Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 May 26;68(Pt 6):o1903. doi: 10.1107/S1600536812022672

9,9-Dibutyl-9H-fluorene-2-carbonitrile

Dong-dong Zhao a, Peng Jiang b, Hong-Jun Zhu c,*
PMCID: PMC3379460  PMID: 22719658

Abstract

The fluorene fragment of the title compound, C22H25N, is essentially planar, with an r.m.s deviation of the five-membered ring of 0.005 (2) Å. The dihedral angle between this ring and the outer benzene rings are 1.5 (2) and 0.7 (2)° while that between the benzene rings is 2.1 (2)°. The cyano group makes an angle of 0.3 (2)° with the attached benzene ring.

Related literature  

For applications of the title compound, including as a substrate in the synthesis of organic light-emitting materials, see: Jiang et al. (2012). For its synthesis, see: Omer et al. (2010). For bond-length data, see: Allen et al. (1987).graphic file with name e-68-o1903-scheme1.jpg

Experimental  

Crystal data  

  • C22H25N

  • M r = 303.43

  • Triclinic, Inline graphic

  • a = 9.2810 (19) Å

  • b = 9.994 (2) Å

  • c = 11.885 (2) Å

  • α = 100.35 (3)°

  • β = 96.73 (3)°

  • γ = 117.42 (3)°

  • V = 937.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.982, T max = 0.994

  • 3652 measured reflections

  • 3420 independent reflections

  • 1875 reflections with I > 2σ(I)

  • R int = 0.027

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.068

  • wR(F 2) = 0.186

  • S = 1.00

  • 3420 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022672/im2373sup1.cif

e-68-o1903-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022672/im2373Isup2.hkl

e-68-o1903-Isup2.hkl (167.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022672/im2373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

The title compound, 2-cyano-9,9-dibutylfluorene, is an important compound which can be used in many fields such as a substrate in the synthesis of organic light-emitting materials (Jiang et al., 2012). We report here the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. Bond lengths are within normal ranges (Allen et al., 1987).

In the molecule of the title compound, the fluorene fragment of the title compound, C22H25N, is essentially planar with a r.m.s deviation of ring A (C1/C6/C7/C12/C13) of 0.005 (2). The dihedral angle between ring A (C1/C6/C7/C12/C13) and the benzene rings B (C1—C6) and C (C7—C12) is 1.5 (2)° and 0.7 (2)°, respectively. The dihedral angle between the benzene rings B and C is 2.1 (2)°. The angle of cyano group with the benzene ring B is 0.3 (2)°.

Experimental

The title compound,(I) was prepared according to the literature method (Omer et al., 2010). Yellow block-shaped crystals were obtained by dissolving (I) (0.5 g, 1.04 mmol) in a mixed solution (10 ml petroleum ether and 1 ml EtOAc) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement

All hydrogen atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq (C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C22H25N Z = 2
Mr = 303.43 F(000) = 328
Triclinic, P1 Dx = 1.075 Mg m3
Hall symbol: -P 1 Melting point: 374 K
a = 9.2810 (19) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.994 (2) Å Cell parameters from 25 reflections
c = 11.885 (2) Å θ = 9–13°
α = 100.35 (3)° µ = 0.06 mm1
β = 96.73 (3)° T = 293 K
γ = 117.42 (3)° Block, yellow
V = 937.0 (3) Å3 0.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1875 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.027
Graphite monochromator θmax = 25.4°, θmin = 1.8°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = −12→10
Tmin = 0.982, Tmax = 0.994 l = −14→14
3652 measured reflections 3 standard reflections every 200 reflections
3420 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.070P)2 + 0.3P] where P = (Fo2 + 2Fc2)/3
3420 reflections (Δ/σ)max < 0.001
208 parameters Δρmax = 0.45 e Å3
1 restraint Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N −0.2377 (4) −0.2430 (4) 0.3798 (3) 0.1162 (11)
C1 0.2296 (3) 0.0884 (3) 0.2410 (2) 0.0587 (7)
C2 0.1181 (3) 0.0220 (3) 0.3086 (2) 0.0643 (7)
H2A 0.1403 0.0698 0.3881 0.077*
C3 −0.0281 (3) −0.1178 (3) 0.2548 (3) 0.0692 (7)
C4 −0.0608 (4) −0.1901 (3) 0.1362 (3) 0.0816 (9)
H4A −0.1594 −0.2834 0.1014 0.098*
C5 0.0513 (4) −0.1248 (3) 0.0704 (3) 0.0782 (9)
H5A 0.0301 −0.1742 −0.0086 0.094*
C6 0.1966 (3) 0.0153 (3) 0.1223 (2) 0.0624 (7)
C7 0.3335 (3) 0.1124 (3) 0.0740 (2) 0.0658 (7)
C8 0.3608 (4) 0.0907 (4) −0.0388 (3) 0.0875 (9)
H8A 0.2854 0.0015 −0.0980 0.105*
C9 0.5023 (5) 0.2045 (5) −0.0604 (3) 0.1045 (12)
H9A 0.5215 0.1928 −0.1357 0.125*
C10 0.6160 (5) 0.3356 (4) 0.0274 (3) 0.1079 (12)
H10A 0.7116 0.4102 0.0110 0.130*
C11 0.5895 (4) 0.3572 (4) 0.1397 (3) 0.0883 (10)
H11A 0.6659 0.4461 0.1988 0.106*
C12 0.4472 (3) 0.2443 (3) 0.1626 (2) 0.0652 (7)
C13 0.3936 (3) 0.2420 (3) 0.2785 (2) 0.0587 (7)
C14 0.5202 (3) 0.2379 (3) 0.3724 (2) 0.0684 (8)
H14A 0.6249 0.3348 0.3892 0.082*
H14B 0.4798 0.2341 0.4441 0.082*
C15 0.5545 (4) 0.1028 (4) 0.3405 (3) 0.0891 (10)
H15A 0.5793 0.0965 0.2633 0.107*
H15B 0.4544 0.0062 0.3359 0.107*
C16 0.6984 (5) 0.1167 (5) 0.4276 (3) 0.1128 (13)
H16A 0.6845 0.1435 0.5066 0.135*
H16B 0.6929 0.0156 0.4143 0.135*
C17 0.8637 (6) 0.2332 (7) 0.4198 (5) 0.166 (2)
H17A 0.9473 0.2382 0.4789 0.248*
H17B 0.8703 0.3337 0.4319 0.248*
H17C 0.8819 0.2042 0.3435 0.248*
C18 0.3682 (3) 0.3808 (3) 0.3257 (2) 0.0625 (7)
H18A 0.3309 0.3698 0.3981 0.075*
H18B 0.4755 0.4756 0.3451 0.075*
C19 0.2465 (4) 0.4010 (3) 0.2449 (2) 0.0739 (8)
H19A 0.1378 0.3081 0.2269 0.089*
H19B 0.2819 0.4109 0.1718 0.089*
C20 0.2307 (5) 0.5418 (4) 0.2962 (3) 0.1006 (11)
H20A 0.2037 0.5355 0.3722 0.121*
H20B 0.3378 0.6351 0.3089 0.121*
C21 0.1008 (6) 0.5581 (6) 0.2209 (4) 0.1452 (17)
H21A 0.0981 0.6498 0.2590 0.218*
H21B −0.0064 0.4676 0.2095 0.218*
H21C 0.1279 0.5672 0.1461 0.218*
C22 −0.1465 (4) −0.1884 (4) 0.3242 (3) 0.0849 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N 0.092 (2) 0.094 (2) 0.125 (3) 0.0158 (18) 0.039 (2) 0.0225 (19)
C1 0.0596 (16) 0.0563 (15) 0.0570 (15) 0.0306 (13) 0.0061 (13) 0.0067 (12)
C2 0.0649 (17) 0.0584 (16) 0.0611 (16) 0.0283 (15) 0.0085 (14) 0.0062 (13)
C3 0.0641 (17) 0.0559 (16) 0.079 (2) 0.0258 (14) 0.0094 (14) 0.0128 (14)
C4 0.074 (2) 0.0562 (17) 0.087 (2) 0.0209 (16) −0.0050 (18) 0.0046 (16)
C5 0.087 (2) 0.0663 (18) 0.0619 (17) 0.0320 (17) 0.0012 (16) 0.0007 (14)
C6 0.0681 (17) 0.0559 (15) 0.0562 (16) 0.0317 (14) 0.0023 (13) 0.0031 (13)
C7 0.0797 (19) 0.0696 (18) 0.0539 (16) 0.0437 (16) 0.0139 (14) 0.0105 (14)
C8 0.107 (3) 0.083 (2) 0.0657 (19) 0.046 (2) 0.0185 (18) 0.0053 (16)
C9 0.134 (3) 0.107 (3) 0.076 (2) 0.058 (3) 0.047 (2) 0.022 (2)
C10 0.118 (3) 0.100 (3) 0.097 (3) 0.042 (2) 0.053 (2) 0.021 (2)
C11 0.084 (2) 0.084 (2) 0.080 (2) 0.0303 (19) 0.0287 (18) 0.0086 (17)
C12 0.0658 (17) 0.0667 (17) 0.0613 (16) 0.0340 (15) 0.0142 (14) 0.0091 (14)
C13 0.0553 (15) 0.0584 (15) 0.0524 (14) 0.0254 (13) 0.0067 (12) 0.0032 (12)
C14 0.0605 (16) 0.0752 (18) 0.0640 (17) 0.0334 (15) 0.0085 (13) 0.0092 (14)
C15 0.093 (2) 0.094 (2) 0.093 (2) 0.060 (2) 0.0151 (19) 0.0181 (18)
C16 0.121 (3) 0.146 (4) 0.112 (3) 0.097 (3) 0.022 (2) 0.039 (3)
C17 0.101 (3) 0.239 (6) 0.176 (5) 0.105 (4) 0.022 (3) 0.048 (4)
C18 0.0583 (16) 0.0606 (16) 0.0571 (15) 0.0246 (13) 0.0107 (13) 0.0043 (12)
C19 0.0756 (19) 0.0799 (19) 0.0663 (17) 0.0441 (17) 0.0084 (15) 0.0081 (15)
C20 0.116 (3) 0.099 (3) 0.104 (3) 0.073 (2) 0.017 (2) 0.014 (2)
C21 0.178 (4) 0.184 (5) 0.137 (4) 0.143 (4) 0.024 (3) 0.043 (3)
C22 0.074 (2) 0.064 (2) 0.095 (2) 0.0224 (17) 0.0118 (18) 0.0086 (17)

Geometric parameters (Å, º)

N—C22 1.135 (4) C13—C14 1.544 (3)
C1—C2 1.382 (3) C14—C15 1.519 (4)
C1—C6 1.393 (3) C14—H14A 0.9700
C1—C13 1.522 (3) C14—H14B 0.9700
C2—C3 1.390 (4) C15—C16 1.525 (4)
C2—H2A 0.9300 C15—H15A 0.9700
C3—C4 1.390 (4) C15—H15B 0.9700
C3—C22 1.447 (4) C16—C17 1.464 (5)
C4—C5 1.366 (4) C16—H16A 0.9700
C4—H4A 0.9300 C16—H16B 0.9700
C5—C6 1.384 (4) C17—H17A 0.9600
C5—H5A 0.9300 C17—H17B 0.9600
C6—C7 1.457 (4) C17—H17C 0.9600
C7—C12 1.385 (4) C18—C19 1.505 (4)
C7—C8 1.391 (4) C18—H18A 0.9700
C8—C9 1.376 (4) C18—H18B 0.9700
C8—H8A 0.9300 C19—C20 1.508 (4)
C9—C10 1.376 (5) C19—H19A 0.9700
C9—H9A 0.9300 C19—H19B 0.9700
C10—C11 1.383 (4) C20—C21 1.504 (5)
C10—H10A 0.9300 C20—H20A 0.9700
C11—C12 1.383 (4) C20—H20B 0.9700
C11—H11A 0.9300 C21—H21A 0.9600
C12—C13 1.519 (3) C21—H21B 0.9600
C13—C18 1.531 (3) C21—H21C 0.9600
C2—C1—C6 120.5 (2) C13—C14—H14B 108.3
C2—C1—C13 128.1 (2) H14A—C14—H14B 107.4
C6—C1—C13 111.4 (2) C14—C15—C16 113.8 (3)
C1—C2—C3 118.4 (2) C14—C15—H15A 108.8
C1—C2—H2A 120.8 C16—C15—H15A 108.8
C3—C2—H2A 120.8 C14—C15—H15B 108.8
C2—C3—C4 120.9 (3) C16—C15—H15B 108.8
C2—C3—C22 119.0 (3) H15A—C15—H15B 107.7
C4—C3—C22 120.1 (3) C17—C16—C15 114.2 (3)
C5—C4—C3 120.3 (3) C17—C16—H16A 108.7
C5—C4—H4A 119.8 C15—C16—H16A 108.7
C3—C4—H4A 119.8 C17—C16—H16B 108.7
C4—C5—C6 119.5 (3) C15—C16—H16B 108.7
C4—C5—H5A 120.3 H16A—C16—H16B 107.6
C6—C5—H5A 120.3 C16—C17—H17A 109.5
C5—C6—C1 120.3 (3) C16—C17—H17B 109.5
C5—C6—C7 131.4 (3) H17A—C17—H17B 109.5
C1—C6—C7 108.3 (2) C16—C17—H17C 109.5
C12—C7—C8 120.8 (3) H17A—C17—H17C 109.5
C12—C7—C6 108.5 (2) H17B—C17—H17C 109.5
C8—C7—C6 130.7 (3) C19—C18—C13 116.2 (2)
C9—C8—C7 118.3 (3) C19—C18—H18A 108.2
C9—C8—H8A 120.9 C13—C18—H18A 108.2
C7—C8—H8A 120.9 C19—C18—H18B 108.2
C8—C9—C10 121.2 (3) C13—C18—H18B 108.2
C8—C9—H9A 119.4 H18A—C18—H18B 107.4
C10—C9—H9A 119.4 C18—C19—C20 113.2 (2)
C9—C10—C11 120.6 (3) C18—C19—H19A 108.9
C9—C10—H10A 119.7 C20—C19—H19A 108.9
C11—C10—H10A 119.7 C18—C19—H19B 108.9
C12—C11—C10 118.8 (3) C20—C19—H19B 108.9
C12—C11—H11A 120.6 H19A—C19—H19B 107.7
C10—C11—H11A 120.6 C21—C20—C19 114.2 (3)
C11—C12—C7 120.3 (3) C21—C20—H20A 108.7
C11—C12—C13 128.0 (2) C19—C20—H20A 108.7
C7—C12—C13 111.7 (2) C21—C20—H20B 108.7
C12—C13—C1 100.2 (2) C19—C20—H20B 108.7
C12—C13—C18 112.8 (2) H20A—C20—H20B 107.6
C1—C13—C18 111.7 (2) C20—C21—H21A 109.5
C12—C13—C14 111.2 (2) C20—C21—H21B 109.5
C1—C13—C14 111.3 (2) H21A—C21—H21B 109.5
C18—C13—C14 109.4 (2) C20—C21—H21C 109.5
C15—C14—C13 115.9 (2) H21A—C21—H21C 109.5
C15—C14—H14A 108.3 H21B—C21—H21C 109.5
C13—C14—H14A 108.3 N—C22—C3 179.1 (4)
C15—C14—H14B 108.3
C6—C1—C2—C3 −0.8 (4) C8—C7—C12—C13 −179.0 (3)
C13—C1—C2—C3 177.7 (3) C6—C7—C12—C13 1.0 (3)
C1—C2—C3—C4 0.6 (4) C11—C12—C13—C1 179.9 (3)
C1—C2—C3—C22 −179.7 (3) C7—C12—C13—C1 −0.8 (3)
C2—C3—C4—C5 0.3 (4) C11—C12—C13—C18 61.0 (4)
C22—C3—C4—C5 −179.4 (3) C7—C12—C13—C18 −119.7 (2)
C3—C4—C5—C6 −1.0 (4) C11—C12—C13—C14 −62.3 (4)
C4—C5—C6—C1 0.8 (4) C7—C12—C13—C14 117.0 (3)
C4—C5—C6—C7 −178.0 (3) C2—C1—C13—C12 −178.5 (3)
C2—C1—C6—C5 0.1 (4) C6—C1—C13—C12 0.2 (3)
C13—C1—C6—C5 −178.7 (2) C2—C1—C13—C18 −58.7 (3)
C2—C1—C6—C7 179.2 (2) C6—C1—C13—C18 119.9 (2)
C13—C1—C6—C7 0.4 (3) C2—C1—C13—C14 63.9 (3)
C5—C6—C7—C12 178.1 (3) C6—C1—C13—C14 −117.5 (2)
C1—C6—C7—C12 −0.9 (3) C12—C13—C14—C15 −56.8 (3)
C5—C6—C7—C8 −1.9 (5) C1—C13—C14—C15 54.0 (3)
C1—C6—C7—C8 179.1 (3) C18—C13—C14—C15 177.9 (2)
C12—C7—C8—C9 −0.9 (5) C13—C14—C15—C16 171.4 (3)
C6—C7—C8—C9 179.1 (3) C14—C15—C16—C17 −74.2 (4)
C7—C8—C9—C10 1.2 (5) C12—C13—C18—C19 56.3 (3)
C8—C9—C10—C11 −1.0 (6) C1—C13—C18—C19 −55.7 (3)
C9—C10—C11—C12 0.5 (6) C14—C13—C18—C19 −179.5 (2)
C10—C11—C12—C7 −0.2 (5) C13—C18—C19—C20 −178.8 (3)
C10—C11—C12—C13 179.1 (3) C18—C19—C20—C21 −175.8 (3)
C8—C7—C12—C11 0.4 (4) C2—C3—C22—N −32 (24)
C6—C7—C12—C11 −179.6 (3) C4—C3—C22—N 147 (24)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2373).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  3. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  4. Jiang, P., Zhao, D. D., Yang, X. L., Zhu, X. L., Chan, J. & Zhu, H. J. (2012). Org. Biomol. Chem. doi:10.1039/C2OB25120E. [DOI] [PubMed]
  5. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  6. Omer, K. M., Ku, S. Y., Chen, Y. C., Wong, K. T. & Bard, A. J. (2010). J. Am. Chem. Soc. 132, 10944–10952. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536812022672/im2373sup1.cif

e-68-o1903-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812022672/im2373Isup2.hkl

e-68-o1903-Isup2.hkl (167.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812022672/im2373Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES