Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 5;68(Pt 6):o1636. doi: 10.1107/S1600536812018429

N-[2-(2-Hy­droxy­eth­oxy)pheneth­yl]phthalimide

Er-Qun Yang a, Jun-Tao Zhang a, Xiao-Ping Cao a,*, Jin-Zhong Gu b
PMCID: PMC3379239  PMID: 22719437

Abstract

The title compound, C18H17NO4, was obtained accidentally through acid-catalysed aromatization of a phthalimide-substituted 2-(1-hy­droxy­eth­yl)cyclo­hex-2-enone. It exhibits an intra­molecular O—H⋯Oc (c = carbonyl) hydrogen bond and forms a three-dimensional network structure via π–π stacking inter­actions between adjacent benzene rings (phthalimide-to-phenyl­ene and phthalimide-to-phthalimide), with centroid–centroid distances of 3.8262 (6) and 3.6245 (5) Å.

Related literature  

For background to the titanium(IV) chloride-promoted Baylis–Hillman reaction, see: Basavaiah et al. (2010); Park et al. (2004); Qi et al. (2011); Reggelin et al. (2006); Veale et al. (2008). For protection of ketones as 1,3-dioxolanes, see: Chen et al. (2011); Shih & Swenton (1982). For background and a possible mechanism of the aromatization reaction, see: Patra et al. (2002); Lewin et al. (2008).graphic file with name e-68-o1636-scheme1.jpg

Experimental  

Crystal data  

  • C18H17NO4

  • M r = 311.33

  • Monoclinic, Inline graphic

  • a = 8.4799 (19) Å

  • b = 22.954 (5) Å

  • c = 8.5089 (19) Å

  • β = 110.077 (2)°

  • V = 1555.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.29 × 0.21 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.970, T max = 0.980

  • 10978 measured reflections

  • 2891 independent reflections

  • 1867 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.146

  • S = 1.04

  • 2891 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018429/zl2473sup1.cif

e-68-o1636-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018429/zl2473Isup2.hkl

e-68-o1636-Isup2.hkl (141.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018429/zl2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2 0.82 2.14 2.941 (3) 164

Acknowledgments

This work was supported financially by the National Natural Science Foundation of China (21061160494). The authors are also grateful to Yong-Liang Shao, Lanzhou University, for his helpful guidance in the preparation of the manuscript.

supplementary crystallographic information

Comment

N-[2-(2-Hydroxyethoxy)phenethyl]phthalimide (Fig. 1), was accidentally obtained as an unintended product from a total synthesis of malyngamides. In the first step N-[(formyl)methyl]phthalimide was reacted with cyclohex-2-enone via a titanium (IV) chloride promoted Baylis-Hillman reaction. The 2-(1-hydroxyethyl)cyclohex-2-enone obtained was then reacted with ethylene glycol with p-toluenesulfonic acid as the catalyst, with the aim to protect the keto group as a 1,3-dioxolane (Chen et al., 2011; Shih & Swenton, 1982). However, condensation with ethylene glycol proofed incomplete and through elimination of the hydroxy group and subsequent aromatization of the cyclohex-2-enone ring through a [1,5] shift of the double bond the title compound was obtained instead (Fig. 3). A similar reaction involving an aromatization of a cyclohex-2-enone obtained via a titanium (IV) chloride promoted Baylis-Hillman Reaction had been described earlier by e.g. Patra et al. (2002). This unexpected reaction offers itself as a good strategy for the synthesis of 2-substituted β-phenethylamines which are amino acid metabolites and important intermediates in medicinal chemistry (Lewin et al., 2008).

As shown in Fig. 2, an intramolecular O—H···O hydrogen bond is formed between the hydroxy group and one of the keto oxygen atoms (Table 1). In the crystal, the crystal packing is further stabilized by π-π interactions between phenyl rings in neighboring molecules (phthalimide to phenylene and phthalimide to phthalimide), with centroid to centroid distances of 3.8262 (6) Å and 3.6245 (5) Å.

Experimental

The title compound was produced in two steps. Using Baylis-Hillman reaction conditions (Basavaiah et al., 2010; Park et al., 2004), N-[2-hydroxy-2-(6-oxocyclohex-1-enyl)ethyl]phthalimide was prepared from N-[(formyl)methyl]phthalimide (Qi et al., 2011; Reggelin et al., 2006; Veale et al., 2008) and cyclohex-2-enone with titanium (IV) chloride in 56% yield. Then, to a stirred solution of N-[2-hydroxy-2-(6-oxocyclohex-1-enyl)ethyl]phthalimide (163 mg) in benzene (10 ml), ethylene glycol (4.40 ml) and p-toluenesulfonic acid (1 mg) were added and the mixture was refluxed for 20 h. The reaction mixture was poured into saturated NaHCO3 solution (10 ml), extracted with Et2O (3 × 20 ml) and then dried over MgSO4. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give the title compound (128 mg, 72%) as a colourless solid. m.p. 403–404 K; 1H NMR (CDCl3, 400 MHz) δ: 7.85 (m, 2H, ArH), 7.71 (m, 2H, ArH), 7.22 (t, J = 7.4 Hz, 2H, ArH), 6.88 (m, J = 7.4 and 8.8 Hz, 2H, ArH), 4.07 (m, 4H, CH2), 3.92 (m, 2H, CH2), 2.98 (t, J = 8.4 Hz, 2H, CH2); 13C NMR (CDCl3, 100 MHz) δ: 168.6 (C), 157.0 (C), 134.0 (CH, overlapping signals), 132.1 (C), 130.9 (CH), 128.3 (CH), 126.0 (C), 123.4 (CH, overlapping signals), 120.8 (CH), 111.0 (CH), 69.5 (CH2), 61.5 (CH2), 37.9 (CH2), 30.6 (CH2); MS (ESI) m/z (%): 311 (M+, 30), 281 (9), 164 (100), 160 (53), 133 (73), 120 (57).

Refinement

All H atoms were placed in geometrically idealized positions, with C—H = 0.93 Å and O—H = 0.82 Å, and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

A view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of the title compound, viewed down the c axis, showing intramolecular O—H···O hydrogen bonds as yellow lines and π-π interactions as purple lines.

Fig. 3.

Fig. 3.

Synthesis of the title compound.

Crystal data

C18H17NO4 F(000) = 656
Mr = 311.33 Dx = 1.329 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.4799 (19) Å Cell parameters from 3059 reflections
b = 22.954 (5) Å θ = 2.6–27.7°
c = 8.5089 (19) Å µ = 0.09 mm1
β = 110.077 (2)° T = 296 K
V = 1555.6 (6) Å3 Block, colourless
Z = 4 0.32 × 0.29 × 0.21 mm

Data collection

Bruker APEXII CCD diffractometer 2891 independent reflections
Radiation source: fine-focus sealed tube 1867 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.970, Tmax = 0.980 k = −27→26
10978 measured reflections l = −9→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.9244P] where P = (Fo2 + 2Fc2)/3
2891 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3135 (3) 0.43925 (12) 0.1572 (4) 0.0526 (7)
C2 0.4828 (3) 0.45631 (11) 0.2714 (4) 0.0510 (7)
C3 0.5941 (4) 0.49717 (13) 0.2529 (4) 0.0678 (9)
H3 0.5698 0.5191 0.1556 0.081*
C4 0.7434 (4) 0.50426 (16) 0.3846 (6) 0.0807 (11)
H4 0.8209 0.5315 0.3757 0.097*
C5 0.7792 (4) 0.47205 (16) 0.5276 (5) 0.0784 (11)
H5 0.8809 0.4778 0.6139 0.094*
C6 0.6675 (4) 0.43115 (14) 0.5464 (4) 0.0656 (8)
H6 0.6920 0.4091 0.6436 0.079*
C7 0.5189 (3) 0.42441 (11) 0.4159 (4) 0.0502 (7)
C8 0.3739 (3) 0.38582 (11) 0.3991 (4) 0.0500 (7)
C9 0.0948 (3) 0.36841 (11) 0.1771 (3) 0.0502 (7)
H9A 0.1011 0.3308 0.2308 0.060*
H9B 0.0678 0.3617 0.0581 0.060*
C10 −0.0443 (3) 0.40388 (10) 0.2042 (3) 0.0435 (6)
H10A −0.0109 0.4153 0.3209 0.052*
H10B −0.0623 0.4391 0.1373 0.052*
C11 −0.2049 (3) 0.36999 (10) 0.1575 (3) 0.0404 (6)
C12 −0.3276 (3) 0.37546 (13) 0.0032 (3) 0.0581 (7)
H12 −0.3116 0.4017 −0.0731 0.070*
C13 −0.4738 (4) 0.34333 (15) −0.0424 (4) 0.0710 (9)
H13 −0.5541 0.3475 −0.1484 0.085*
C14 −0.4990 (4) 0.30551 (14) 0.0690 (4) 0.0681 (9)
H14 −0.5974 0.2837 0.0389 0.082*
C15 −0.3807 (3) 0.29891 (12) 0.2265 (4) 0.0575 (7)
H15 −0.3995 0.2733 0.3029 0.069*
C16 −0.2334 (3) 0.33096 (10) 0.2697 (3) 0.0425 (6)
C17 −0.1242 (4) 0.29088 (13) 0.5486 (4) 0.0621 (8)
H17A −0.1393 0.2507 0.5108 0.075*
H17B −0.2202 0.3025 0.5783 0.075*
C18 0.0337 (5) 0.29740 (15) 0.6943 (4) 0.0761 (10)
H18A 0.0512 0.3383 0.7242 0.091*
H18B 0.0229 0.2766 0.7892 0.091*
N1 0.2576 (2) 0.39694 (9) 0.2431 (3) 0.0467 (5)
O1 0.2337 (3) 0.45710 (10) 0.0197 (3) 0.0780 (7)
O2 0.3549 (3) 0.35172 (9) 0.4993 (3) 0.0696 (6)
O3 −0.1065 (2) 0.32785 (8) 0.4213 (2) 0.0543 (5)
O4 0.1750 (3) 0.27578 (10) 0.6595 (3) 0.0903 (8)
H4A 0.2069 0.3003 0.6069 0.136*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0511 (16) 0.0515 (17) 0.072 (2) 0.0004 (13) 0.0424 (15) 0.0039 (15)
C2 0.0478 (15) 0.0466 (15) 0.0762 (19) −0.0039 (12) 0.0438 (14) −0.0084 (14)
C3 0.063 (2) 0.0561 (18) 0.109 (3) −0.0071 (15) 0.061 (2) −0.0051 (18)
C4 0.059 (2) 0.071 (2) 0.138 (3) −0.0224 (17) 0.067 (2) −0.040 (2)
C5 0.0486 (19) 0.085 (3) 0.113 (3) −0.0090 (17) 0.041 (2) −0.044 (2)
C6 0.0549 (18) 0.070 (2) 0.079 (2) 0.0012 (16) 0.0325 (17) −0.0209 (17)
C7 0.0442 (15) 0.0469 (15) 0.0706 (19) −0.0007 (12) 0.0342 (14) −0.0151 (14)
C8 0.0539 (16) 0.0433 (15) 0.0646 (18) 0.0013 (12) 0.0353 (15) −0.0044 (14)
C9 0.0506 (16) 0.0481 (16) 0.0617 (17) −0.0097 (12) 0.0319 (14) −0.0089 (13)
C10 0.0452 (14) 0.0389 (14) 0.0516 (16) −0.0021 (11) 0.0234 (12) 0.0027 (12)
C11 0.0405 (13) 0.0377 (14) 0.0455 (15) 0.0026 (10) 0.0177 (12) −0.0018 (11)
C12 0.0565 (18) 0.0641 (19) 0.0531 (18) 0.0021 (14) 0.0179 (15) 0.0012 (14)
C13 0.0510 (18) 0.083 (2) 0.068 (2) −0.0031 (16) 0.0060 (15) −0.0138 (18)
C14 0.0438 (17) 0.067 (2) 0.091 (3) −0.0118 (15) 0.0202 (18) −0.0215 (19)
C15 0.0546 (17) 0.0498 (16) 0.080 (2) −0.0072 (13) 0.0389 (17) −0.0042 (15)
C16 0.0407 (14) 0.0403 (14) 0.0508 (15) 0.0024 (11) 0.0213 (12) −0.0012 (12)
C17 0.078 (2) 0.0573 (18) 0.0635 (19) 0.0014 (15) 0.0398 (17) 0.0141 (15)
C18 0.108 (3) 0.069 (2) 0.0548 (19) −0.005 (2) 0.0320 (19) 0.0149 (16)
N1 0.0442 (12) 0.0442 (13) 0.0620 (14) −0.0060 (10) 0.0312 (11) −0.0030 (11)
O1 0.0679 (14) 0.0947 (17) 0.0812 (16) −0.0007 (12) 0.0382 (13) 0.0271 (14)
O2 0.0753 (14) 0.0670 (13) 0.0737 (14) −0.0095 (11) 0.0348 (12) 0.0137 (11)
O3 0.0542 (11) 0.0581 (12) 0.0530 (11) −0.0049 (9) 0.0213 (9) 0.0157 (9)
O4 0.0798 (17) 0.0854 (17) 0.0969 (19) −0.0082 (13) 0.0190 (14) 0.0303 (14)

Geometric parameters (Å, º)

C1—O1 1.205 (3) C10—H10A 0.9700
C1—N1 1.393 (3) C10—H10B 0.9700
C1—C2 1.483 (4) C11—C12 1.373 (3)
C2—C7 1.372 (4) C11—C16 1.390 (3)
C2—C3 1.378 (4) C12—C13 1.378 (4)
C3—C4 1.382 (5) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.356 (4)
C4—C5 1.366 (5) C13—H13 0.9300
C4—H4 0.9300 C14—C15 1.379 (4)
C5—C6 1.382 (4) C14—H14 0.9300
C5—H5 0.9300 C15—C16 1.386 (3)
C6—C7 1.373 (4) C15—H15 0.9300
C6—H6 0.9300 C16—O3 1.369 (3)
C7—C8 1.482 (4) C17—O3 1.424 (3)
C8—O2 1.208 (3) C17—C18 1.488 (4)
C8—N1 1.379 (3) C17—H17A 0.9700
C9—N1 1.455 (3) C17—H17B 0.9700
C9—C10 1.515 (3) C18—O4 1.419 (4)
C9—H9A 0.9700 C18—H18A 0.9700
C9—H9B 0.9700 C18—H18B 0.9700
C10—C11 1.498 (3) O4—H4A 0.8200
O1—C1—N1 124.6 (3) C12—C11—C16 117.5 (2)
O1—C1—C2 129.9 (3) C12—C11—C10 121.9 (2)
N1—C1—C2 105.5 (2) C16—C11—C10 120.6 (2)
C7—C2—C3 121.0 (3) C11—C12—C13 122.3 (3)
C7—C2—C1 108.3 (2) C11—C12—H12 118.9
C3—C2—C1 130.7 (3) C13—C12—H12 118.9
C2—C3—C4 117.4 (3) C14—C13—C12 119.2 (3)
C2—C3—H3 121.3 C14—C13—H13 120.4
C4—C3—H3 121.3 C12—C13—H13 120.4
C5—C4—C3 121.4 (3) C13—C14—C15 120.9 (3)
C5—C4—H4 119.3 C13—C14—H14 119.6
C3—C4—H4 119.3 C15—C14—H14 119.6
C4—C5—C6 121.3 (3) C14—C15—C16 119.2 (3)
C4—C5—H5 119.4 C14—C15—H15 120.4
C6—C5—H5 119.4 C16—C15—H15 120.4
C5—C6—C7 117.3 (3) O3—C16—C15 124.6 (2)
C5—C6—H6 121.4 O3—C16—C11 114.5 (2)
C7—C6—H6 121.4 C15—C16—C11 120.9 (2)
C2—C7—C6 121.7 (3) O3—C17—C18 105.9 (2)
C2—C7—C8 108.0 (2) O3—C17—H17A 110.5
C6—C7—C8 130.3 (3) C18—C17—H17A 110.5
O2—C8—N1 125.1 (2) O3—C17—H17B 110.5
O2—C8—C7 128.8 (3) C18—C17—H17B 110.5
N1—C8—C7 106.2 (2) H17A—C17—H17B 108.7
N1—C9—C10 112.6 (2) O4—C18—C17 112.0 (3)
N1—C9—H9A 109.1 O4—C18—H18A 109.2
C10—C9—H9A 109.1 C17—C18—H18A 109.2
N1—C9—H9B 109.1 O4—C18—H18B 109.2
C10—C9—H9B 109.1 C17—C18—H18B 109.2
H9A—C9—H9B 107.8 H18A—C18—H18B 107.9
C11—C10—C9 111.38 (19) C8—N1—C1 112.0 (2)
C11—C10—H10A 109.4 C8—N1—C9 124.0 (2)
C9—C10—H10A 109.4 C1—N1—C9 124.1 (2)
C11—C10—H10B 109.4 C16—O3—C17 119.6 (2)
C9—C10—H10B 109.4 C18—O4—H4A 109.5
H10A—C10—H10B 108.0
O1—C1—C2—C7 178.8 (3) C11—C12—C13—C14 0.9 (4)
N1—C1—C2—C7 0.0 (3) C12—C13—C14—C15 0.0 (5)
O1—C1—C2—C3 0.5 (5) C13—C14—C15—C16 −0.8 (4)
N1—C1—C2—C3 −178.3 (3) C14—C15—C16—O3 −179.5 (2)
C7—C2—C3—C4 0.5 (4) C14—C15—C16—C11 0.8 (4)
C1—C2—C3—C4 178.6 (3) C12—C11—C16—O3 −179.7 (2)
C2—C3—C4—C5 0.0 (4) C10—C11—C16—O3 1.1 (3)
C3—C4—C5—C6 −0.1 (5) C12—C11—C16—C15 0.0 (4)
C4—C5—C6—C7 −0.3 (4) C10—C11—C16—C15 −179.2 (2)
C3—C2—C7—C6 −1.0 (4) O3—C17—C18—O4 −65.5 (3)
C1—C2—C7—C6 −179.4 (2) O2—C8—N1—C1 178.8 (2)
C3—C2—C7—C8 178.5 (2) C7—C8—N1—C1 −0.1 (3)
C1—C2—C7—C8 0.0 (3) O2—C8—N1—C9 −0.5 (4)
C5—C6—C7—C2 0.8 (4) C7—C8—N1—C9 −179.3 (2)
C5—C6—C7—C8 −178.5 (2) O1—C1—N1—C8 −178.9 (3)
C2—C7—C8—O2 −178.8 (3) C2—C1—N1—C8 0.1 (3)
C6—C7—C8—O2 0.6 (5) O1—C1—N1—C9 0.4 (4)
C2—C7—C8—N1 0.1 (3) C2—C1—N1—C9 179.3 (2)
C6—C7—C8—N1 179.4 (3) C10—C9—N1—C8 95.6 (3)
N1—C9—C10—C11 −171.9 (2) C10—C9—N1—C1 −83.5 (3)
C9—C10—C11—C12 −96.2 (3) C15—C16—O3—C17 −1.9 (4)
C9—C10—C11—C16 82.9 (3) C11—C16—O3—C17 177.8 (2)
C16—C11—C12—C13 −0.9 (4) C18—C17—O3—C16 179.7 (2)
C10—C11—C12—C13 178.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O2 0.82 2.14 2.941 (3) 164

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2473).

References

  1. Basavaiah, D., Roy, S. & Das, U. (2010). Tetrahedron, 66, 5612–5622.
  2. Bruker (2004). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, Z. H., Chen, Z. M., Zhang, Y. Q., Tu, Y. Q. & Zhang, F. M. (2011). J. Org. Chem. 76, 10173–10186. [DOI] [PubMed]
  4. Lewin, A. H., Navarro, H. A. & Mascarella, S. W. (2008). Bioorg. Med. Chem. 16, 7415–7423. [DOI] [PMC free article] [PubMed]
  5. Park, J. B., Ko, S. H., Hong, W. P. & Lee, K. J. (2004). Bull. Korean Chem. Soc. 25, 927–930.
  6. Patra, A., Batra, S., Joshi, B. S., Roy, R., Kundu, B. & Bhaduri, A. P. (2002). J. Org. Chem. 67, 5783–5788. [DOI] [PubMed]
  7. Qi, X. L., Zhang, J. T., Feng, J. P. & Cao, X. P. (2011). Org. Biomol. Chem. 9, 3817–3824. [DOI] [PubMed]
  8. Reggelin, M., Junker, B., Heinrich, T., Slavik, S. & Bühle, P. (2006). J. Am. Chem. Soc. 132, 1066–1074. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shih, C. & Swenton, J. S. (1982). J. Org. Chem. 47, 2825–2832.
  11. Veale, E. B., Brien, J. E., Mccabe, T. & Gunnlaugsson, T. (2008). Tetrahedron, 64, 6794–6800.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812018429/zl2473sup1.cif

e-68-o1636-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812018429/zl2473Isup2.hkl

e-68-o1636-Isup2.hkl (141.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812018429/zl2473Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES