In this experiment, two types of networks were simulated, highly correlated with the two
types of seed regions, respectively. We used receiver operating characteristic (ROC)
analysis for evaluation. The essence of ROC analysis is the comparison of true positive rates
(TPR) (proportion of voxels correctly detected as significant to all voxels with added
connectivity) obtained with different analysis techniques for a given false positive rate
(FPR) (proportion of voxels incorrectly detected as significant to all voxels without added
connectivity). The ROC curves in Fig. 2 indicate that our multiple correlation method can
robustly detect the true multiseed connectivity when the SNR is greater than or equal to −1.5
dB, though the performance increases for increased SNR.

C. Comparison of Our Multiseed Method and the Single-Seed Method (Figs. 3 and 4)
In Fig. 3, three types of networks were simulated, with the green region highly correlated to
seed 1, the blue region highly correlated to seed 2, and the brown having medium (relatively
low) correlation to both of the two seed regions. Fig. 3 shows that the identified connectivity

1http://www.mathworks.com
2http://www.fil.ion.ucl.ac.uk/spm/
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(at α = 0.05, corrected) by our multiseed method and by the single seed method (spatial
correlations in noise also considered using the technique in [11]): 1) With our multiseed
method using multiple correlations, all three types of connectivity are detected, both the
highly correlated ones to the seeds (green and blue) and the medium correlated one (brown).
2) Using any one seed alone, only the corresponding one type of highly correlated
connectivity is detected in each case; in addition, compared to our multiseed method, the
significance level is lower, and there are more false negatives and false positives; the
correlation over the brown region is not high enough in either of the cases to be shown as
significant when using any single seed alone.

With the data generated in Section V-A, quantitative performance comparison with the
single-seed method using ROC curves at different SNRs are shown in Fig. 4, demonstrating
that besides being able to identify all underlying networks, our approach is more robust and
powerful in detecting functional connectivity and the improvements increase when SNR
decreases.

D. Comparison of Our Methods: Multiple Versus Partial Multiple Correlations (Fig. 5)
We also generated simulated data with four different types of connectivity (see Fig. 5): light
green and light blue denote the stimulus-locked activation regions to the type 1 and type 2
seeds, respectively; dark green and dark blue denote the stimulus-locked activation plus the
task-induced functional coupling to the type 1 and type 2 seeds, respectively. With the
multiple correlations, all four types of regions are shown as significant, though at different
significance levels. However, using partial multiple correlations, only the regions imbedding
task-induced functional coupling (dark green and dark blue) are identified as significant
because the partial correlation analysis is able to adjust for the stimulus-locked effects.

VI. Real Fmri Data With Visual Motion Task
A. Data Description

The real fMRI data (single-subject) was obtained from the SPM data site3 with the detailed
description in [35]. The subject was scanned during four runs, each lasting 5 min 22 s. One
hundred image volumes were acquired and the first ten was discarded in each run. Each
condition lasted 32.2 s, giving 10 multi-slice volumes per condition. The fMRI data size was
53 × 63 × 46 × 360. Four conditions—“fixation,” “attention,” “no attention,” and
“stationary”—were used. Electrophysiological and neuroimaging studies have shown that
attention to visual motion can increase the responsiveness of the motion-selective cortical
area V5 and some other areas, and an occipito-parieto-frontal network is involved in the
visual pathway modulation by attention. The structural model for the dorsal visual pathway
is shown in Fig. 6, including primary visual cortex (V1), visual cortical area MT (V5),
posterior parietal cortex (PP), and modulatory interaction term involving dorsolateral
prefrontal cortex (PFC).

B. Determining Activation and Seed Regions
The activation regions were identified by categorical comparisons using the SPM5 software
package, contrasting “attention” and “no attention” and contrasting “no attention” and
“stationary.” The involvement of V1 and V5 were predicted with a stimulus consisting of
rapidly moving dots. The location of V1 was in accord with the calcarine fissure [36], and
that of V5 was consistent with previous functional imaging studies [35], [37]. The location
of the posterior parietal regions was similar to that in previous PET and fMRI studies of
attention [35], [38], [39]. Fig. 7 shows the location of the activation regions for a single

3http://www.fil.ion.ucl.ac.uk/spm/data/attention
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individual, with each region centered around the most significant (α = 0.05, corrected) voxel
as revealed by the categorical comparison.

Here we examine the functional interactions by using the different seed regions: V1, or V5
or both V1 and V5, and by using different methods. The seed regions were determined
through the procedures described in Section II, i.e., starting with the peak activation voxels
in the corresponding V1 and V5 activation regions identified above, we used the region
growing strategy based on the functional homogeneity. Note that it might also be interesting
to investigate the functional connectivity by using other seed regions in addition to V1 and
V5, such as PP. However, based on the structural model in Fig. 6, using PP is not quite
justifiable from the neural networking or information flow point of view. Unlike studying
the effective connectivity [1], [40], our method examines the functional connectivity without
inferring or being constrained by the causal relationship (i.e., the directionality) among
spatially separated brain regions. Thus, the results from our framework are usually not
sensitive to the improper placing of seeds.

C. Partial Correlation Effects–Multiple Versus Partial Multiple Correlations (Figs. 8 and 9)
Estimated correlograms using marginal correlation (Section III-B) and partial correlation
(Section IV-B) are shown in Fig. 8, which indicates that the correlations between time series
with visual motion task (equivalent to performance of cognitively demanding processing)
are lower than the remaining correlations after taking into account the relationship of each
time series to the reference functions (here two were used, one for “attention” and the other
for “no attention”). This might be related to the fact that a baseline condition of brain
function exhibits decreases during performance of a cognitive task [41].

From Fig. 9(a) and (b), we can see that using multiple correlation (second row), both
stimulus-locked and task-induced networks are identified, with all the involved regions in
Fig. 6 shown as highly significant (yellow). However, using partial multiple correlation (first
row), since the stimulus-locked effects are accounted for, the network regions and their sizes
are considerably reduced. Specifically: 1) with V1 as seed regions [Fig. 9(a), first row],
mainly the low level visual network is identified as highly significant implying task-induced
coupling among the visual areas, such as V1–V5 and 2) withV5 as seed regions [Fig. 9(b),
first row], the two PP and the right PFC regions are still shown as highly significant,
suggesting the involved task-induced coupling of attention to motion modulation described
in Fig. 6, after taking account of the stimulus-locked effects.

D. Effects of Multiple Seeds—Comparison Using Both V1 and V5 as Seeds (Fig. 9)
The partial multiple correlation results using V1 or V5 [Fig. 9(a) and (b), first row] as seed
regions have been illustrated in the above section. With a combination of a V1 and a V5 as
seed regions [Fig. 9(c)], using partial multiple correlation, we can not only detect the highly
significant low level visual network regions (as in Fig. 9(a) and (b), first row, last slice), but
also identify the highly significant attention to motion modulation PP areas [as in Fig. 9(b),
first row; also compare to Fig. 9(a), first row], achieving the combined effects of multiple
seed regions involving both V1 and V5. Note that since only one V5 is used here, the region
sizes and significance levels for the PP and right PFC are not as large as the ones using both
V5 regions in Fig. 9(b) (first row).

E. Effects of Spatial Noise–Comparison of Noncentral and Central F-Tests (Fig. 9)
The results without taking the spatial noise correlations into consideration (central F-test)
are shown in Fig. 9(a) and (b), third row, with many unjustified areas identified as
functionally correlated with the V1 and/or V5 seed regions due to the spatial structured
noise in the fMRI data.
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VII. Conclusion and Discussion
This paper presents a novel and general statistical framework for sensitive and reproducible
estimation of brain networks from fMRI based on multiple and partial multiple correlation
analyses and multiple seed regions, with the standard single-seed region analysis as the
degenerate and a special case. The networks of functional interconnections are found by
comparing the temporal multiple (and/or partial multiple) correlations against a model of the
spatial multiple (and/or partial multiple) correlations in the noise. Compared with using only
a single seed, using multiple seeds can not only lead to more robust estimation of functional
connectivity, but also more sensitive identification of functional co-activation networks or
regions to multiple seeds that may not be detected in the single-seed method. The use of the
partial multiple correlation has the interesting features of providing a convenient summary
of conditional independences and hence of being more closely related to the direct
functional interactions (i.e., effective connectivity) of the brain than marginal correlation.
Experimental results from both simulated and real fMRI data demonstrate that the proposed
approaches can robustly and sensitively detect and differentiate brain functional networks
caused by stimulus-locked and/or task-induced responses.

Note that our method/framework can degenerate to the single seed case with spatial noise
accounted for. A reasonable way of utilizing the present approaches is to test different
combinations of seeds, including single and multiple seeds based on prior literature and the
goal of the specific research. The multiseed methods can provide valuable information
regarding co-activation to multiple seed regions that is not achievable in the conventional
single-seed analysis. However, employing individual seeds separately in a subsequent
analysis would help us better understand the different individual networks. Utilizing multi-
seed in conjunction with the single-seed analyses based on our framework can provide
complementary and comprehensive information of brain interactions.

Analyzing the connectivity from fMRI data can also be achieved through alternative
approaches, such as Granger causality mapping (GCM) [42], dynamic causal modeling
(DCM) [40], partial least-squares (PLS) [43], independent component analysis (ICA) [9],
[44], principal component analysis (PCA) [2], and conventional correlation analysis [3],
[45], etc. Among these methods, GCM and DCM aim for the effective connectivity which
refers to a causal relationship between spatially separated brain regions; PLS, ICA, and PCA
are multivariate analysis techniques for detecting functional connectivity through modeling
relations between sets of observed variables by means of latent variables (PLS), or
identifying the spatial or temporal components which are either uncorrelated (PCA) or
independent (ICA); and the conventional correlation analysis of a signal from a selected
voxel or region is a univariate approach for functional connectivity study. The proposed
methods in this paper provide a hybrid version of multivariate and univariate analyses for
functional connectivity detection and estimation by modeling the temporal and spatial
correlations to multiple seed regions, which may be interpreted as a regional multivariate
analysis though with the univariate one seed region as the degenerate case.

In addition to fMRI, other noninvasive techniques such as electroencephalography (EEG)
and magnetoencephalography (MEG), provide spatio-temporal information about the
ongoing neural activity in the cortex, and can be used for brain effective and functional
connectivity studies. The associated analysis techniques of such data typically involve the
identification of foci of activity such as single- or multiple-dipole localization in a 3-D
volume [46]. More ambitious techniques not only decompose the spatio-temporal dynamics
into meaningful patterns, but also identify equations governing the dynamics of these
patterns [47]. Despite the successes, the simplifications made in the approaches do not take
into account the detailed physiological and anatomical interpretation of the identified
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dynamic systems. Jirsa et al. [48] define a spatio-temporal neural field dynamics on a
spherical geometry. The neuronal dynamics is mapped onto the unfolded cortical surface,
and then on the folded cortical surface, and finally on the EEG and MEG patterns on the
scalp.

The spatio-temporal noise modeling in fMRI has been investigated in some literature. For
example, a spatially independent temporal noise modeling approach was introduced by
Bullmore et al. [49] within a null hypothesis testing general linear model framework. This
was also tackled in an empirical Bayesian framework [50], which avoided problems due to
the estimation of the temporal autocorrelation from the residuals of the model fit. In these
methods, the parameters associated with the correlation structure of the noise are assumed to
be known exactly; the uncertainty associated with these parameters is not taken into
consideration, resulting in potentially biased statistical inference. To overcome this
limitation, a full Bayesian framework was proposed by Genovese [51] to model the fMRI
time series with deterministic drift in the data using cubic splines. Woolrich et al. [19] model
short scale statistical spatial and temporal noise using autoregressive (AR) processes, after
taking away the large scale deterministic temporal fluctuation in a preprocessing step using
temporal high-pass filtering.

There are some assumptions in our methods and the simulated data generation. First, we
assume the spatial noise is stationary and has a multivariate Gaussian distribution. In
addition, separable space and time models are used. The stationarity of noise and the
separability of space and time are simplifications for computational feasibility; which have
been used in the literature for fMRI modeling and analysis [52]. More general and
complicated noise model such as the time-varying [53] and Ricean [54] noise, and a
nonseparable spatio-temporal model [19], [55] can possibly be considered for the
corresponding derivations. However, the main contribution of this paper is to demonstrate
the ideas, methods, and advantages of the unified framework for brain connectivity study;
comprehensively modeling the fMRI noise is beyond the scope of this work and could be
pursued further in the future. Second, in our simulated data experiments, we generated the
block-design experimental paradigm data with an ARMA(1,1) process modeling the
temporal autocorrelations. But the proposed framework can be applied to the event-related
paradigm as well, in which case, the temporal autocorrelations can be modeled as a more
general autoregressive (AR) process. The time series modeling of ARMA, AR, and their
variations have been developed and tested for fMRI analysis in [24], [49], and [56].

One of our major future directions is to generalize the method to multisubject study. In this
paper, the approach was applied on single-subject fMRI data. One way to extend it to group
level analysis is as following: First perform our single-subject correlation analyses by

computing  based on Sections III-A and III-B for the multiple correlation case

and computing  based on Sections IV-A and IV-B for the partial
multiple correlation case. Second, perform the corresponding second-level group analyses
using permutation tests, for example, using our newly developed hybrid and efficient
permutation tests [30] or the standard random permutation tests [57]. One advantage of
utilizing the nonparametric permutation tests instead of any parametric tests (such as the t-
test or F-test) is that no data distribution assumption is required. In this case, the cluster-size
thresholding or the false discovery rate control [25]–[28], [30], [58] could be potentially
applied for the multiple testing problem given that the parametric statistic field/image is not
explicitly available for the random field theory to be applied for correction.
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Appendix

Estimation of Noise Variance
Let σ2 denote the noise variance for each individual voxel, in the fMRI data. It can be
estimated using an ARMA(1,1) model, as in [33], [34]. Let the time series for a voxel be y.
After using the general linear model to take away the part of y related to neural activity, the

residual noise error is , where e = [e(1), …, e(t), …, e(T)]′, for t = 1,2, …, T.
With the assumption of the ARMA(1,1) model, we have e(t) − φ · e(t − 1) = z(t) + ϑ · z(t −
1), where z = [z(1), z(2), …, z(T)]′ is temporally independent and identically distributed
Gaussian noise, i.e., z ~ i.i.d. N(0, σ2). For each voxel, three parameters: variance σ2,
autoregressive coefficient φ, and moving average coefficient ϑ, can be estimated as
following. Suppose the variance–covariance matrix for e is

Then

Also, the estimation for γ(t) is

The parametric fitting will lead to the estimation of , which is the estimated noise variance
at each individual voxel.

Let  denote the noise variance for a seed region S (i.e., the noise variance for the mean
time series of this seed region). Suppose there are  voxels in S, and the voxels within this

region are correlated rather than independent. In order to estimate , we first calculate the
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 variance-covariance matrix, A. The diagonal elements in A are ,
the variance of the noise at voxel estimated above; and the off diagonal elements in A are
ρθ(dij) · σi · σj (i, j = 1,2, …, ), where ρθ(dij) is the correlogram estimated in Section III-B
for lag dij the spatial distance between voxel i and j. That is

Let the entries in matrix A be aij. We then have: , which is used as the
noise variance of the seed region S, needed in the F statistic's calculation in Section III-C

(multiple correlation case). If we replace the ρθ(dij) with  (see Section VI-B) in

matrix A, using the same procedure, we can estimate , the residual standard deviation of
the noise for seed region S holding the stimuli fixed, which is needed in the F statistic's
calculation in Section VI-C (partial correlation case).
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Fig. 1.
Configuration diagram for the P seed regions and a random voxel X.
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Fig. 2.
(a) Ground truth of a simulated seed. (b) Normalized time series of an associated
connectivity voxel at SNR = −0.5 dB. (c) ROC curves at SNR (in dB) = 0.0, −0.5, −1.0, −1.5
(top to bottom).
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Fig. 3.
Identified functional connectivity (color maps) for simulated data (SNR = −1.0 dB):
Comparison of our multiseed method (multiple correlation) and the single-seed method
(with spatial noise considered, too).

Wang and Xia Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2012 June 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Comparison of ROC curves for our multiseed method (solid lines with circles) and the
single-seed method (with spatial noise also considered, dashed lines) at different SNRs,
showing significantly improved performance using multiple seeds. Note: The TPR and FPR
for the single-seed case are computed as below: M is the total number of voxels; Let i = 1, 2
be the seed index. Suppose: ni (i = 1, 2) is the number of voxels correctly detected as
significant; Ni (i = 1, 2) is the number of voxels with added type i connectivity; mi (i = 1, 2)
is the number of voxels incorrectly detected as significant. Therefore, the combined TPR
and FPR used in the ROC plots for the single-seed case are: TPR = (n1 + n2)/(N1 + N2) and
FPR = (m1 + m2)/(M − N1 − N2)
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Fig. 5.
Identified functional connectivity (color maps) for simulated data (SNR = −1.0 dB):
Comparison of our multiseed methods using multiple and partial multiple correlations.
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Fig. 6.
Structural model for the dorsal visual stream (modified from [35]), including primary visual
cortex (V1), visual cortical area MT (V5), posterior parietal cortex (PP), and modulatory
interaction term involving dorsolateral pre-frontal cortex (PFC).
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Fig. 7.
Spatial location of the activation regions identified from SPM5 for a single subject real
fMRI data.
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Fig. 8.
Estimated correlograms from the real fMRI data, showing the asymptotic correlation, ρ∞, in
ρθ(h) (marginal correlation) is lower than the one in (h) (partial correlation). This
might be related to the fact that a baseline condition of brain function exhibits decreases
during performance of a cognitive task [41].
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Fig. 9.
Comparison and results of functional interaction maps for the real fMRI data. (a) Seeds: Left
and right VI. (b) Seeds: Left and right V5. (c) Seeds: Right V1 and Right V5.
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