Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1901. doi: 10.1107/S1600536812023100

1-[2-(4-Chloro­phen­yl)-5-phenyl-2,3-dihydro-1,3,4-oxadiazol-3-yl]ethanone

Hoong-Kun Fun a,*,, Suhana Arshad a, P C Shyma b, Balakrishna Kalluraya b, T Arulmoli c
PMCID: PMC3379458  PMID: 22719656

Abstract

In the title compound, C16H14ClN3O2, the 2,3-dihydro-1,3,4-oxadiazole ring [maximum deviation = 0.030 (1) Å] and the pyridine ring [maximum deviation = 0.012 (1) Å] are inclined slightly to one another, making a dihedral angle of 11.91 (5)°. The chloro-substituted phenyl ring is almost perpendicular to the 2,3-dihydro-1,3,4-oxadiazole and pyridine rings at dihedral angles of 86.86 (5) and 75.26 (5)°, respectively. In the crystal, π–π [centroid–centroid distance = 3.7311 (6) Å] and C—H⋯π inter­actions are observed.

Related literature  

For the biological activity of 3-acetyl-2,5-disubstituted-2,3-dihydro-1,3,4-oxadiazo­line ring systems, see: Rakesh & Prabhakar (2009); Priya et al. (2007); Bhatia & Gupta (2011); Vijesh et al. (2011); Galil & Amr (2000). For related structures, see: Yehye et al. (2010); Ono et al. (2009). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-68-o1901-scheme1.jpg

Experimental  

Crystal data  

  • C16H14ClN3O2

  • M r = 315.75

  • Triclinic, Inline graphic

  • a = 5.8623 (2) Å

  • b = 10.9912 (5) Å

  • c = 12.2815 (5) Å

  • α = 68.214 (1)°

  • β = 84.707 (1)°

  • γ = 87.623 (1)°

  • V = 731.67 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 100 K

  • 0.40 × 0.22 × 0.14 mm

Data collection  

  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.899, T max = 0.962

  • 19562 measured reflections

  • 5301 independent reflections

  • 4768 reflections with I > 2σ(I)

  • R int = 0.021

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.116

  • S = 1.02

  • 5301 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.64 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023100/hb6803sup1.cif

e-68-o1901-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023100/hb6803Isup2.hkl

e-68-o1901-Isup2.hkl (259.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023100/hb6803Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C8–C13 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16ACg3i 0.98 2.65 3.4360 (13) 138

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). SA also thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award.

supplementary crystallographic information

Comment

Oxadiazole, a five-membered heterocyclic nucleus, has attracted a wide attention of the chemists in search for the new therapeutic molecules. A number of therapeutic agents such as HIV-integrase inhibitor Raltegravir, a nitrofuran antibacterial Furamizole, antihypertensive agents like Tiodazosin and Nesapidil are based on the 1,3,4-oxadiazole moiety. The 3-acetyl-2,5-disubstituted-2,3- dihydro-1,3,4-oxadiazoline ring systems are associated with diverse biological properties such as analgesic, anti-inflammatory, anticancer, anti-HIV, antibacterial, antitubercular activities (Rakesh & Prabhakar, 2009; Priya et al., 2007; Bhatia & Gupta, 2011). Further, substituted pyridines have showed significant biological activities (Vijesh et al., 2011; Galil & Amr, 2000). Pyridine-derived pharmaceuticals include Atazanavir and Imatinib mesylate which are recommended for the treatment of HIV and chronic myelogenous leukemia respectively. Keeping in view of the therapeutic importance of 1,3,4-oxadiazoles and pyridines, we synthesized the title compound to study its crystal structure.

In the molecular structure (Fig. 1), the 2,3-dihydro-1,3,4-oxadiazole ring [O1/N2/N3/C6/C7, with a maximum deviation of 0.030 (1) Å at atom C7] and the pyridine ring [N1/C1–C5, with a maximum deviation of 0.012 (1) Å at atom C3 and C5] are slightly inclined to one another, making a dihedral angle of 11.91 (5)°. Meanwhile, the chloro-substituted phenyl ring (C8–C13) is almost perpendicular to the 2,3-dihydro-1,3,4-oxadiazole and pyridine rings at dihedral angles of 86.86 (5) and 75.26 (5)°, respectively. Bond lengths and angles are within normal ranges and are comparable to related structures (Yehye et al., 2010; Ono et al., 2009).

The crystal packing is shown in Fig. 2. π–π interactions are observed with centroid to centroid distance Cg1···Cg2 = 3.7311 (6) Å; symmetry code: 1 - x, 2 - y,1 - z. The crystal structure also features intermolecular C16—H16A···Cg3 (Table 1) interactions (Cg1, Cg2 and Cg3 are the centroids of O1/N2/N3/C6/C7, N1/C1–C5 and C8–C13 rings, respectively).

Experimental

Schiff base, N'-[(1E)-(4-chlorophenyl)methylene]-4- methylbenzohydrazide (0.5 g, 0.0018 mol) was refluxed with acetic anhydride (3 ml) for 1 h. After the completion of reaction, the excess acetic anhydride was distilled out at reduced pressure and the residue obtained was poured into ice cold water. The solid that was separated out was filtered, washed with water and dried. The crude product was recrystallized from hot ethanol in the form of yellow blocks (0.38 g, 76%). M.p.: 395–397 K.

Refinement

All H atoms were positioned geometrically [C–H = 0.95 or 1.00 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The same Uij parameter was used for atoms pair N1/C3. Three outliers (-2 0 2, -2 0 1 and -2 1 1) were omitted in the final refinement.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

A packing diagram of the title compound viewed along the a axis.

Crystal data

C16H14ClN3O2 Z = 2
Mr = 315.75 F(000) = 328
Triclinic, P1 Dx = 1.433 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8623 (2) Å Cell parameters from 9976 reflections
b = 10.9912 (5) Å θ = 3.1–32.6°
c = 12.2815 (5) Å µ = 0.27 mm1
α = 68.214 (1)° T = 100 K
β = 84.707 (1)° Block, yellow
γ = 87.623 (1)° 0.40 × 0.22 × 0.14 mm
V = 731.67 (5) Å3

Data collection

Bruker SMART APEXII DUO CCD diffractometer 5301 independent reflections
Radiation source: fine-focus sealed tube 4768 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.021
φ and ω scans θmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −8→8
Tmin = 0.899, Tmax = 0.962 k = −16→16
19562 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0681P)2 + 0.3111P] where P = (Fo2 + 2Fc2)/3
5301 reflections (Δ/σ)max = 0.003
195 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.64 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.93968 (5) 0.44230 (2) 1.24269 (2) 0.02345 (8)
O1 0.75357 (12) 0.84198 (7) 0.70235 (6) 0.01543 (13)
O2 0.71195 (14) 1.07742 (8) 0.89561 (7) 0.02114 (16)
N1 0.14662 (17) 0.82200 (10) 0.47108 (8) 0.02164 (14)
N2 0.42483 (14) 0.94931 (8) 0.72117 (7) 0.01425 (14)
N3 0.57912 (14) 0.96760 (8) 0.79406 (7) 0.01478 (15)
C1 0.56078 (19) 0.72732 (11) 0.56195 (10) 0.0218 (2)
H1A 0.7044 0.6960 0.5920 0.026*
C2 0.4694 (2) 0.67544 (11) 0.49036 (10) 0.0221 (2)
H2A 0.5479 0.6079 0.4709 0.026*
C3 0.26192 (19) 0.72257 (11) 0.44693 (9) 0.02164 (14)
C4 0.23766 (16) 0.87227 (10) 0.54253 (9) 0.01640 (17)
H4A 0.1587 0.9408 0.5601 0.020*
C5 0.44533 (16) 0.82564 (9) 0.59111 (8) 0.01382 (16)
C6 0.53469 (15) 0.87669 (9) 0.67240 (8) 0.01324 (15)
C7 0.79357 (15) 0.89356 (9) 0.79165 (8) 0.01384 (16)
H7A 0.9281 0.9536 0.7659 0.017*
C8 0.82979 (15) 0.78264 (9) 0.90601 (8) 0.01289 (15)
C9 1.02946 (15) 0.77444 (10) 0.96167 (8) 0.01520 (16)
H9A 1.1425 0.8404 0.9281 0.018*
C10 1.06480 (16) 0.67008 (10) 1.06622 (9) 0.01629 (17)
H10A 1.2006 0.6646 1.1045 0.020*
C11 0.89815 (16) 0.57433 (9) 1.11339 (8) 0.01493 (16)
C12 0.69506 (17) 0.58158 (10) 1.06022 (9) 0.01712 (17)
H12A 0.5814 0.5160 1.0944 0.021*
C13 0.66228 (16) 0.68659 (10) 0.95626 (9) 0.01628 (17)
H13A 0.5248 0.6931 0.9191 0.020*
C14 0.1547 (3) 0.66352 (15) 0.37211 (12) 0.0388 (3)
H14A 0.0095 0.6224 0.4122 0.058*
H14B 0.2585 0.5973 0.3588 0.058*
H14C 0.1261 0.7322 0.2964 0.058*
C15 0.55511 (17) 1.06142 (9) 0.84241 (8) 0.01540 (16)
C16 0.33496 (18) 1.13830 (10) 0.82619 (10) 0.02050 (19)
H16A 0.3508 1.2156 0.8465 0.031*
H16B 0.2109 1.0833 0.8775 0.031*
H16C 0.2994 1.1662 0.7440 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02985 (14) 0.01791 (12) 0.01908 (12) 0.00100 (9) −0.00754 (9) −0.00162 (9)
O1 0.0136 (3) 0.0209 (3) 0.0149 (3) 0.0038 (2) −0.0041 (2) −0.0101 (3)
O2 0.0226 (3) 0.0219 (4) 0.0229 (4) −0.0025 (3) −0.0045 (3) −0.0119 (3)
N1 0.0243 (3) 0.0241 (3) 0.0164 (3) −0.0039 (2) −0.0053 (2) −0.0062 (2)
N2 0.0145 (3) 0.0157 (3) 0.0139 (3) 0.0009 (3) −0.0034 (2) −0.0065 (3)
N3 0.0151 (3) 0.0162 (3) 0.0158 (3) 0.0032 (3) −0.0046 (3) −0.0087 (3)
C1 0.0233 (5) 0.0244 (5) 0.0237 (5) 0.0070 (4) −0.0089 (4) −0.0151 (4)
C2 0.0275 (5) 0.0232 (5) 0.0224 (5) 0.0061 (4) −0.0094 (4) −0.0153 (4)
C3 0.0243 (3) 0.0241 (3) 0.0164 (3) −0.0039 (2) −0.0053 (2) −0.0062 (2)
C4 0.0162 (4) 0.0185 (4) 0.0146 (4) 0.0005 (3) −0.0031 (3) −0.0059 (3)
C5 0.0153 (4) 0.0147 (4) 0.0117 (4) −0.0003 (3) −0.0019 (3) −0.0051 (3)
C6 0.0127 (3) 0.0143 (4) 0.0121 (4) 0.0008 (3) −0.0021 (3) −0.0040 (3)
C7 0.0133 (3) 0.0160 (4) 0.0136 (4) 0.0010 (3) −0.0027 (3) −0.0068 (3)
C8 0.0123 (3) 0.0144 (4) 0.0133 (4) 0.0008 (3) −0.0023 (3) −0.0066 (3)
C9 0.0121 (3) 0.0190 (4) 0.0151 (4) −0.0012 (3) −0.0017 (3) −0.0067 (3)
C10 0.0133 (4) 0.0200 (4) 0.0159 (4) 0.0006 (3) −0.0034 (3) −0.0065 (3)
C11 0.0174 (4) 0.0140 (4) 0.0141 (4) 0.0022 (3) −0.0030 (3) −0.0058 (3)
C12 0.0183 (4) 0.0147 (4) 0.0186 (4) −0.0027 (3) −0.0037 (3) −0.0057 (3)
C13 0.0147 (4) 0.0166 (4) 0.0180 (4) −0.0020 (3) −0.0046 (3) −0.0059 (3)
C14 0.0595 (9) 0.0387 (7) 0.0213 (5) −0.0216 (7) −0.0116 (5) −0.0106 (5)
C15 0.0191 (4) 0.0131 (4) 0.0144 (4) −0.0012 (3) 0.0001 (3) −0.0059 (3)
C16 0.0223 (4) 0.0185 (4) 0.0235 (5) 0.0051 (3) −0.0026 (4) −0.0114 (4)

Geometric parameters (Å, º)

Cl1—C11 1.7373 (10) C7—C8 1.5055 (13)
O1—C6 1.3673 (11) C7—H7A 1.0000
O1—C7 1.4489 (11) C8—C9 1.3923 (12)
O2—C15 1.2300 (12) C8—C13 1.3966 (13)
N1—C4 1.3531 (13) C9—C10 1.3941 (14)
N1—C3 1.3716 (16) C9—H9A 0.9500
N2—C6 1.2851 (12) C10—C11 1.3878 (14)
N2—N3 1.3993 (11) C10—H10A 0.9500
N3—C15 1.3648 (12) C11—C12 1.3954 (13)
N3—C7 1.4730 (12) C12—C13 1.3900 (14)
C1—C2 1.3674 (14) C12—H12A 0.9500
C1—C5 1.3914 (14) C13—H13A 0.9500
C1—H1A 0.9500 C14—H14A 0.9800
C2—C3 1.3764 (15) C14—H14B 0.9800
C2—H2A 0.9500 C14—H14C 0.9800
C3—C14 1.4979 (16) C15—C16 1.5005 (14)
C4—C5 1.3986 (13) C16—H16A 0.9800
C4—H4A 0.9500 C16—H16B 0.9800
C5—C6 1.4569 (13) C16—H16C 0.9800
C6—O1—C7 106.85 (7) C13—C8—C7 119.68 (8)
C4—N1—C3 118.61 (9) C8—C9—C10 120.49 (9)
C6—N2—N3 104.34 (8) C8—C9—H9A 119.8
C15—N3—N2 124.21 (8) C10—C9—H9A 119.8
C15—N3—C7 123.06 (8) C11—C10—C9 118.84 (9)
N2—N3—C7 111.51 (7) C11—C10—H10A 120.6
C2—C1—C5 120.58 (10) C9—C10—H10A 120.6
C2—C1—H1A 119.7 C10—C11—C12 121.68 (9)
C5—C1—H1A 119.7 C10—C11—Cl1 119.71 (7)
C1—C2—C3 118.95 (10) C12—C11—Cl1 118.60 (7)
C1—C2—H2A 120.5 C13—C12—C11 118.69 (9)
C3—C2—H2A 120.5 C13—C12—H12A 120.7
N1—C3—C2 122.02 (10) C11—C12—H12A 120.7
N1—C3—C14 118.22 (11) C12—C13—C8 120.56 (9)
C2—C3—C14 119.75 (12) C12—C13—H13A 119.7
N1—C4—C5 121.54 (9) C8—C13—H13A 119.7
N1—C4—H4A 119.2 C3—C14—H14A 109.5
C5—C4—H4A 119.2 C3—C14—H14B 109.5
C1—C5—C4 118.25 (9) H14A—C14—H14B 109.5
C1—C5—C6 121.10 (9) C3—C14—H14C 109.5
C4—C5—C6 120.63 (8) H14A—C14—H14C 109.5
N2—C6—O1 116.52 (8) H14B—C14—H14C 109.5
N2—C6—C5 126.02 (8) O2—C15—N3 118.81 (9)
O1—C6—C5 117.44 (8) O2—C15—C16 124.60 (9)
O1—C7—N3 100.48 (7) N3—C15—C16 116.59 (9)
O1—C7—C8 109.92 (7) C15—C16—H16A 109.5
N3—C7—C8 113.89 (8) C15—C16—H16B 109.5
O1—C7—H7A 110.7 H16A—C16—H16B 109.5
N3—C7—H7A 110.7 C15—C16—H16C 109.5
C8—C7—H7A 110.7 H16A—C16—H16C 109.5
C9—C8—C13 119.71 (9) H16B—C16—H16C 109.5
C9—C8—C7 120.61 (8)
C6—N2—N3—C15 164.62 (9) C15—N3—C7—O1 −162.77 (8)
C6—N2—N3—C7 −3.06 (10) N2—N3—C7—O1 5.08 (10)
C5—C1—C2—C3 0.40 (18) C15—N3—C7—C8 79.78 (11)
C4—N1—C3—C2 −1.88 (16) N2—N3—C7—C8 −112.37 (9)
C4—N1—C3—C14 177.33 (10) O1—C7—C8—C9 123.04 (9)
C1—C2—C3—N1 1.52 (18) N3—C7—C8—C9 −125.11 (9)
C1—C2—C3—C14 −177.68 (11) O1—C7—C8—C13 −56.48 (11)
C3—N1—C4—C5 0.33 (15) N3—C7—C8—C13 55.37 (11)
C2—C1—C5—C4 −1.86 (16) C13—C8—C9—C10 0.93 (14)
C2—C1—C5—C6 176.61 (10) C7—C8—C9—C10 −178.58 (8)
N1—C4—C5—C1 1.50 (15) C8—C9—C10—C11 0.34 (14)
N1—C4—C5—C6 −176.97 (9) C9—C10—C11—C12 −1.41 (15)
N3—N2—C6—O1 −0.56 (11) C9—C10—C11—Cl1 179.25 (7)
N3—N2—C6—C5 177.71 (9) C10—C11—C12—C13 1.16 (15)
C7—O1—C6—N2 3.92 (11) Cl1—C11—C12—C13 −179.50 (8)
C7—O1—C6—C5 −174.50 (8) C11—C12—C13—C8 0.16 (15)
C1—C5—C6—N2 −166.88 (10) C9—C8—C13—C12 −1.19 (15)
C4—C5—C6—N2 11.55 (15) C7—C8—C13—C12 178.33 (9)
C1—C5—C6—O1 11.37 (14) N2—N3—C15—O2 −172.90 (9)
C4—C5—C6—O1 −170.20 (8) C7—N3—C15—O2 −6.60 (14)
C6—O1—C7—N3 −5.07 (9) N2—N3—C15—C16 7.16 (14)
C6—O1—C7—C8 115.27 (8) C7—N3—C15—C16 173.46 (9)

Hydrogen-bond geometry (Å, º)

Cg3 is the centroid of the C8–C13 benzene ring.

D—H···A D—H H···A D···A D—H···A
C16—H16A···Cg3i 0.98 2.65 3.4360 (13) 138

Symmetry code: (i) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6803).

References

  1. Bhatia, S. & Gupta, M. (2011). J. Chem. Pharm. Res. 3, 137–147.
  2. Bruker (2009). SADABS, APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  4. Galil, A. E. & Amr, A. E. (2000). Indian J. Heterocycl. Chem. 10, 49–58.
  5. Ono, K., Tsukamoto, K. & Tomura, M. (2009). Acta Cryst. E65, o1873. [DOI] [PMC free article] [PubMed]
  6. Priya, V. F., Girish, K. S. & Kalluraya, B. (2007). J. Chem. Sci. 119, 41–46.
  7. Rakesh, R. S. & Prabhakar, Y. S. (2009). Der Pharma Chem. 1, 130–140.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Vijesh, A. M., Isloor, A. M., Peethambar, S. K., Shivananda, K. N., Arulmoli, T. & Isloor, N. A. (2011). Eur. J. Med. Chem. 46, 5591–5597. [DOI] [PubMed]
  11. Yehye, W. A., Ariffin, A., Rahman, N. A. & Ng, S. W. (2010). Acta Cryst. E66, o878. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812023100/hb6803sup1.cif

e-68-o1901-sup1.cif (24.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812023100/hb6803Isup2.hkl

e-68-o1901-Isup2.hkl (259.6KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812023100/hb6803Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES