Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 19;68(Pt 6):o1770–o1771. doi: 10.1107/S1600536812020405

6-Chloro-1-({[(2E)-2-methyl-3-phenyl­prop-2-en-1-yl]­oxy}meth­yl)-1,2,3,4-tetra­hydro­quinazoline-2,4-dione

Nasser R El-Brollosy a,b,, Mohamed I Attia a, Ali A El-Emam a, Seik Weng Ng c,d, Edward R T Tiekink c,*
PMCID: PMC3379352  PMID: 22719550

Abstract

In the title compound, C19H17ClN2O3, the conformation about the ethyl­ene bond [1.333 (2) Å] is E. The ten atoms comprising the quinazoline ring are essentially planar (r.m.s. deviation = 0.032 Å) and their mean plane forms a dihedral angle of 13.89 (7)° with the terminal phenyl ring; the mol­ecule has an open conformation as these substituents are directed away from each other. In the crystal, centrosymmetrically related mol­ecules are connected via N—H⋯O hydrogen bonds between the amide groups, leading to eight-membered {⋯HNCO}2 synthons. These are consolidated into a three-dimensional architecture by C—H⋯O, C—H⋯π and π–π inter­actions [ring centroid(N2C4)⋯centroid(C6) distance = 3.5820 (11) Å].

Related literature  

For background to non-nucleoside reverse transcriptase inhib­itors, see: Hopkins et al. (1996, 1999); El-Brollosy et al. (2008, 2009). For a related structure, see: El-Brollosy et al. (2012). For the synthesis, see: El-Brollosy (2007).graphic file with name e-68-o1770-scheme1.jpg

Experimental  

Crystal data  

  • C19H17ClN2O3

  • M r = 356.80

  • Triclinic, Inline graphic

  • a = 7.6179 (3) Å

  • b = 9.8168 (4) Å

  • c = 11.7009 (6) Å

  • α = 73.937 (4)°

  • β = 83.651 (3)°

  • γ = 80.942 (3)°

  • V = 828.31 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.15 mm

Data collection  

  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.904, T max = 1.000

  • 13263 measured reflections

  • 3817 independent reflections

  • 3107 reflections with I > 2σ(I)

  • R int = 0.040

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.114

  • S = 1.04

  • 3817 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020405/hg5225sup1.cif

e-68-o1770-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020405/hg5225Isup2.hkl

e-68-o1770-Isup2.hkl (187.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020405/hg5225Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C14–C19 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2i 0.85 (2) 2.05 (2) 2.8932 (18) 168.9 (19)
C4—H4⋯O1ii 0.95 2.57 3.382 (2) 144
C5—H5⋯O3iii 0.95 2.57 3.427 (2) 150
C9—H9B⋯O1ii 0.99 2.38 3.232 (2) 144
C10—H10ACg1iv 0.99 2.69 3.612 (2) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

supplementary crystallographic information

Comment

Non-nucleoside reverse transcriptase inhibitors (NNRTI's) are very promising therapies in the treatment of human immunodeficiency virus (HIV) (Hopkins et al., 1996; Hopkins et al., 1999). In continuation to our interest in the chemistry of NNRTI's (El-Brollosy et al., 2008; El-Brollosy et al., 2009), we synthesized the title compound, 6-chloro-1-[((E)-2-methyl-3-phenylallyloxy)methyl]quinazoline-2,4(1H,3H)-dione (I), as a potential NNRTI (El-Brollosy, 2007). Herein, we describe the results of its crystal structure determination and relate this to the structure of the recently determined methyl analogue (El-Brollosy et al., 2012).

In (I), Fig. 1, the conformation about the ethylene bond [C11═C13 = 1.333 (2) Å] is E. The 10 atoms comprising the quinazoline ring are planar with a r.m.s. = 0.032 Å; the maximum deviations from the least-squares plane = 0.051 (2) Å for the C1 atom and -0.046 (2) Å for the C2 atom. The dihedral angle between the fused ring system and the terminal phenyl ring of 13.89 (7)° is consistent with a twisted molecule; these substituents are directed away from each other so that the molecule has an open conformation. The torsion angle between the ethylene and phenyl rings, i.e. C11—C13—C14—C15, of 25.9 (3)° indicates a significant twist in this region of the molecule. However twisted the molecule of (I) is, it is less twisted than the methyl analogue where the dihedral angle between the quinazoline and phenyl rings was found to be 82.87 (7)° (El-Brollosy et al., 2012).

Centrosymmetrically related molecules are connected via N—H···O hydrogen bonds between the amide groups (involving the carbonyl-O closest to the tertiary-N atom) and lead to eight-membered {···HNCO}2 synthons, Table 1. These are consolidated into a three-dimensional architecture by C—H···O and C—H···π interactions, Table 1, and π—π contacts [ring centroid(N1,N2,C1–C3,C8)···centroid(C14–C19)i = 3.5820 (11) Å and tilt angle = 13.17 (9)°, for symmetry operation i: -x, 1 - y, 1 - z). Globally, the crystal structure comprises alternating layers of quinazoline rings and 2-methyl-3-phenylallyloxy)methyl residues that stack along the b axis, Fig. 2.

Experimental

6-Chloroquinazoline-2,4(1H,3H)-dione (0.197 g, 1 mmol) was stirred in dry acetonitrile (15 ml) under nitrogen and N,O-bis(trimethylsilyl)acetamide (0.87 ml, 3.5 mmol) added. After a clear solution was obtained (10 min), the mixture was cooled to 223 K, and trimethylsilyl trifluoromethanesulfonate (0.18 ml, 1 mmol) was added followed by the drop wise addition of bis[(E)-2-methyl-3-phenylallyloxy]methane (0.616 g, 2 mmol). The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched by the addition of saturated aq. NaHCO3 solution (5 ml). The mixture was evaporated under reduced pressure and the residue was extracted with ether (3 × 50 ml). The combined ether fractions were collected, dried (MgSO4) and evaporated under reduced pressure. The product was purified by silica gel column chromatography, using 20% ether in petroleum ether (40–60 °C), to afford the title compound as a white solid in 81% yield (0.288 g). Single crystals were achieved by crystallization from its ethanol solution (El-Brollosy, 2007).

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The amino H-atom was refined freely.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the a axis of the unit-cell contents for (I). The N—H···O, C—H···O, C—H···π and π—π interactions are shown as blue, orange, purple and brown dashed lines, respectively.

Crystal data

C19H17ClN2O3 Z = 2
Mr = 356.80 F(000) = 372
Triclinic, P1 Dx = 1.431 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.6179 (3) Å Cell parameters from 5016 reflections
b = 9.8168 (4) Å θ = 2.4–27.5°
c = 11.7009 (6) Å µ = 0.25 mm1
α = 73.937 (4)° T = 100 K
β = 83.651 (3)° Prism, colourless
γ = 80.942 (3)° 0.35 × 0.30 × 0.15 mm
V = 828.31 (6) Å3

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector 3817 independent reflections
Radiation source: SuperNova (Mo) X-ray Source 3107 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.040
Detector resolution: 10.4041 pixels mm-1 θmax = 27.6°, θmin = 2.4°
ω scan h = −9→9
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −12→12
Tmin = 0.904, Tmax = 1.000 l = −15→15
13263 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.2968P] where P = (Fo2 + 2Fc2)/3
3817 reflections (Δ/σ)max = 0.001
231 parameters Δρmax = 0.35 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.38928 (5) 0.76323 (5) −0.23450 (4) 0.02434 (13)
N1 0.49947 (18) 0.56212 (15) 0.32224 (13) 0.0176 (3)
H1n 0.570 (3) 0.554 (2) 0.377 (2) 0.028 (5)*
N2 0.21281 (17) 0.53780 (14) 0.28304 (12) 0.0155 (3)
O1 0.69610 (15) 0.66966 (14) 0.17823 (11) 0.0257 (3)
O2 0.30631 (15) 0.46261 (13) 0.47243 (10) 0.0204 (3)
O3 −0.00414 (15) 0.38341 (12) 0.28957 (10) 0.0204 (3)
C1 0.5525 (2) 0.62527 (18) 0.20503 (15) 0.0184 (3)
C2 0.3372 (2) 0.51704 (17) 0.36544 (15) 0.0161 (3)
C3 0.2530 (2) 0.59293 (16) 0.16058 (14) 0.0149 (3)
C4 0.1268 (2) 0.60638 (18) 0.07786 (15) 0.0185 (3)
H4 0.0116 0.5798 0.1047 0.022*
C5 0.1707 (2) 0.65856 (18) −0.04289 (15) 0.0190 (3)
H5 0.0858 0.6671 −0.0990 0.023*
C6 0.3390 (2) 0.69845 (17) −0.08203 (15) 0.0182 (3)
C7 0.4642 (2) 0.68767 (17) −0.00267 (15) 0.0180 (3)
H7 0.5784 0.7160 −0.0303 0.022*
C8 0.4207 (2) 0.63424 (17) 0.11936 (15) 0.0159 (3)
C9 0.0336 (2) 0.50004 (17) 0.32680 (15) 0.0173 (3)
H9A 0.0235 0.4758 0.4150 0.021*
H9B −0.0559 0.5839 0.2974 0.021*
C10 0.1126 (2) 0.25517 (18) 0.33274 (16) 0.0228 (4)
H10A 0.2369 0.2763 0.3130 0.027*
H10B 0.0950 0.1852 0.2896 0.027*
C11 0.0895 (2) 0.18595 (17) 0.46551 (16) 0.0193 (4)
C12 0.2574 (2) 0.0954 (2) 0.51400 (17) 0.0265 (4)
H12A 0.2266 0.0100 0.5749 0.040*
H12B 0.3217 0.1506 0.5495 0.040*
H12C 0.3332 0.0666 0.4491 0.040*
C13 −0.0679 (2) 0.20299 (18) 0.52568 (16) 0.0211 (4)
H13 −0.1594 0.2663 0.4818 0.025*
C14 −0.1176 (2) 0.13561 (18) 0.65213 (16) 0.0219 (4)
C15 0.0034 (3) 0.0873 (2) 0.74056 (17) 0.0277 (4)
H15 0.1236 0.1051 0.7217 0.033*
C16 −0.0489 (3) 0.0139 (2) 0.85514 (18) 0.0345 (5)
H16 0.0369 −0.0210 0.9131 0.041*
C17 −0.2235 (3) −0.0093 (2) 0.88651 (19) 0.0370 (5)
H17 −0.2577 −0.0612 0.9651 0.044*
C18 −0.3487 (3) 0.0438 (2) 0.8023 (2) 0.0346 (5)
H18 −0.4702 0.0311 0.8235 0.042*
C19 −0.2959 (2) 0.11572 (19) 0.68646 (18) 0.0267 (4)
H19 −0.3827 0.1522 0.6294 0.032*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0269 (2) 0.0308 (2) 0.0125 (2) −0.00363 (18) −0.00140 (16) −0.00102 (17)
N1 0.0145 (7) 0.0237 (7) 0.0145 (7) −0.0037 (6) −0.0058 (6) −0.0025 (6)
N2 0.0141 (6) 0.0203 (7) 0.0117 (7) −0.0025 (5) −0.0029 (5) −0.0025 (5)
O1 0.0153 (6) 0.0385 (7) 0.0207 (7) −0.0082 (5) −0.0041 (5) 0.0004 (6)
O2 0.0193 (6) 0.0284 (6) 0.0130 (6) −0.0051 (5) −0.0049 (5) −0.0020 (5)
O3 0.0241 (6) 0.0221 (6) 0.0160 (6) −0.0070 (5) −0.0061 (5) −0.0025 (5)
C1 0.0161 (8) 0.0212 (8) 0.0170 (9) −0.0019 (6) −0.0026 (6) −0.0031 (7)
C2 0.0170 (7) 0.0171 (8) 0.0152 (8) −0.0015 (6) −0.0045 (6) −0.0052 (6)
C3 0.0166 (7) 0.0147 (7) 0.0130 (8) −0.0012 (6) −0.0025 (6) −0.0029 (6)
C4 0.0172 (8) 0.0222 (8) 0.0164 (9) −0.0041 (6) −0.0036 (6) −0.0038 (7)
C5 0.0197 (8) 0.0215 (8) 0.0159 (9) −0.0025 (7) −0.0063 (6) −0.0030 (7)
C6 0.0229 (8) 0.0189 (8) 0.0113 (8) −0.0004 (7) −0.0021 (6) −0.0021 (6)
C7 0.0154 (7) 0.0201 (8) 0.0170 (9) −0.0018 (6) −0.0009 (6) −0.0028 (7)
C8 0.0155 (7) 0.0169 (8) 0.0148 (8) −0.0001 (6) −0.0028 (6) −0.0036 (6)
C9 0.0159 (7) 0.0218 (8) 0.0141 (8) −0.0038 (6) −0.0020 (6) −0.0034 (7)
C10 0.0268 (9) 0.0221 (9) 0.0203 (9) −0.0039 (7) −0.0012 (7) −0.0071 (7)
C11 0.0228 (8) 0.0168 (8) 0.0197 (9) −0.0045 (6) −0.0059 (7) −0.0044 (7)
C12 0.0263 (9) 0.0284 (9) 0.0244 (10) 0.0015 (7) −0.0051 (7) −0.0081 (8)
C13 0.0228 (8) 0.0186 (8) 0.0209 (9) −0.0024 (7) −0.0069 (7) −0.0019 (7)
C14 0.0279 (9) 0.0163 (8) 0.0217 (9) −0.0037 (7) 0.0006 (7) −0.0058 (7)
C15 0.0339 (10) 0.0279 (10) 0.0212 (10) −0.0006 (8) −0.0028 (8) −0.0077 (8)
C16 0.0504 (12) 0.0326 (11) 0.0189 (10) 0.0022 (9) −0.0042 (9) −0.0078 (8)
C17 0.0606 (14) 0.0278 (10) 0.0218 (11) −0.0097 (10) 0.0097 (10) −0.0082 (8)
C18 0.0408 (11) 0.0285 (10) 0.0380 (12) −0.0131 (9) 0.0149 (9) −0.0167 (9)
C19 0.0298 (9) 0.0224 (9) 0.0297 (11) −0.0045 (7) 0.0009 (8) −0.0105 (8)

Geometric parameters (Å, º)

Cl1—C6 1.7412 (17) C9—H9B 0.9900
N1—C2 1.375 (2) C10—C11 1.516 (2)
N1—C1 1.383 (2) C10—H10A 0.9900
N1—H1n 0.85 (2) C10—H10B 0.9900
N2—C2 1.379 (2) C11—C13 1.333 (2)
N2—C3 1.402 (2) C11—C12 1.507 (2)
N2—C9 1.471 (2) C12—H12A 0.9800
O1—C1 1.2181 (19) C12—H12B 0.9800
O2—C2 1.2298 (19) C12—H12C 0.9800
O3—C9 1.4109 (19) C13—C14 1.478 (2)
O3—C10 1.423 (2) C13—H13 0.9500
C1—C8 1.472 (2) C14—C15 1.395 (3)
C3—C8 1.395 (2) C14—C19 1.401 (2)
C3—C4 1.405 (2) C15—C16 1.383 (3)
C4—C5 1.385 (2) C15—H15 0.9500
C4—H4 0.9500 C16—C17 1.378 (3)
C5—C6 1.391 (2) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.386 (3)
C6—C7 1.376 (2) C17—H17 0.9500
C7—C8 1.400 (2) C18—C19 1.391 (3)
C7—H7 0.9500 C18—H18 0.9500
C9—H9A 0.9900 C19—H19 0.9500
C2—N1—C1 127.24 (14) O3—C10—C11 115.55 (14)
C2—N1—H1n 113.6 (14) O3—C10—H10A 108.4
C1—N1—H1n 119.0 (14) C11—C10—H10A 108.4
C2—N2—C3 121.94 (13) O3—C10—H10B 108.4
C2—N2—C9 118.11 (13) C11—C10—H10B 108.4
C3—N2—C9 119.94 (13) H10A—C10—H10B 107.5
C9—O3—C10 113.33 (12) C13—C11—C12 126.82 (17)
O1—C1—N1 121.37 (15) C13—C11—C10 120.77 (15)
O1—C1—C8 124.46 (16) C12—C11—C10 112.35 (15)
N1—C1—C8 114.16 (14) C11—C12—H12A 109.5
O2—C2—N1 120.90 (14) C11—C12—H12B 109.5
O2—C2—N2 122.60 (14) H12A—C12—H12B 109.5
N1—C2—N2 116.49 (14) C11—C12—H12C 109.5
C8—C3—N2 120.01 (14) H12A—C12—H12C 109.5
C8—C3—C4 119.13 (15) H12B—C12—H12C 109.5
N2—C3—C4 120.86 (14) C11—C13—C14 128.07 (16)
C5—C4—C3 119.85 (15) C11—C13—H13 116.0
C5—C4—H4 120.1 C14—C13—H13 116.0
C3—C4—H4 120.1 C15—C14—C19 117.21 (17)
C4—C5—C6 120.04 (15) C15—C14—C13 123.94 (16)
C4—C5—H5 120.0 C19—C14—C13 118.85 (16)
C6—C5—H5 120.0 C16—C15—C14 121.07 (19)
C7—C6—C5 121.20 (16) C16—C15—H15 119.5
C7—C6—Cl1 120.11 (13) C14—C15—H15 119.5
C5—C6—Cl1 118.70 (13) C17—C16—C15 121.0 (2)
C6—C7—C8 118.90 (15) C17—C16—H16 119.5
C6—C7—H7 120.5 C15—C16—H16 119.5
C8—C7—H7 120.5 C16—C17—C18 119.32 (19)
C3—C8—C7 120.88 (14) C16—C17—H17 120.3
C3—C8—C1 119.84 (15) C18—C17—H17 120.3
C7—C8—C1 119.26 (14) C17—C18—C19 119.79 (19)
O3—C9—N2 112.34 (13) C17—C18—H18 120.1
O3—C9—H9A 109.1 C19—C18—H18 120.1
N2—C9—H9A 109.1 C18—C19—C14 121.51 (19)
O3—C9—H9B 109.1 C18—C19—H19 119.2
N2—C9—H9B 109.1 C14—C19—H19 119.2
H9A—C9—H9B 107.9
C2—N1—C1—O1 175.02 (16) C6—C7—C8—C1 −178.68 (15)
C2—N1—C1—C8 −4.4 (2) O1—C1—C8—C3 −173.69 (16)
C1—N1—C2—O2 −179.73 (15) N1—C1—C8—C3 5.7 (2)
C1—N1—C2—N2 −0.5 (2) O1—C1—C8—C7 4.7 (3)
C3—N2—C2—O2 −176.52 (14) N1—C1—C8—C7 −175.91 (14)
C9—N2—C2—O2 3.4 (2) C10—O3—C9—N2 61.77 (17)
C3—N2—C2—N1 4.2 (2) C2—N2—C9—O3 −113.36 (15)
C9—N2—C2—N1 −175.90 (13) C3—N2—C9—O3 66.52 (18)
C2—N2—C3—C8 −2.7 (2) C9—O3—C10—C11 70.12 (18)
C9—N2—C3—C8 177.40 (14) O3—C10—C11—C13 28.0 (2)
C2—N2—C3—C4 176.78 (15) O3—C10—C11—C12 −154.74 (14)
C9—N2—C3—C4 −3.1 (2) C12—C11—C13—C14 −1.7 (3)
C8—C3—C4—C5 0.8 (2) C10—C11—C13—C14 175.12 (16)
N2—C3—C4—C5 −178.76 (15) C11—C13—C14—C15 25.9 (3)
C3—C4—C5—C6 −0.4 (3) C11—C13—C14—C19 −152.81 (18)
C4—C5—C6—C7 −0.2 (3) C19—C14—C15—C16 4.5 (3)
C4—C5—C6—Cl1 179.88 (13) C13—C14—C15—C16 −174.27 (17)
C5—C6—C7—C8 0.6 (3) C14—C15—C16—C17 −2.3 (3)
Cl1—C6—C7—C8 −179.53 (12) C15—C16—C17—C18 −1.0 (3)
N2—C3—C8—C7 179.11 (14) C16—C17—C18—C19 2.0 (3)
C4—C3—C8—C7 −0.4 (2) C17—C18—C19—C14 0.3 (3)
N2—C3—C8—C1 −2.5 (2) C15—C14—C19—C18 −3.5 (3)
C4—C3—C8—C1 178.01 (15) C13—C14—C19—C18 175.33 (16)
C6—C7—C8—C3 −0.3 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C14–C19 benzene ring.

D—H···A D—H H···A D···A D—H···A
N1—H1n···O2i 0.85 (2) 2.05 (2) 2.8932 (18) 168.9 (19)
C4—H4···O1ii 0.95 2.57 3.382 (2) 144
C5—H5···O3iii 0.95 2.57 3.427 (2) 150
C9—H9B···O1ii 0.99 2.38 3.232 (2) 144
C10—H10A···Cg1iv 0.99 2.69 3.612 (2) 154

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5225).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, Oxfordshire, England.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. El-Brollosy, N. R. (2007). J. Chem. Res. pp. 358–361.
  4. El-Brollosy, N. R., Al-Deeb, O. A., El-Emam, A. A., Pedersen, E. B., La Colla, P., Collu, G., Sanna, G. & Loddo, R. (2009). Arch. Pharm. Chem. Life Sci. 342, 663–670. [DOI] [PubMed]
  5. El-Brollosy, N. R., Attia, M. I., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1768–o1769. [DOI] [PMC free article] [PubMed]
  6. El-Brollosy, N. R., Sorensen, E. R., Pedersen, E. B., Sanna, G., La Colla, P. & Loddo, R. (2008). Arch. Pharm. Chem. Life Sci. 341, 9–19. [DOI] [PubMed]
  7. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  8. Hopkins, A. L., Ren, J., Esnouf, R. M., Willcox, B. E., Jones, E. Y., Ross, C., Miyasaka, T., Walker, R. T., Tanaka, H., Stammers, D. K. & Stuart, D. I. (1996). J. Med. Chem. 39, 1589–1600. [DOI] [PubMed]
  9. Hopkins, A. L., Ren, J., Tanaka, H., Baba, M., Okamato, M., Stuart, D. I. & Stammers, D. K. (1999). J. Med. Chem. 42, 4500–4505. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812020405/hg5225sup1.cif

e-68-o1770-sup1.cif (20.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812020405/hg5225Isup2.hkl

e-68-o1770-Isup2.hkl (187.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812020405/hg5225Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES