Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 23;68(Pt 6):o1871–o1872. doi: 10.1107/S1600536812022520

(2E)-2-(5-Bromo-2-hy­droxy-3-meth­oxy­benzyl­idene)-N-phenyl­hydrazine­carbo­thio­amide

Jinsa Mary Jacob a, M Sithambaresan b,*, M R Prathapachandra Kurup a
PMCID: PMC3379435  PMID: 22719633

Abstract

The title compound, C15H14BrN3O2S, adopts an E,E conformation with respect to the azomethine and hydrazinic bonds and exists in the thio­amide form. The two rings in the mol­ecule are twisted away from each other, making a dihedral angle of 69.13 (13)°. In the crystal, mol­ecules are linked through pairs of N—H⋯O and O—H⋯S hydrogen bonds, leading to the formation of inversion dimers which are stacked along the a axis. Intra­molecular N—H⋯N, O—H⋯O and C—H⋯π inter­actions are also present.

Related literature  

For applications of hydrazinecarbothio­amide and its derivatives, see: Barber et al. (1992); Parrilha et al. (2011). For the synthesis, see: Joseph et al. (2006). For related structures, see: Dutta et al. (1997); Seena et al. (2006, 2008); Nisha et al. (2011); Jacob & Kurup (2012). For C=S and C=N double-bond lengths, see: Allen et al. (1987).graphic file with name e-68-o1871-scheme1.jpg

Experimental  

Crystal data  

  • C15H14BrN3O2S

  • M r = 380.26

  • Triclinic, Inline graphic

  • a = 6.1046 (5) Å

  • b = 11.0329 (8) Å

  • c = 12.4303 (9) Å

  • α = 101.175 (3)°

  • β = 91.323 (2)°

  • γ = 104.759 (2)°

  • V = 791.91 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.399, T max = 0.504

  • 11624 measured reflections

  • 2774 independent reflections

  • 2338 reflections with I > 2σ(I)

  • R int = 0.039

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.068

  • S = 1.01

  • 2774 reflections

  • 212 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022520/fj2553sup1.cif

e-68-o1871-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022520/fj2553Isup2.hkl

e-68-o1871-Isup2.hkl (136.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022520/fj2553Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3′⋯N1 0.83 (2) 2.25 (3) 2.654 (3) 110 (2)
N2—H2⋯O2i 0.84 (2) 2.23 (2) 2.983 (3) 149 (2)
O2—H2′⋯O1 0.82 (2) 2.20 (3) 2.631 (2) 113 (3)
O2—H2′⋯S1i 0.82 (2) 2.44 (2) 3.1547 (18) 146 (3)
C15—H15ACg2ii 0.96 2.90 3.649 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Sophisticated Analytical Instruments Facility, Cochin University of Science and Technology, Kochi-22, India for providing the single-crystal X-ray diffraction data. JMJ thanks the Council of Scientific and Industrial Research, New Delhi, India, for financial support in the form of a Senior Research Fellowship.

supplementary crystallographic information

Comment

The hydrazinecarbothioamides are envisaged as an important class of nitrogen-sulfur donor ligands because of their diverse chemical, biological and medicinal properties (Parrilha et al., 2011). The pharmacological activity of hydrazinecarbothioamides of o-hydroxyaromatic aldehydes is correlated to their ability to form chelates with biologically important metal ions by bonding through O, N and S atoms (Dutta et al., 1997).

The title compound adopts an E configuration with respect to the azomethine bond [N2—N1—C7—C6 = 174.8 (2)°] (Nisha et al., 2011). Also E configuration is perceived about C8—N2 bond (Fig. 1) similar to 5-bromo-3-methoxysalicylaldehyde-N(4)-cyclohexylthiosemicarbazone (Jacob & Kurup, 2012) but in contrast to 2-hydroxyacetophenone-N(4)-phenylthiosemicarbazone (Seena et al., 2006), where a Z configuration exists. This is confirmed by the N1—N2—C8—S1 torsion angle of 176.19 (18)°. Atom O1 lies cis to O2, with an O1—C4—C5—O2 torsion angle of -1.6 (3)° and atom N1 lies cis to N3, with an N1—N2—C8—N3 torsion angle of -5.9 (4)°. This favours the intramolecular hydrogen bonding interactions O2—H2'···O1 and N3—H3'···N1.

The C8—S1 bond distance [1.682 (2) Å] is closer to that expected for C═S bond length [1.60 Å] (Allen et al., 1987) which confirms the existence of the compound in the thioamido form in solid state. Also the C7—N1 bond distance [1.270 (3) Å] is appreciably close to that of a C═N double bond [1.28 Å] (Allen et al., 1987), confirming the azomethine bond formation.

The mean plane deviation calculations show that the molecule as a whole is non-planar. But the central hydrazinecarbothioamide group (C7/N1/N2/C8/S1/N3) is almost planar with a maximum deviation from the mean plane of 0.035 (2) Å for atom N2. This is similar to that observed in salicylaldehyde-N(4)-phenyl thiosemicarbazone (Seena et al., 2008). The planarity of hydrazinecarbothioamide moiety allows delocalization of the π electrons throughout the C7/N1/N2/C8/S1/N3 group. The ring Cg1iii (comprising of atoms C1—C6, with a maximum deviation of -0.011 (2) Å for C2) makes a dihedral angle of 14.80 (10)° with the hydrazinecarbothioamide moiety while the two rings in the molecule are twisted away from each other by a dihedral angle of 69.13 (13)° [symmetry code:(iii) 2 - x, 1 - y, 1 - z].

Fig. 2 shows the packing diagram of the title compound. The crystal packing involves two types of intramolecular hydrogen bonding interactions (Table 1), O2—H2'···O1 and N3—H3'···N1 leading to the formation of five membered rings comprising of atoms C4, C5, O2, H2' and O1 and N2, C8, N3, H3' and N1 respectively. The intermolecular hydrogen bonds N2—H2···O2i and O2—H2'···S1i cause the pairing of molecules leading to the formation of centrosymmetric dimers in the crystal lattice. These dimers are stacked along the a axis. Further stabilization is provided by non-classical C7—H7···O2 and C15—H15A···Cg2ii interactions.

Experimental

The title compound was prepared by adapting a reported procedure (Joseph et al., 2006). To a methanolic (20 ml) solution of 4-phenylthiosemicarbazide (1 mmol, 0.1672 g), a methanolic (15 ml) solution of 5-bromo-3-methoxysalicylaldehyde (1 mmol, 0.2310 g) was added. The mixture was refluxed for 2 h in acid medium. After cooling, the compound formed was filtered off, washed with methanol and dried in vacuo. Yellow block shaped crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of its solution in 1:1 mixture of DMF and methanol over 3 days.

Refinement

All H atoms on C were placed in calculated positions, guided by difference maps, with C—H bond distances 0.93–0.96 Å. H atoms were assigned as Uiso=1.2Ueq (1.5 for Me). N2—H2, N3—H3' and O2—H2' H atoms were located from difference maps and restrained using DFIX instructions.

Figures

Fig. 1.

Fig. 1.

The title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

A view of the unit cell along a axis.

Crystal data

C15H14BrN3O2S Z = 2
Mr = 380.26 F(000) = 384.0
Triclinic, P1 Dx = 1.595 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.1046 (5) Å Cell parameters from 4882 reflections
b = 11.0329 (8) Å θ = 2.8–25.9°
c = 12.4303 (9) Å µ = 2.74 mm1
α = 101.175 (3)° T = 296 K
β = 91.323 (2)° Block, yellow
γ = 104.759 (2)° 0.35 × 0.30 × 0.25 mm
V = 791.91 (10) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer 2774 independent reflections
Radiation source: fine-focus sealed tube 2338 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
Detector resolution: 8.33 pixels mm-1 θmax = 25.0°, θmin = 2.8°
ω and φ scan h = −7→7
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −13→13
Tmin = 0.399, Tmax = 0.504 l = −14→14
11624 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.4209P] where P = (Fo2 + 2Fc2)/3
2774 reflections (Δ/σ)max = 0.001
212 parameters Δρmax = 0.40 e Å3
3 restraints Δρmin = −0.44 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 1.28630 (5) 0.08118 (3) 0.45166 (3) 0.05852 (12)
S1 0.16123 (11) 0.32832 (7) 0.12714 (5) 0.05073 (19)
O1 1.1158 (3) 0.42448 (18) 0.77355 (13) 0.0518 (5)
O2 0.8043 (3) 0.47160 (18) 0.65009 (14) 0.0457 (4)
N1 0.6514 (3) 0.31281 (18) 0.32779 (15) 0.0366 (5)
N2 0.4670 (4) 0.3403 (2) 0.28201 (16) 0.0416 (5)
N3 0.5318 (4) 0.2386 (2) 0.11374 (17) 0.0454 (5)
C1 0.9885 (4) 0.2399 (2) 0.44657 (19) 0.0373 (5)
H1 0.9594 0.2004 0.3726 0.045*
C2 1.1446 (4) 0.2114 (2) 0.5112 (2) 0.0391 (6)
C3 1.1985 (4) 0.2702 (2) 0.6213 (2) 0.0421 (6)
H3 1.3079 0.2503 0.6629 0.051*
C4 1.0856 (4) 0.3588 (2) 0.66732 (19) 0.0380 (5)
C5 0.9203 (4) 0.3875 (2) 0.60356 (19) 0.0347 (5)
C6 0.8726 (4) 0.3296 (2) 0.49340 (18) 0.0330 (5)
C7 0.6955 (4) 0.3582 (2) 0.43026 (18) 0.0364 (5)
H7 0.6119 0.4114 0.4660 0.044*
C8 0.3980 (4) 0.2983 (2) 0.17484 (19) 0.0372 (5)
C9 0.4879 (4) 0.1782 (2) 0.00017 (19) 0.0389 (6)
C10 0.2884 (5) 0.0890 (3) −0.0380 (2) 0.0575 (8)
H10 0.1770 0.0683 0.0101 0.069*
C11 0.2513 (5) 0.0295 (3) −0.1473 (2) 0.0637 (8)
H11 0.1133 −0.0299 −0.1728 0.076*
C12 0.4137 (5) 0.0565 (3) −0.2185 (2) 0.0577 (8)
H12 0.3883 0.0155 −0.2922 0.069*
C13 0.6148 (6) 0.1446 (4) −0.1802 (2) 0.0722 (10)
H13 0.7274 0.1633 −0.2282 0.087*
C14 0.6525 (5) 0.2064 (3) −0.0708 (2) 0.0616 (8)
H14 0.7893 0.2669 −0.0456 0.074*
C15 1.2722 (5) 0.3963 (3) 0.8467 (2) 0.0618 (8)
H15A 1.2241 0.3073 0.8500 0.093*
H15B 1.2761 0.4477 0.9188 0.093*
H15C 1.4211 0.4150 0.8203 0.093*
H3' 0.653 (3) 0.240 (3) 0.146 (2) 0.055 (8)*
H2 0.389 (4) 0.380 (2) 0.3232 (19) 0.046 (8)*
H2' 0.856 (5) 0.507 (3) 0.7130 (17) 0.072 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0572 (2) 0.05035 (17) 0.0776 (2) 0.03025 (13) 0.01961 (15) 0.01303 (14)
S1 0.0438 (4) 0.0760 (5) 0.0333 (3) 0.0295 (3) −0.0088 (3) −0.0032 (3)
O1 0.0632 (12) 0.0653 (12) 0.0328 (9) 0.0318 (9) −0.0119 (8) 0.0058 (9)
O2 0.0525 (11) 0.0583 (11) 0.0301 (9) 0.0324 (9) −0.0068 (8) −0.0039 (8)
N1 0.0374 (11) 0.0452 (11) 0.0296 (11) 0.0165 (9) −0.0017 (8) 0.0066 (9)
N2 0.0406 (12) 0.0588 (13) 0.0292 (11) 0.0268 (10) −0.0020 (9) 0.0006 (10)
N3 0.0448 (13) 0.0649 (14) 0.0293 (11) 0.0278 (11) −0.0056 (10) 0.0002 (10)
C1 0.0396 (14) 0.0383 (13) 0.0334 (13) 0.0114 (10) 0.0044 (11) 0.0045 (11)
C2 0.0381 (13) 0.0375 (13) 0.0467 (15) 0.0172 (10) 0.0074 (11) 0.0104 (11)
C3 0.0392 (14) 0.0457 (14) 0.0469 (15) 0.0167 (11) −0.0028 (11) 0.0156 (12)
C4 0.0415 (14) 0.0429 (13) 0.0308 (13) 0.0129 (11) −0.0038 (10) 0.0090 (11)
C5 0.0345 (13) 0.0379 (12) 0.0343 (13) 0.0145 (10) 0.0015 (10) 0.0075 (10)
C6 0.0315 (12) 0.0378 (12) 0.0308 (12) 0.0112 (10) 0.0003 (10) 0.0072 (10)
C7 0.0389 (13) 0.0415 (13) 0.0296 (12) 0.0162 (10) −0.0015 (10) 0.0026 (10)
C8 0.0397 (14) 0.0424 (13) 0.0292 (12) 0.0135 (11) −0.0024 (10) 0.0036 (10)
C9 0.0459 (15) 0.0467 (14) 0.0287 (12) 0.0245 (12) −0.0014 (11) 0.0027 (11)
C10 0.0643 (19) 0.0545 (17) 0.0432 (16) 0.0037 (14) 0.0135 (14) −0.0002 (14)
C11 0.066 (2) 0.0541 (17) 0.0534 (18) 0.0012 (15) 0.0036 (16) −0.0103 (15)
C12 0.070 (2) 0.0685 (19) 0.0329 (14) 0.0286 (16) −0.0015 (14) −0.0053 (13)
C13 0.059 (2) 0.112 (3) 0.0384 (16) 0.0219 (19) 0.0125 (14) −0.0017 (17)
C14 0.0383 (15) 0.092 (2) 0.0448 (16) 0.0143 (15) −0.0023 (13) −0.0035 (16)
C15 0.076 (2) 0.0678 (19) 0.0430 (16) 0.0209 (16) −0.0209 (15) 0.0144 (14)

Geometric parameters (Å, º)

Br1—C2 1.900 (2) C4—C5 1.404 (3)
S1—C8 1.682 (2) C5—C6 1.384 (3)
O1—C4 1.361 (3) C6—C7 1.454 (3)
O1—C15 1.434 (3) C7—H7 0.9300
O2—C5 1.358 (3) C9—C10 1.363 (4)
O2—H2' 0.819 (18) C9—C14 1.369 (4)
N1—C7 1.270 (3) C10—C11 1.376 (4)
N1—N2 1.376 (3) C10—H10 0.9300
N2—C8 1.342 (3) C11—C12 1.359 (4)
N2—H2 0.843 (17) C11—H11 0.9300
N3—C8 1.337 (3) C12—C13 1.365 (4)
N3—C9 1.427 (3) C12—H12 0.9300
N3—H3' 0.830 (17) C13—C14 1.383 (4)
C1—C2 1.366 (3) C13—H13 0.9300
C1—C6 1.404 (3) C14—H14 0.9300
C1—H1 0.9300 C15—H15A 0.9600
C2—C3 1.389 (3) C15—H15B 0.9600
C3—C4 1.379 (3) C15—H15C 0.9600
C3—H3 0.9300
C4—O1—C15 117.7 (2) C6—C7—H7 119.0
C5—O2—H2' 112 (2) N3—C8—N2 115.7 (2)
C7—N1—N2 114.91 (19) N3—C8—S1 125.34 (18)
C8—N2—N1 122.0 (2) N2—C8—S1 118.95 (18)
C8—N2—H2 118.8 (18) C10—C9—C14 119.4 (2)
N1—N2—H2 119.1 (18) C10—C9—N3 121.1 (2)
C8—N3—C9 126.3 (2) C14—C9—N3 119.4 (2)
C8—N3—H3' 115 (2) C9—C10—C11 120.3 (3)
C9—N3—H3' 118 (2) C9—C10—H10 119.9
C2—C1—C6 119.1 (2) C11—C10—H10 119.9
C2—C1—H1 120.4 C12—C11—C10 120.8 (3)
C6—C1—H1 120.4 C12—C11—H11 119.6
C1—C2—C3 122.6 (2) C10—C11—H11 119.6
C1—C2—Br1 119.52 (18) C11—C12—C13 119.0 (3)
C3—C2—Br1 117.78 (17) C11—C12—H12 120.5
C4—C3—C2 118.3 (2) C13—C12—H12 120.5
C4—C3—H3 120.8 C12—C13—C14 120.6 (3)
C2—C3—H3 120.8 C12—C13—H13 119.7
O1—C4—C3 126.1 (2) C14—C13—H13 119.7
O1—C4—C5 113.7 (2) C9—C14—C13 119.8 (3)
C3—C4—C5 120.2 (2) C9—C14—H14 120.1
O2—C5—C6 119.51 (19) C13—C14—H14 120.1
O2—C5—C4 120.0 (2) O1—C15—H15A 109.5
C6—C5—C4 120.5 (2) O1—C15—H15B 109.5
C5—C6—C1 119.2 (2) H15A—C15—H15B 109.5
C5—C6—C7 119.2 (2) O1—C15—H15C 109.5
C1—C6—C7 121.5 (2) H15A—C15—H15C 109.5
N1—C7—C6 122.1 (2) H15B—C15—H15C 109.5
N1—C7—H7 119.0
C7—N1—N2—C8 −179.5 (2) C2—C1—C6—C7 −176.4 (2)
C6—C1—C2—C3 −1.7 (4) N2—N1—C7—C6 174.8 (2)
C6—C1—C2—Br1 175.39 (17) C5—C6—C7—N1 176.6 (2)
C1—C2—C3—C4 1.4 (4) C1—C6—C7—N1 −6.6 (4)
Br1—C2—C3—C4 −175.76 (18) C9—N3—C8—N2 175.5 (2)
C15—O1—C4—C3 −2.7 (4) C9—N3—C8—S1 −6.8 (4)
C15—O1—C4—C5 176.6 (2) N1—N2—C8—N3 −5.9 (4)
C2—C3—C4—O1 179.5 (2) N1—N2—C8—S1 176.19 (18)
C2—C3—C4—C5 0.2 (4) C8—N3—C9—C10 −52.8 (4)
O1—C4—C5—O2 −1.6 (3) C8—N3—C9—C14 129.9 (3)
C3—C4—C5—O2 177.8 (2) C14—C9—C10—C11 −1.2 (4)
O1—C4—C5—C6 179.1 (2) N3—C9—C10—C11 −178.4 (3)
C3—C4—C5—C6 −1.5 (4) C9—C10—C11—C12 1.4 (5)
O2—C5—C6—C1 −178.2 (2) C10—C11—C12—C13 −0.5 (5)
C4—C5—C6—C1 1.2 (4) C11—C12—C13—C14 −0.4 (5)
O2—C5—C6—C7 −1.2 (3) C10—C9—C14—C13 0.2 (4)
C4—C5—C6—C7 178.1 (2) N3—C9—C14—C13 177.5 (3)
C2—C1—C6—C5 0.4 (3) C12—C13—C14—C9 0.6 (5)

Hydrogen-bond geometry (Å, º)

Cg2 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3′···N1 0.83 (2) 2.25 (3) 2.654 (3) 110 (2)
N2—H2···O2i 0.84 (2) 2.23 (2) 2.983 (3) 149 (2)
O2—H2′···O1 0.82 (2) 2.20 (3) 2.631 (2) 113 (3)
O2—H2′···S1i 0.82 (2) 2.44 (2) 3.1547 (18) 146 (3)
C15—H15A···Cg2ii 0.96 2.90 3.649 (3) 135
C7—H7···O2 0.93 2.44 2.764 (3) 101

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2553).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Barber, D. E., Lu, Z., Richardson, T. & Crabtree, R. H. (1992). Inorg. Chem. 31, 4709–4711.
  4. Bruker (2004). SADABS, APEX2, XPREP and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dutta, S. K., McConville, D. B., Youngs, W. J. & Chaudhury, M. (1997). Inorg. Chem. 36, 2517–2522.
  6. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  7. Jacob, J. M. & Kurup, M. R. P. (2012). Acta Cryst. E68, o836–o837. [DOI] [PMC free article] [PubMed]
  8. Joseph, M., Kuriakose, M., Kurup, M. R. P., Suresh, E., Kishore, A. & Bhat, S. G. (2006). Polyhedron, 25, 61–70.
  9. Nisha, K., Sithambaresan, M. & Kurup, M. R. P. (2011). Acta Cryst. E67, o3420. [DOI] [PMC free article] [PubMed]
  10. Parrilha, G. L., Da Silva, J. G., Gouveia, L. F., Gasparoto, A. K., Dias, R. P., Rocha, W. R., Santos, D. A., Speziali, N. L. & Beraldo, H. (2011). Eur. J. Med. Chem. 46, 1473–1482. [DOI] [PubMed]
  11. Seena, E. B., BessyRaj, B. N., Kurup, M. R. P. & Suresh, E. (2006). J. Chem. Crystallogr. 36, 189–193.
  12. Seena, E. B., Kurup, M. R. P. & Suresh, E. (2008). J. Chem. Crystallogr. 38, 93–96.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022520/fj2553sup1.cif

e-68-o1871-sup1.cif (22.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022520/fj2553Isup2.hkl

e-68-o1871-Isup2.hkl (136.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022520/fj2553Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES