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Transversely Isotropic Elasticity
Imaging of Cancellous Bone
To measure spatial variations in mechanical properties of biological materials, prior
studies have typically performed mechanical tests on excised specimens of tissue. Less
invasive measurements, however, are preferable in many applications, such as patient-
specific modeling, disease diagnosis, and tracking of age- or damage-related degradation
of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging
method in which the distribution of elastic properties throughout a specimen can be
reconstructed from measured strain or displacement fields. To date, most work in elastic-
ity imaging has concerned incompressible, isotropic materials. This study presents an
extension of elasticity imaging to three-dimensional, compressible, transversely isotropic
materials. The formulation and solution of an inverse problem for an anisotropic tissue
subjected to a combination of quasi-static loads is described, and an optimization and
regularization strategy that indirectly obtains the solution to the inverse problem is pre-
sented. Several applications of transversely isotropic elasticity imaging to cancellous
bone from the human vertebra are then considered. The feasibility of using isotropic elas-
ticity imaging to obtain meaningful reconstructions of the distribution of material proper-
ties for vertebral cancellous bone from experiment is established. However, using
simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic
materials. It is further shown that the transversely isotropic method identifies a solution
that predicts the measured displacements, reveals regions of low stiffness, and recovers
all five elastic parameters with approximately 10% error. The recovery of a given elastic
parameter is found to require the presence of its corresponding strain (e.g., a deforma-
tion that generates e12 is necessary to reconstruct C1212), and the application of regulari-
zation is shown to improve accuracy. Finally, the effects of noise on reconstruction
quality is demonstrated and a signal-to-noise ratio (SNR) of 40 dB is identified as a rea-
sonable threshold for obtaining accurate reconstructions from experimental data. This
study demonstrates that given an appropriate set of displacement fields, level of regulari-
zation, and signal strength, the transversely isotropic method can recover the relative
magnitudes of all five elastic parameters without an independent measurement of stress.
The quality of the reconstructions improves with increasing contrast, magnitude of defor-
mation, and asymmetry in the distributions of material properties, indicating that elastic-
ity imaging of cancellous bone could be a useful tool in laboratory studies to monitor the
progression of damage and disease in this tissue. [DOI: 10.1115/1.4004231]

Keywords: elastography, anisotropy, nondestructive imaging, modulus, trabecular bone,
inverse problems

1 Introduction

Many tissues, such as cancellous bone, tendon, and arterial
walls, are anisotropic materials that can display substantial varia-
tions in material properties even within a single anatomic site. For
example, spatial variations in the stiffness of cancellous bone
throughout the proximal femur are thought to follow the distribu-
tions of principal stresses that arise during gait and other habitual
activities [1,2]. Inhomogeneous distributions of material proper-
ties can also signal a pathology, as in the case of breast carcino-
mas, fibrosis, and arteriosclerosis. While spatial variations in
elastic properties can be measured directly by excising multiple
samples of tissue, there are many instances in which a less inva-
sive measurement of the variation in properties is desired. These
instances include disease diagnosis and monitoring of disease pro-
gression. They also include “patient-specific” finite element mod-
eling in which computed tomography (CT) or magnetic resonance
(MR) images of a bone or portion of the cardiovascular system
are used to generate the model geometry. Moreover, in these
patient-specific computational analyses, as well as in many exper-

imental studies, the ability to quantify changes in the elastic prop-
erties, as well as changes in the spatial variations of these
properties, that occur as the tissue sustains damage during loading,
could provide important insight into mechanisms of damage and
failure for both whole organs and excised specimens.

Elasticity imaging (or “elastography”) is a rapidly growing field
of imaging science in which an image of the spatial variation in
elastic properties within a region can be nondestructively or even
noninvasively reconstructed (c.f. [3,4]). The method of elasticity
imaging consists of two key ingredients: measurement of dis-
placement fields that occur during deformation of a tissue and the
formulation and solution of an inverse elasticity problem. Mea-
surement of displacement fields can be carried out using digital
volume correlation (DVC) or other methods [5–8]. The displace-
ment fields are then used as input, along with an assumed form of
the constitutive equation and the balance of linear momentum, to
form an inverse problem for the elastic properties.

Early work in elasticity imaging [9] focused on simply present-
ing the distributions of axial strain produced by uniaxial quasi-
static compression. The reciprocal of this strain distribution may
be regarded as a reconstructed distribution of Young’s modulus
within the context of an isotropic, linear elastic, uniaxial-stress
model of tissue deformation. We have analyzed and extended
these techniques by broadening the scope and accuracy of the
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mathematical models used to model tissue deformation. In partic-
ular, we have analyzed and solved the plane strain [10–13] and
plane stress cases [14], as well as cases of 3D linear elastic
[14,15] and 2D hyperelastic behavior [16]. We have also demon-
strated the feasibility of applying these methods to 2D [11] and
3D benchtop experimental data [15] and to in vivo data obtained
in a clinical setting [17]. So far, however, these methods have all
been based on an assumption of material isotropy and have there-
fore been limited in their applicability to anisotropic materials.

Extending these cases to include material anisotropy (e.g.,
transverse isotropy) is complicated in large part due to an increase
in the number of parameters to be evaluated. Yet there is also a
more subtle difference in the mathematical structure between
inverse problems for anisotropic and isotropic cases. In an iso-
tropic material, the elasticity (or stiffness) tensor is a linear func-
tion of the unknown elastic parameters. In an anisotropic material,
however, the elasticity tensor is expressed in terms of products of
elastic parameters and the direction vector. Thus the elasticity ten-
sor for an anisotropic material is a nonlinear function of the prob-
lem unknowns. In the case of transverse isotropy, a reasonable
approximation for cancellous bone in the human spine [18], five
elastic parameters and a unit material direction vector must be
evaluated at each point. Several studies have developed methods
for anisotropic elasticity imaging of soft-tissues within the frame-
work of 2-D analyses [19,20] and 3-D analyses of piecewise con-
stant stiffness distributions [21]. The current study reports a
method for 3-D, transversely isotropic elasticity imaging for the
general case of continuously varying stiffness distributions and
demonstrates the feasibility of its application to vertebral cancel-
lous bone.

2 Methods

In this section, we pose the inverse problem for the 3-D, trans-
versely isotropic case and present the optimization method that
we use to solve this problem in general. We then describe the spe-
cific application of this method to human vertebral cancellous
bone. Isotropic reconstructions of experimentally measured data
are performed to demonstrate the feasibility of elasticity imaging
of cancellous bone, and transversely isotropic reconstructions of
simulated data are performed to investigate the effects of model
mismatch, ill-conditioning, and measurement noise on reconstruc-
tion accuracy.

2.1 Formulation of the Transversely Isotropic Inverse
Problem. To formulate the inverse elasticity problem for the case
of transverse isotropy, we start with the conservation of linear mo-
mentum. For a tissue undergoing quasi-static compression with
negligible body forces, the momentum balance at a point reduces
to the equilibrium equation

Tij; j ¼ 0 i ¼ 1; 2; 3 (1)

where Tij is the Cauchy stress tensor, summation over repeated
indices is assumed, and a comma denotes partial differentiation in
the indicated spatial direction. Assuming a linear, elastic aniso-
tropic body, we invoke Hooke’s law [22],

Tij ¼ Cijklekl i; j ¼ 1; 2; 3 (2)

where Cijkl is the stiffness tensor and ekl is the linearized (infinites-
imal) strain tensor

ekl ¼
1

2
ðuk; l þ ul; kÞ k; l ¼ 1; 2; 3 (3)

Combining Eqs. (1)–(3), and recalling the symmetry of the stress
tensor in the absence of body torques, the equilibrium equation
becomes

ðCijklÞ; juk; l þ Cijkluk; lj ¼ 0 i ¼ 1; 2; 3: (4)

The stiffness tensor, Cijkl, which satisfies Eq. (4) is the solution to
the inverse problem. In the examples that follow, we will have or
we will assume we have the measured displacement ui at each
point of interest. Thus ui is known in Eq. (4), which may be inter-
preted as three partial differential equations for the unknown
entries in Cijkl. Additional measurements of ui from other loading
experiments yield additional equations.

The degree of material anisotropy determines how many inde-
pendent coefficients Cijkl contains and thus how many independent
displacement measurements are needed. In the present study, we
use a transversely isotropic form of the stiffness tensor, and we
assume that the material direction vector is known a priori. In
principle, with a sufficient number of measured displacements,
Cijkl can be uniquely determined up to a multiplicative constant
without the independent measurement of stress. If an insufficient
number of displacements is available, the reconstructed solution
could be just one of a family of solutions that all satisfy the equi-
librium equation for the given loading and boundary conditions.

We observe that one deformation for each unknown parameter
is sufficient to determine all the parameters in Cijkl uniquely.
However, fewer deformations are often sufficient when additional
information is available. For example, in some cases, if the trac-
tion is known on the boundaries of an isotropic specimen, only
one deformation is required to determine both Lamé parameters
[12]. As such, it is plausible to suppose that fewer than five defor-
mations are required to uniquely determine the elastic parameters
for a transversely isotropic material. However, an inadequate
combination of deformations and boundary information can
render the problem ill-conditioned and=or produce a solution that
is nonunique. The loading conditions and initial information
needed to produce a well-posed transversely isotropic inverse
problem (i.e., a solution exists, is unique, and depends continu-
ously on the given data) have not yet been fully determined.

2.2 Optimization Formulation. Our method for solving the
inverse problem posed in Sec. 1 for Cijklðx; y; zÞ throughout the
domain of interest is not to solve the equilibrium Eq. (4) directly,
but rather to solve it indirectly through an optimization strategy.
Given a distribution of measured displacements umeas

k ðx; y; zÞ, we
seek a stiffness tensor distribution Cijklðx; y; zÞ that minimizes

Objective ¼ ErrorþRðCijklÞ (5)

where Error ¼
ð

X
ðupred

k � umeas
k Þ2dX (6)

and RðCijklÞ is a regularization term [10,11].
The “predicted” displacement field, upred

k ðx; y; zÞ, in the error
term is obtained by solving Eq. (4) as a forward problem for a pro-
posed Cijklðx; y; zÞ. This is done by creating a finite element mesh
of the specimen using 3D, compressible, transversely isotropic,
linear elastic elements, assigning boundary conditions and a distri-
bution of elastic properties, and solving for the displacements. This
result is then compared to the measured displacement field obtained
from DVC to compute the error and objective function. This process
is repeated within an optimization algorithm that updates
Cijklðx; y; zÞ. By finding the Cijklðx; y; zÞ that minimizes the objec-
tive function and predicts a displacement field that closely matches
the measured displacement fields, we infer the stiffness distribution.
We stabilize this optimization problem by exploiting the material
symmetries in Cijkl to reduce the number of unknowns and by using
several measured displacement fields to limit the number of possible
solutions.

The boundary conditions for the forward problem are deter-
mined by the experimental setup that produced the measured dis-
placements. Because displacement measurements made by DVC
exist throughout the sample volume, measured values for the
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displacements are available on all boundaries of the sample. In
some experimental configurations, the unloaded (zero-traction)
surfaces can be known a priori. On such surfaces, we have the
option of using either the measured displacement boundary condi-
tions or the known, zero-traction boundary conditions. We choose
the latter as this adds information to the inverse problem [12].

In the results that follow, we work in a coordinate system
aligned with the principal material direction and assume this
direction is known and is uniform in space. In this case, the five
independent coefficients for the fourth-order stiffness tensor Cijkl

are, in reduced Voigt notation, C11, C22, C55, C12, and C23, where
1 is the principal direction. We group these into a five dimensional
elastic parameter vector, Cn, such that

½Cn� ¼ ½C11 C22 C55 C12 C23� (7)

In the current study, we use total variation diminishing (TVD)
regularization to overcome two potential sources of error: ill-pos-
edness of the inverse problem and the confounding effects of
noise. Typically, regularization works by penalizing large gra-
dients in the modulus distribution. However, with TVD regulari-
zation, high frequency oscillations are penalized while sharp
jumps in the solution are allowed [23]. For TVD, the R operator
in the objective function is given by:

R ¼
X5

n¼1

an

ð
X
rCn � rCn þ b2

n

� �1=2
dV (8)

Here, bn is a numerically small constant introduced to smooth the
singularity that would otherwise exist at rCn ¼ 0. The constant
an is called the regularization parameter. It controls the relative
importance of regularization in the optimization problem. Typi-
cally, the greater the level of noise in the measurement or the
more ill-posed the problem, the more regularization is required.

The minimization of the objective function is driven by a quasi-
Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
algorithm that requires the evaluation of the functional and its gra-
dient to determine new values for Cijklðx; y; zÞ. However, the
straightforward evaluation of the gradient requires Nþ 1 solves of
the forward problem for each optimization iteration, where N is
the number of nodes in the finite element mesh. This can be com-
putationally prohibitive for typical values of N � 103. We avoid
this problem by utilizing the adjoint elasticity operator, which
requires only two forward solves per iteration, significantly
decreasing the required computation time [10,11].

2.3 Application of Isotropic Elasticity Imaging to Meas-
ured Cancellous Bone Displacements. As a prerequisite to
exploring transversely isotropic reconstructions for the specific
case of anisotropic vertebral cancellous bone, the feasibility of
applying elasticity imaging to cancellous bone displacement fields
is established in Experiment 1. To do so, we utilize a previously
reported method for 3D, linear elastic, isotropic reconstructions
[13,15] that has been successfully used with in vivo measurements
of soft tissue from ultrasound [17].

2.3.1 Experiment 1: Isotropic Reconstruction of Measured
Displacements. In this experiment, an isotropic modulus distribu-
tion of a specimen of cancellous bone from the human lumbar
vertebra is reconstructed from a single measured displacement
field. This displacement field is obtained from a DVC analysis
of micro-computed tomography (lCT) images (resolution
¼ 36 lm=voxel) that were generated as part of a separate study
[24]. In that study, the images were captured as a cylindrical spec-
imen (8:0 mm diameter, 9:4 mm length) of human vertebral can-
cellous bone that was loaded in uniaxial compression to 2:0%
strain (Fig. 1). Briefly, DVC involves subdividing the reference
image (in this case, the 0% image) into many small, overlapping
subregions and, typically, using spatial cross correlation to calcu-

late the average displacement of the features within each subre-
gion in response to the load increment [25]. In this experiment,
the subregions are overlapping cubes with side lengths equal to 50
voxels (1:8 mm) and centroids spaced 10 voxels (0:36 mm) apart.
The displacements are calculated for the central
5:7� 5:7� 9:4 mm3 parallelepiped of the specimen, resulting in
a field of dimensions 11� 11� 22. We have estimated the preci-
sion of these displacement measurements to be 0.071 voxels
(2:57 lm) [8].

Several caveats of this experiment must be noted. First, the
reconstruction is isotropic, and the results are thus used merely to
investigate the feasibility of applying elasticity imaging to experi-
mentally measured displacement fields in cancellous bone. Sec-
ond, the result of the reconstruction is a distribution of secant
modulus, rather than tangent modulus, because the applied defor-
mation of �2:0% strain corresponds to more than twice the com-
pressive yield strain of human vertebral cancellous bone (0:77%)
[26]. Third, the reconstruction produces relative, rather than abso-
lute, values of modulus, because no force data are used in this
experiment. Finally, the size of each subregion used in the DVC
calculations is less than the minimum length scale at which can-
cellous bone can be considered a continuum (�5 mm or five inter-
trabecular spacings) [27]. As such, the secant modulus obtained
for a given subregion represents the secant modulus of a contin-
uum that has the same secant stiffness as the cancellous micro-
structure contained in that subregion.

2.4 Application of Isotropic and Transversely Isotropic Elas-
ticity Imaging to Simulated Cancellous Bone Displacements. In
the remaining experiments, synthetic displacement fields from a
finite element model of the forward problem are generated to
demonstrate the utility and the accuracy of transversely isotropic
reconstructions. The synthetic displacements are created by speci-
fying a distribution of target elastic parameters, Cijklðx; y; zÞ, on a
20� 20� 20 finite element mesh and running a custom forward
finite element solver for a given set of loading and boundary con-
ditions. The results of the finite element model are scalable to any
specimen size as long as the edge lengths of the cube are greater
than the minimum continuum length (�5 mm for cancellous
bone). In this study, the dimensions of the cube are scaled by 1
mm to correspond to the typical size of a human lumbar vertebral
body (�20 mm). Therefore, the results of the forward problem
are considered to represent displacements for �5 mm (i.e.,
continuum-scale), overlapping subregions spaced �1 mm apart.

To investigate the ability of our method to identify inhomoge-
neous regions in the specimen, a distribution of transversely iso-
tropic elastic parameters that corresponds to a region of
osteopenic cancellous bone surrounded by healthy cancellous

Fig. 1 Three dimensional lCT renderings at (a) 0% and (b) -2%
strain

Journal of Biomechanical Engineering JUNE 2011, Vol. 133 / 061002-3

Downloaded From: http://biomechanical.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jbendy/27209/ on 03/10/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



bone is assigned to the finite element mesh. The elastic parameters
for these two regions are determined using constitutive relation-
ships [28] developed for cancellous bone that specify Cn as a func-
tion of volume fraction (/), fabric eigenvalues (ki), and tissue
modulus (Etiss):

Cn ¼ Ĉnð/; ki; EtissÞ m ¼ 1; 2; 3 (9)

where typical values of / and ki are obtained from the literature
[26] (Table 1). The osteopenic parameters are chosen to reflect the
decreased volume fraction and increased anisotropy of the central
region of vertebral bone that occurs with age [29]. We note that
the constitutive model in Equation (9) treats Etiss as a multiplica-
tive constant, and thus for simplicity we use a value of 1.0 GPa
for both the osteopenic and healthy cases. We also assume that the
principal material direction at every point in the volume is aligned
with the vertical, x-axis (superior-inferior direction). This assump-
tion is supported by evidence that the principal material direction
is closely related to the principal structural direction in cancellous
bone [30], that the principal direction of human vertebral cancel-
lous bone is in the superior-inferior direction [31], and that the
horizontal plane is isotropic when the vertebra is at peak bone
mass (25-30 years of age) [18].

The degree of degradation between osteopenic and healthy
regions is calculated as the ratio Chealthy

n =Costeopenic
n . For the values

used in this study (Table 1), these contrast ratios are
½Rn� ¼ ½1:3; 11; 3:7; 4:9; 5:7�. Therefore, the five reconstructed
stiffness distributions reveal not only anisotropy in the healthy
and osteopenic material properties, respectively, but also anisot-
ropy in the extent of their degradation (e.g., R1 6¼ R2). For exam-
ple, although the degradation of C22 in the osteopenic region is
quite large, the elastic anisotropy is increased such that C11 is
only slightly diminished.

The default applied loading conditions for Experiments 2-4
consist of three uniaxial compression cases of 1% strain: one in
each of the principal material directions. Because of the assump-
tion of linear elasticity, the magnitude of the applied strain is of
no consequence except when evaluating the effect of signal
(strain) on reconstruction accuracy. One percent strain is used
simply for convenience in interpreting the results. For uniaxial
compression, the plane parallel and opposite to the loaded plane is
constrained in the direction of loading along the entire surface,
and one edge is constrained in each perpendicular direction to pre-
vent rigid body motion. In Experiment 3, 1-2 and 2-3 simple shear
conditions are also considered. The 1-2 shear condition is approxi-
mated by prescribing lateral displacements in the 2-direction at
every node across a 1-surface while the parallel surface is con-

strained in the 1- and 2-directions. The 2-3 shear condition is pre-
scribed in an analogous manner on the 2-surface with
displacements in the 3-direction. Other load conditions, such as
bending, can also be prescribed but are not considered in this
study. The elastic parameters corresponding to healthy cancellous
tissue are used as a homogeneous initial guess for the optimization
since these values are available in the literature (e.g., Ref. [26]).

The reconstructed distributions of elastic parameters are quali-
tatively evaluated by visual comparison to corresponding target
distributions. The accuracy of a given reconstructed parameter is
quantified by comparing the predicted value, Cpred, to the target
values, Cback and Cinc, that correspond to the healthy and osteo-
penic values, respectively, in Table 1. Two measures of error in
the reconstructions are calculated for each parameter and then
averaged across parameters: inclusion L2 error and full-field L2

error. These measures are defined as

Ex ¼
Cpred � Cinc

�� ��
x

Cbackk k � 100 (10)

and

EX ¼
Cpred � C
�� ��

X

Cbackk k � 100 (11)

respectively, where x is the inclusion subdomain, X is the full-
field domain, and k � k is the L2 norm of values in the indicated
domain. The L2 error between synthetic and predicted displace-
ment fields, Eu

X, is also calculated in some instances.

2.4.1 Experiment 2: Isotropic Reconstruction of Transversely
Isotropic Synthetic Data Corresponding to a Compliant Spherical
Inclusion. The purpose of the second experiment is to investigate
the result of applying an isotropic reconstruction to a transversely
isotropic data set. Displacement fields are generated from solving
a forward problem in which the region of osteopenic bone is a
centered, spherical inclusion of radius equal to 35% of the speci-
men’s side length. The first case analyzed in this experiment con-
sists of performing an isotropic reconstruction on displacements
corresponding to a single, uniaxial load applied to an isotropic
specimen. This is done to provide a basis for evaluating the
change in accuracy due to model mismatch (i.e., isotropic recon-
struction of anisotropic data). The background and spherical
inclusion regions are assigned elastic parameters k and l that are
the “closest isotropic equivalents” to the transversely isotropic
properties of the healthy and osteopenic tissues, respectively [32].

Table 1 Transversely isotropic elastic parameters for healthy and osteopenic cancellous bone (Eq. (9))

Tissue parameters Elastic parameters

/ ki Et C11 C22 C55 C12 C23

Healthy 0.15 (1.0, 0.67, 0.67) 1.0 0.0642 0.0192 0.0112 0.0097 0.0074
Osteopenic 0.08 (1.0, 0.5, 0.5) 1.0 0.0502 0.0017 0.003 0.002 0.0013

Table 2 Closest isotropic equivalents for transversely isotropic stiffness coefficients as defined by the minimum Riemann
distance between stiffness matrices [32]

Tissue parameters Lamé parameters Stiffness and modulus

/ ki Et k l C11
a E1

b

Healthy 0.15 (1.0, 0.67, 0.67) 1.0 0.0102 0.00626 0.0227 0.0164
Osteopenic 0.08 (1.0, 0.5, 0.5) 1.0 0.00148 0.00091 0.0033 0.00238

aC11 ¼ 2lþ k.
bE1 ¼ lð3kþ2lÞ

kþl .
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These values and the corresponding primary Young’s modulus
(E1) and isotropic elastic parameter (Ciso

11 ) are given in Table 2.
Also, tailored regularization (a¼ 5e-9 and b¼ 5e-4), as deter-
mined by a trial-and-error approach in which error level compari-
sons are made between reconstructions with incrementally
increasing levels of regularization, is applied.

The second case in this experiment considers an isotropic
reconstruction performed on displacements corresponding to a
single, uniaxial load applied to a transversely isotropic specimen
(k: a¼ 1e-6, b¼ 5e-4; l: a¼ 1e-5, b¼ 5e-4), and the third case is
an isotropic reconstruction in which the number of loads is
increased to the default (three separate orthogonal, uniaxial com-
pressions) with the same regularization applied. In each case, dis-
tributions of primary Young’s modulus (E1) and isotropic elastic
parameter (C11) are calculated from the recovered distributions of
Lamé parameters (Table 2).

2.4.2 Experiment 3: Transversely Isotropic Reconstruction of
Transversely Isotropic Synthetic Data Corresponding to a Com-
pliant Spherical Inclusion. The purpose of the third experiment is
to demonstrate a transversely isotropic reconstruction of a trans-
versely isotropic data set and to evaluate the effects of additional
loading conditions and regularization on reconstruction accuracy.
This experiment uses the same transversely isotropic, simulated
cubic specimen with a spherical inclusion that was used in Experi-
ment 2, but all reconstructions are transversely isotropic. The first
case utilizes default loading conditions without regularization.
The second case is the same as the first but with the addition of
displacements from a 1-2 shear load in addition to those obtained
from the default loading conditions. The third cases then adds a
fifth load, 2-3 shear, to those applied in the second case while the
fourth case applies regularization (a¼ 1e-9, b¼ 5e-4) instead of
adding a 2-3 shear load.

2.4.3 Experiment 4: Transversely Isotropic Reconstruction of
Transversely Isotropic Synthetic Data Corresponding to a Com-
pliant Band. To investigate the effects of asymmetry in the distri-
bution of material properties, the final experiment simulates a test
with a compliant band of osteopenic tissue instead of a compliant
spherical region. The band cuts obliquely at a 14 deg angle to the
2-3 plane with a thickness of approximately 1=3 the cube side
length. The material properties from Table 1 are again assigned to
the healthy and osteopenic regions of the sample, the default load-
ing conditions are applied, and tailored regularization is utilized
from the outset.

The compliant band model is also used to analyze the effect of
noise in the measured displacements on the quality of the material
property reconstructions. Noisy measured displacements are simu-

lated by adding white Gaussian noise to synthetic displacement
fields generated from the forward solver. The amount of noise
added is determined by a chosen signal-to-noise ratio (SNR),
defined as

SNR ¼ 20log
eo

re

� �
(12)

where eo is the applied strain magnitude (signal) and re is the
strain precision. Reconstructions are performed on noisy data cor-
responding to six SNRs, ranging from 10 dB to 60 dB, and two
signal levels, 0:5% and 1:0%. These levels correspond to applied
strain magnitudes lower and higher, respectively, than the com-
pressive yield strain for vertebral cancellous bone (0:77%) [26].
The full-field error of each reconstructed material parameter is
then calculated and averaged to determine an accuracy for each
combination of SNR and signal magnitude. Also, because the
SNR and strain values are known for each reconstruction, the cor-
responding strain precision can be inferred from Eq. (12). Recall-
ing that strain is calculated from two independent displacement
measurements with equal variance, the displacement precision
can be calculated from the strain precision for a known window
size, W, according to [15]

ru ¼
ffiffiffi
2
p

Wre

2
(13)

In this way, the accuracy of transversely isotropic reconstructions
for a specified level of signal (strain) can be related to the preci-
sion of the displacement data. All reconstructions are also per-
formed without and with regularization (a¼ 1e-8, b¼ 1e-5) to
evaluate the role of regularization in improving the accuracy of
the reconstructions at different signal-to-noise ratios.

3 Results

3.1 Experiment 1: Isotropic Reconstruction of Measured
Displacements. The results for the first experiment are presented
in Fig. 2. A visual comparison of a 2-mm-thick, longitudinal (x-z)
section of the specimen at 0% (Fig. 2(a)) and -2% (Fig. 2(b))
shows regions of large deformation that are apparent to the eye.
These correspond to regions of high strain in longitudinal (Fig.
2(c)) and shear (Fig. 2(d)) strain images generated from DVC.
The reconstruction of the secant modulus distribution (Fig. 2(e))
likewise shows an area of high compliance that corresponds to the
region of large strains. This correspondence among the lCT
images, strains, and moduli indicates that with elasticity imaging,

Fig. 2 Renderings of a 2-mm-thick, longitudinal (x-z) section of the specimen in Fig. 1. Images taken at (a) 0% and (b) 2% com-
pressive strain were used to generate longitudinal (c) and shear (d) strain images using DVC. The reconstructed distribution of
secant modulus (e) shows a region of low modulus corresponding to the regions of high strain and of deformations large
enough to be apparent to the eye (highlighted by a red circle). Secant modulus values are relative, rather than absolute, because
no force data are used.
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one can detect spatial variations in material stiffness from an
experimentally measured displacement field in cancellous bone.
However, it is important to emphasize that because the reconstruc-
tion assumed material isotropy, the accuracy of these results
is questionable. This point will be addressed by the results of
Experiment 2.

3.2 Experiment 2: Isotropic Reconstruction of Trans-
versely Isotropic Synthetic Data Corresponding to Compliant
Spherical Inclusions. Results for the second experiment are dis-
played in Figs. 4–6, according to the configurations shown in
Fig. 3, and the full-field errors are tabulated in Table 3. For the
first case (Fig. 4), the distributions of k, l, Ciso

11 , and E1 are very
accurately recovered as would be expected for an isotropic recon-
struction of isotropic data. In contrast, in the second case (Fig. 5),
although the shape and location of the inclusion are correctly
identified for all parameters, the error is markedly increased.
Moreover, vertical bands of moderately low values of l, Ciso

11 , and
E1 appear in the reconstructions. For the third case (Fig. 6), in
which three, orthogonal, uniaxial loads are applied, the isotropic
model still does not yield an accurate reconstruction of any of the
elastic parameters although the inclusion and background are each

more homogeneously reconstructed than the first case. In both iso-
tropic approximation cases (2 and 3), a higher level of regulariza-
tion than that used for the first case (i.e., a¼ 1e-6 versus a¼ 5e-9)
is required to correctly identify the location and shape of the
inclusion, which may account for a portion of the error in the
reconstructions.

3.3 Experiment 3: Transversely Isotropic Reconstruction
of Transversely Isotropic Synthetic Data Corresponding to a
Compliant Spherical Inclusion. The third experiment demon-
strates the ability of the optimization algorithm to recover the
measured displacements with little error and illustrates the effects
of ill-conditioning in the inverse problem. The distributions of
each recovered elastic parameter for the first case, as compared to
a target distribution (Fig. 7), are shown in Fig. 8. The reconstruc-
tion algorithm succeeds at recovering the shape of the inclusion
within at least a portion of the inclusion for each parameter except
C55. The inclusion errors are Ex¼ [8%, 13%, 56%, 15%, 13%]
with an average of 21% and the full-field errors are EX¼ [2%,
3%, 10%, 4%, 4%] with an average of 4:6% (Table 4). The aver-
age error in the predicted displacement field, however, is less than
0:1% for the same reconstruction. This indicates that the model is

Fig. 4 Isotropic reconstruction of synthetic data corresponding to an isotropic distribution of material properties with 1%
applied strain in the 2-direction (see Fig. 3(b)). C11 and E1 are calculated from the independent k and l distributions.

Fig. 3 Positions of the reference images for the results presented in Experiments
2-4 (a) and schematics of the applied loadings for compression in the 2-direction
(b) and shear in the 1-2 plane (c). The 1-axis is the principal material direction and
the 2 and 3 axes define the transverse, isotropic plane.

Fig. 5 Isotropic reconstruction of synthetic data corresponding to a transversely isotropic distribution of elastic parameters
with 1% applied strain in the 2-direction (see Fig. 3(b))
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able to identify an elastic parameter distribution that predicts a
displacement field that closely matches the synthetic displacement
field that was used as input. The discrepancy between the material
property and displacement field accuracies is likely due to ill-con-
ditioning of the inverse problem; only three independent loading
conditions were provided to recover five unknown elastic
parameters.

For the second case (Fig. 9), in which a 1-2 shear load is added
to the default loads, all properties, including C55, are properly
reconstructed and the inclusion error decreases significantly to
8:8% (Table 4), largely due to the recovery of C55. Through com-
parison of the results of these first two cases, the sensitivity of the
reconstruction to the type of loading is apparent. In the first case,
the shear strain, e12, corresponding to C55, is negligible because
no shear deformation is directly applied. As a result, the spherical
inclusion in the distribution of C55 is not recovered. However,

with the addition of the 1-2 shear load in the second case, the
inclusion is clearly identified. This is evidence of the inverse prob-
lem becoming less ill-conditioned through the addition of a new,
independent loading condition.

In contrast, the addition of a fifth load, 2-3 shear, in the third
case does not improve the accuracy of the elastic parameters or
the displacement fields. This is due to the fact that because this is
a transversely isotropic material, the shear parameter in the iso-
tropic plane, C44, is already determined by C22 and C23 [22]. For
additional loads to be useful in improving the quality of the recon-
struction, they must generate new strain components.

Though the average material property error decreases with the
addition of a 1-2 shear load in the second case, some oscillatory
inhomogeneities persist as a result of lingering ill-conditioning.
The addition of regularization in the fourth case yields the results
shown in Fig. 10. This level of regularization is successful in fur-
ther reducing the inclusion error to 5:2%. We also note that the
inclusion is more clearly identified in C22 than in C11, likely due
to its larger contrast ratio (R2 > R1). Thus, C22 dominates the
inhomogeneity of the material’s response.

3.4 Experiment 4: Transversely Isotropic Reconstruction
of Transversely Isotropic Synthetic Data Corresponding to a
Compliant Band. The target material fields for Experiment 4 are
given in Fig. 11. Figure 12 shows the reconstruction in the case of
three uniaxial compressive loads (default). The same level of

Table 3 Full-field error values for isotropic reconstructions in
Experiment 2

Target Loads k l C11 E1

Isotropic 1 1.2% 0.5% 0.7% 0.6%
Trans. Isotropic 1 48% 13% 25% 14%
Trans. Isotropic 3 61% 25% 41% 30%

Fig. 7 Target distributions for the five independent stiffness coefficients of a transversely isotropic specimen with a compliant
spherical inclusion

Fig. 8 Transversely isotropic reconstruction of a transversely isotropic distribution of elastic parameters with a uniaxial com-
pressive strain applied in each (1-, 2-, 3-) principal material direction

Fig. 6 Isotropic reconstruction corresponding to a transversely isotropic distribution of elastic parameters using three sepa-
rate synthetic data sets with 1% applied compressive strain applied in each principal material direction
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regularization (a¼ 1e-8, b¼ 1e-6), tailored for this reconstruction
by trial and error, is applied for each property except C55

(a3¼ 1e-9, b3¼ 1e-5), which requires a smaller a. Qualitatively,
the geometry of the band is recovered for each property, including
C55, despite the absence of an applied shear load as was used in
Experiment 2. For each elastic parameter, the inclusion errors are
Ex¼ [7%, 13%, 14%, 16%, 16%] with an average of 13% and the
full-field errors are EX¼ [5%, 9%, 12%, 13%, 13%] with an aver-
age of 10%. We note that, compared to the first case in Experi-
ment 3, the error in C55 is much closer to the error in the other
parameters.

It is interesting to note that the recovery of C55 without an
applied shear load suggests the existence of secondary shear
strains, possibly induced by the presence of the compliant band.
Figure 13 is a comparison of the e31 shear strain fields induced by
a single uniaxial strain applied in the principal direction for two
specimens with a compliant inclusion and a compliant band,
respectively. A ratio of norms for all three shear strains over the
principal longitudinal strain, defined by

ke31k þ ke12k þ ke23k
3 ke11k

(14)

is used to compare the relative amounts of strain in each speci-
men. The ratio for the compliant-band specimen is 0.022, whereas
the ratio for the compliant-sphere specimen, 0.0052, is nearly an
order of magnitude lower. Also, for the compliant-sphere speci-
men, the location of the shear strains does not coincide with the
location of the spherical inclusion. The distribution of strains in
the band specimen, on the other hand, does coincide well with the
compliant geometry.

The addition of noise to the displacement fields has a confound-
ing effect on the reconstruction accuracy. A comparison of the aver-
age full-field errors across the range of signal-to-noise ratios reveals
an increase in accuracy with increasing SNR (Figs. 14 and 15).

Fig. 9 Transversely isotropic reconstruction of a transversely isotropic distribution of elastic parameters with a uniaxial com-
pressive strain applied in each (1-, 2-, 3-) principal material direction and the addition of a 1-2 shear strain (see Fig. 3(c))

Fig. 10 Transversely isotropic reconstruction of a transversely isotropic distribution of elastic parameters with a uniaxial com-
pressive strain applied in each (1-, 2-, 3-) principal material direction and the addition of a 1-2 shear strain. In this case, regulari-
zation (a 5 1e-9, b 5 5e-4) is also applied.

Table 4 Comparison of inclusion error (Ex), full-field error
(EX), and displacement error (Eu

X) for the four cases in Experi-
ment 3

Shear Loads Regularization Ex EX Eu
X

None None 21% 4.6% 0.091%
1-2 shear None 8.8% 2.6% 0.058%
1-2 and 2-3 shear None 9.8% 2.8% 0.062%
1-2 shear a¼ 1e-9, b¼ 5e-4 5.2% 1.4% 0.047%

Default loading conditions of three uniaxial compressions, one in each of
the principal material directions (1,2,3), are applied in all cases.

Fig. 11 Target distributions for the five independent stiffness coefficients, Cn, of a transversely isotropic specimen with a com-
pliant band
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Without regularization, errors drop below 23% at 40 dB for 1:0%
applied strain and at 50 dB for 0:5% applied strain. For both curves,
an elbow appears in the region between 40 dB and 50 dB, after
which the rate of improvement in accuracy decreases with increas-
ing SNR, trending toward 18-20% at zero noise. With the addition
of regularization, errors at 10 dB are similar to the nonregularized
results. However, accuracy improves much faster as SNR is
increased to 40 dB, at which point the error drops to around 14%
for both levels of applied strain. This approaches the 10% error
obtained for the zero noise reconstruction with tailored regulariza-
tion shown in Fig. 12. Beyond 40 dB, the reconstructions with regu-
larization at 0:5% applied strain return to errors above 25%, while
the 1:0%-strain reconstructions remain around 14%. The displace-
ment precisions corresponding to an SNR of 40 dB and window
size of 5 mm at 1:0% and 0:5% strain are 0:35 lm and 0:18 lm,
respectively.

4 Discussion

In this study, elasticity imaging is extended to the case of trans-
verse isotropy. Both experimentally measured and simulated dis-
placements are analyzed that correspond to the specific
application of human vertebral cancellous bone, although the
methods that we employ in the reconstructions are not limited to
this tissue. As illustrated by qualitative inspection of the deformed
cancellous structure and the secant modulus field in Experiment 1,
and as confirmed by the results of Experiment 2, isotropic elastic-
ity imaging can successfully recover the location of a marked
inhomogeneity in elastic parameters in an anisotropic material.
However, the reconstruction is inaccurate with regard to the rela-
tive numerical values of the elastic parameters due to model mis-
match. Use of a transversely isotropic algorithm, as was done in
Experiments 3 and 4, reproduces the simulated measured dis-
placement fields and greatly improves the quality of the recon-

structions. The accuracy of a reconstruction for a particular elastic
parameter depends on several factors, including the role of that
parameter in the deformation response of the material to the
applied loads and the choice of regularization constant. Further,
noise in the displacement measurements is found to decrease the
accuracy of the reconstruction, though, for signal-to-noise ratios
of 40 dB or greater, proper application of regularization is found
to greatly diminish this effect. In sum, these results indicate that
elasticity imaging of a transversely isotropic material, such as can-
cellous bone, is both feasible and promising as a nondestructive
measurement technique.

Our method of transversely isotropic elasticity imaging has sev-
eral strengths. First, the optimization approach we use avoids the
need to differentiate noisy displacement fields, which would intro-
duce additional computational error, and it allows us to easily
incorporate prior information (e.g., positivity of the material coef-
ficients) by imposing constraints on the optimization space. Sec-
ond, in contrast to methods of elasticity imaging that use only
boundary data [21], our method can recover continuously varying
distributions of material properties and does not require that the
locations, shapes, or sizes of inclusions be known a priori. Third,
as much displacement data as are available may be included in the
objective function. The inclusion of additional sets of independent
displacement data into the reconstruction not only stabilizes the
optimization by improving the conditioning of the inverse prob-
lem but also provides a way to solve for complex distributions of

Fig. 13 Shear strain (e31) for (a) a specimen with a compliant
spherical inclusion and (b) a specimen with a compliant band
with an applied uniaxial compressive load in the 1 direction.
Shear strains are not induced in the spherical inclusion
whereas they are for the compliant band.

Fig. 14 Change in reconstruction accuracy with increasing
signal-to-noise ratio (SNR) at two levels of applied strain with
and without regularization (a 5 1e-8, b 5 1e-5) for default loading
conditions. The dotted line indicates the level of error for a
reconstruction corresponding to zero-noise displacements
using tailored regularization (a 5 1e-8, b 5 1e-6; C55: a 5 1e-9,
b 5 1e-5).

Fig. 12 Transversely isotropic reconstruction of a transversely isotropic distribution of elastic parameters with a uniaxial com-
pressive strain applied in each [1–3] principal material direction. Regularization: a 5 1e-8, b 5 1e-6 for all Cn except C55 (a3 5 1e-9,
b3 5 1e-5).
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material properties through the combination of simple loading
states, such as compression, torsion and shear. We expect this fea-
ture to be valuable when designing loading experiments, as it will
simplify the types of loading conditions required to obtain a com-
plete reconstruction from experimentally measured displacements.
Finally, the use of the adjoint method significantly improves the
computational efficiency of our optimization algorithm. This
improvement decreases the time required to complete the recon-
structions to a few hours.

Our method also has several limitations to its general applica-
tion. The first is its inability to model fully anisotropic stiffness
distributions. As many biological materials, including cancellous
bone, are most accurately described as orthotropic or fully aniso-
tropic materials, a transversely isotropic representation is an in-
herent limitation as it assumes symmetry in the stiffness tensor
Cijkl and isotropy in the transverse plane. However, many aniso-
tropic materials exhibit a strong directional preference in architec-
ture and mechanical properties. This includes cancellous bone in
certain anatomic locations, such as the vertebra or proximal fe-
mur, that experience habitual loading. In these cases, a trans-
versely isotropic approximation can differentiate the material
properties in the principal and transverse directions that would
otherwise be masked by an isotropic reconstruction. Another limi-
tation of this method is that the optimal regularization constants
are currently chosen by trial-and-error, and factors such as model
mismatch, degree of ill-conditioning, and the signal-to-noise ratio
all appear to require different levels of regularization. In fact, as
demonstrated in Experiment 4, the wrong choice of regularization
can actually significantly increase errors, even for high SNR lev-
els. Currently, there is no agreed upon method for predetermining
the best regularization constants for a specific situation.

Several barriers to the specific application of elasticity imaging
to cancellous bone also exist. For in vivo measurements, these
include an inability to obtain high-resolution images of the cancel-
lous structure, lack of control over applied loads, and low physio-
logical signal (strain). For example, although in vivo strains for
cancellous bone have not been measured directly, Burr et al.
reported strains in cortical bone around 2;000 le, or 0:2% strain,
for the human tibia during vigorous activity [33]. Using the level
of precision (ru ¼ 2:75 lm) reported for current DVC capabilities
with a window size of 1.44 mm [8], the SNR for a strain of 0:02%
is approximately 0 dB, indicating the noise is as large as the sig-
nal. However, in a laboratory setting, strains of any magnitude up
to the elastic limit could be applied in vitro to whole bones or
excised specimens of cancellous bone. Various loading and imag-
ing schemes may also be devised to obtain displacement estimates
with higher precision. Also, if the bone is not loaded beyond yield,
multiple loading experiments may be performed on the same sam-
ple. Because multiple displacement fields are necessary to solve
for all five unknown material parameters, this ability could pro-
vide the conditions required for a unique solution.

As seen in the transversely isotropic reconstructions (Experi-
ments 3 and 4), the clarity of the reconstructions improves with
increasing contrast ratio. This is due to the larger difference
between the two categories of tissue, healthy and osteopenic, in

C22 as compared to C11, resulting in larger displacement magni-
tudes in the osteopenic region for C22. Also, in Experiment 4, C55

is recovered without the addition of a shear load. This is due to
the asymmetry of the band inducing secondary shear deformations
when loaded in uniaxial compression. Together, these results indi-
cate that the inhomogeneity and asymmetry of the modulus distri-
bution actually improves the ability to detect compliant regions.
These findings bode well for potential application of elasticity
imaging to detect changes in elastic properties of cancellous bone
caused by aging, disease, or drug treatments. In addition, this
method could be used in the laboratory to track the progression of
damage, as defined by a change in elastic parameters, in the verte-
bral centrum as a vertebra is loaded beyond its elastic limit. As
damage occurs, both the contrast ratio and inhomogeneity in Cn

will increase, and the clarity of the compliant region in the the
reconstruction will improve.

There are several avenues for future work in this area. Consid-
ering that the results of this study have established a link between
the type or mode of loading and the accuracy of the reconstruc-
tion, it is possible that an optimum set of experimentally feasible
loading cases can be found that would yield a well-posed problem
with a minimum number of loading experiments. These condi-
tions for uniqueness could be obtained through analytical methods
similar to those previously reported for isotropic cases [12,13].
With these conditions known, an experiment to fully establish the
efficacy of the current method could be developed to generate the
required displacement fields from a transversely isotropic sample
with a known distribution of material properties. Additionally,
guidelines for preselecting the appropriate level of regularization
need to be developed so that regularization can be used in recon-
structions for specimens with an unknown distribution of elastic
properties. The realization of these objectives would allow for the
implementation of elasticity imaging to detect spatial variations in
elastic properties of cancellous bone as well as for damage track-
ing in this tissue. As for now, we are confident that, given a suffi-
cient set of displacement fields and the principal material
direction, our method can fully and efficiently recover the relative
inhomogeneous, three-dimensional distribution of elastic proper-
ties in a transversely isotropic material, without an independent
measurement of stress.
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Nomenclature
Cn ¼ transversely isotropic vector of elastic parameters

Ciso
11 ¼ isotropic elastic parameter

Cijkl ¼ elastic stiffness tensor
Etiss ¼ tissue modulus

E1 ¼ isotropic primary Young’s modulus

Fig. 15 Improvement in the qualitative fidelity of transversely isotropic reconstruction with increasing signal-to-noise ratio
(SNR) for default loading conditions, 1:0% applied strain and regularization (a 5 1e-8, b 5 1e-5). Marked improvement is achieved
at 40 dB.
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Ex ¼ error in the inclusion subdomain
EX ¼ error in the full-field domain
Tij ¼ Cauchy stress tensor
ui ¼ displacement vector
ekl ¼ infinitesimal strain tensor
eo ¼ applied strain
/ ¼ volume fraction
ki ¼ fabric eigenvalues vector
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