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OBJECTIVEdThis study was designed to determine a cutoff point for identifying insulin
resistance from hyperinsulinemic-euglycemic clamp studies performed at 120 mU/m2 z min
in a white population and to generate equations from routinely measured clinic and blood
variables for predicting clamp-derived glucose disposal rate (GDR), i.e., insulin sensitivity.

RESEARCH DESIGN AND METHODSdWe assembled data from hyperinsulinemic-
euglycemic clamps (120 mU/m2 z min insulin dose) performed at the Pennington Biomedical
Research Center between 2001 and 2011. Subjects were divided into subjects with diabetes
(n = 51) and subjects without diabetes (n = 116) by self-report and/or fasting glucose $126
mg/dL.

RESULTSdWe found that 75% of individuals with a GDR ,5.6 mg/kg fat-free mass (FFM) +
17.7 zmin were truly insulin resistant. Cutoff values for GDRs normalized for body weight, body
surface area, or FFM were 4.9 mg/kg z min, 212.2 mg/m2 z min, and 7.3 mg/kgFFM z min,
respectively. Next, we used classification tree models to predict GDR from routinely measured
clinical and biochemical variables. We found that individual insulin resistance could be esti-
mated with good sensitivity (89%) and specificity (67%) from the homeostasis model assessment
of insulin resistance (HOMA-IR) .5.9 or 2.8, HOMA-IR ,5.9 with HDL ,51 mg/dL.

CONCLUSIONSdWe developed a cutoff for defining insulin resistance from hyperinsulinemic-
euglycemic clamps. Moreover, we now provide classification trees for predicting insulin re-
sistance from routinely measured clinical and biochemical markers. These findings extend the
clamp from a research tool to providing a clinically meaningful message for participants in
research studies, potentially providing greater opportunity for earlier recognition of insulin
resistance.
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There is substantial evidence that in-
sulin resistance, typically defined as
decreased sensitivity or responsive-

ness to the metabolic actions of insulin,
is a precursor of the metabolic syndrome
and type 2 diabetes. The gold standard for
assessing insulin resistance in humans is
the hyperinsulinemic-euglycemic clamp.
Developed by DeFronzo et al. in 1979 (1),
this procedure assumes that at high doses
of insulin infusion (.80mU/m2 zmin), the
hyperinsulinemic state is sufficient to com-
pletely suppress hepatic glucose produc-
tion and that there is no net change in
blood glucose concentrations under steady-
state conditions. Under such conditions,

the rate of glucose infused is equal to the
rate of whole-body glucose disposal (GDR)
or metabolizable glucose (M) and reflects
the amount of exogenous glucose neces-
sary to fully compensate for the hyperin-
sulinemia. GDR is expressed as a function
of metabolic body size, such as body
weight (kg), body surface area (m2; BSA),
fat-free mass (kg; FFM), or metabolic size
(kgFFM+17.7) (2).

Hyperinsulinemic-euglycemic clamps
are used in cross-sectional studies and in
prospective studies designed to test the
effect of interventions (weight loss, weight
gain, or pharmacological treatment) on in-
sulin sensitivity. The question of what is a

“normal”Mvalue is largely unknown but is
dependent on the dose of insulin infused.
In 1985, Bergman et al. (3) examined M val-
ues across 18 independent clamp studies
with an insulin infusion rate of 40 mU/m2 z
min. For nonobese normal glucose-tolerant
subjects, themeanM value was between 4.7
and 8.7 mg glucose per kilogram of body
mass perminute. From these data, Bergman
et al. (3) proposed a conservative defini-
tion for insulin resistance as an M value
,4.7mg/kg zmin. To our knowledge, only
one study has used a statistical approach to
determine a cutoff point for identifying in-
sulin resistance from the clamp (4). In this
analysis, results from 2,321 (2,138 sub-
jects without diabetes) euglycemic clamp
procedures (40 mU/m2 zmin) in an ethni-
cally diverse population were assembled.
It was found that insulin resistance was
best predicted when subjects had a GDR
(M value) ,28 mmol/kgFFM z min (4).
Together, these previous studies give a
reasonable estimate of the distribution of
GDR for clamps performedwith an insulin
infusion rate of 40 mU/m2 z min.

The question of what is a normal and
clinically relevant M value derived from
clamps using other insulin infusion doses,
such as 120 mU/m2 z min (5–7), is un-
known. As such, it is difficult for clini-
cians to explain the importance of the
results from these clamps to research par-
ticipants. The 120 mU/m2 z min insulin
was chosen for this analysis for two major
reasons: 1) endogenous glucose produc-
tion is likely to be fully suppressed, and 2) a
shorter time is needed to reach steady-state
conditions with a higher infusion rate, thus
making this insulin dose more cost-effective
while also reducing participant burden.
Moreover, although the clamp technique is
the gold standard for directly assessing
insulin resistance in humans, it is time-
consuming, labor-intensive, and overall ex-
pensive. Therefore, the ability to predict
results of the clamp from other clinical
data, which are both easier to obtain and
less expensive to measure, is important.

In the current study, we assembled
data from clamp studies performed under
standard operating procedures at the
Pennington Biomedical Research Center
(PBRC; Baton Rouge, LA), between 2001
and 2011, with an insulin infusion rate
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of 120 mU/m2 z min. Our aims were to
1) determine a cutoff point for identifying
insulin resistance for hyperinsulinemic-
euglycemic clamp studies performed at
120 mU/m2 z min in a white population
and 2) generate equations from commonly
measured clinic and blood variables for
predicting insulin sensitivity (M values de-
rived from the clamp).

RESEARCH DESIGN AND
METHODSdThe Pennington Center
Longitudinal Study is an ongoing inves-
tigation of the effects of obesity and
lifestyle factors on the development of
chronic diseases such as type 2 diabetes
and cardiovascular disease. The sample is
comprised of volunteers who have par-
ticipated in nutrition, weight loss, and
other metabolic intervention and observa-
tional studies at the PBRC since 1992. The
current cross-sectional analysis is limited
to adult participants who had a single-step
120 mU/m2 z min hyperinsulinemic-
euglycemic clamp before any intervention
and a dual-energy X-ray absorptiometry
(DXA) scan between 2001 and 2011 (n =
263). Subjects with fasting plasma glucose
.180 mg/dL or a diagnosis of diabetes.5
years were excluded. Our cohort consisted
of 167 whites, 94 African Americans, and
two others. When euglycemic-hyperinsuli-
nemic clamp studies were first established
at PBRC by one of the authors (E.R.), the
capability for measuring isotope tracers,
and therefore hepatic glucose produc-
tion, was unavailable. Therefore, clamps
were performed at 120 mU/m2 z min as
this insulin dose was considered high
enough to completely suppress hepatic
glucose production.

Diabetes status was defined by self-
report or fasting plasma glucose concentra-
tions$126 mg/dL. Subjects were classified
as being diabetic if they 1) self-reported
“yes” to having diabetes (n = 62) or 2)
self-reported “no” to diabetes but had a
fasting glucose $126 mg/dL (n = 4). Sub-
jects were classified as being nondiabetic if
they self-reported “no” and had a fasting
glucose ,126 mg/dL (n = 197). Further-
more, to verify diabetes status, we also ob-
tained HbA1c data, which were available in
104 of 263 subjects. HbA1c levels were
higher in subjects classified as having dia-
betes (6.16 0.6%) comparedwith subjects
classified as not having diabetes (5.4 6
0.4%). All procedures were approved by
the PBRC Institutional Review Board, and
all participants provided written, informed
consent.

Anthropometry and body
composition
Height was measured with a wall-mounted
stadiometer and metabolic weight with
a digital scale. BMI was calculated as
weight in kilograms divided by height
in meters squared. Whole-body percent
body fat was measured by DXA (Hologics
QDR 4500A; Hologics, Bedford, MA),
and fat mass (FM) and FFM were calcu-
lated from the percent body fat and body
weight. BSA was calculated using the Du
Bois equation (8).

Insulin sensitivity
In vivo insulin sensitivity was assessed
with a hyperinsulinemic-euglycemic
clamp with a primed continuous infusion
of insulin at 120 mU/m2 z min to achieve
endogenous steady-state insulin concen-
trations and to draw steady-state blood
samples. An intravenous catheter was
placed in an antecubital vein for infusion
of insulin and glucose. A second catheter
was placed retrograde in a dorsal vein of
the contralateral hand for blood draws.
The hand was placed in a heating box at
418C for arterialization of venous blood.
A 20% glucose solution was infused at a
variable rate necessary to maintain plasma
glucose concentrations between 90 and
100 mg/dL. For clamps performed at
120 mU/m2 z min, the duration was 2 h,
and for clamps at 80 mU/m2 z min, the
clamp duration was at least 3 h. The
mean rate of exogenous glucose infusion
during the last 30 min was defined as the
GDR (1). First, GDR was adjusted for glu-
cose concentrations during this steady-
state interval (GDR 3 [average group
steady-state glucose/individual steady-
state glucose]) (3). Next, to adjust for met-
abolic size, GDR was normalized for
weight, BSA, FFM, or FFM+17.7 (2).

Blood analysis
Plasma glucose was analyzed with a Yellow
Springs Instruments 2300 STAT Glucose
Analyzer (Yellow Springs Instruments Inc.,
Yellow Springs, OH). Plasma insulin was
measured by chemiluminescent immuno-
assays on an Immulite 2000 Analyzer (Di-
agnostic Products), and lipid (FFA, total
cholesterol, and HDL) concentrations were
measured with a Beckman Coulter Syn-
chron DXC 600 Pro. LDL was calculated
with the Friedewald calculation.

Statistical methods
Descriptive data are presented as mean6
SD. Statistical analysis was performed
with SAS version 9.2 (SAS Institute,

Cary, NC). The x2 test was used to test
significance of group differences in sex.
Independent sample t tests and Mann-
Whitney U tests were used to test group
differences for continuous variables. GDR
determined from the hyperinsulinemic-
euglycemic clamp and adjusted for
weight, BSA, FFM, or FFM+17.7 was
used as a biomarker for separating subjects
who were insulin resistant (had type 2 di-
abetes mellitus) from those who were in-
sulin sensitive (did not have type 2
diabetes). We defined the optimal cutoff
point for discriminating insulin-resistant
subjects from insulin-sensitive subjects
as the GDR that provided both high sen-
sitivity (ability to detect insulin-resistant
subjects) and simultaneously provided
high specificity (ability to detect insulin-
sensitive subjects). Thus, sensitivity is the
proportion of true positives (individuals
known to be insulin resistant who were
classified as insulin resistant based on their
GDR), whereas 1 – specificity is the pro-
portion of false positives (individuals
known to be insulin sensitive who were
classified as insulin resistant based on their
GDR). We used a receiver-operating char-
acteristic (ROC) curve, a plot of the sensi-
tivity versus 1 – specificity, to display the
trade-off between true positives and false
positives across incremental choices of
discriminating cutoff points for glucose
disposal rate (9,10). The cutoff point cor-
responding to the optimal balance of
true versus false positives indicates the
best threshold for discriminating insulin-
resistant individuals from insulin-sensitive
individuals.
Principles of classification trees. Clas-
sification trees were used to determine a
specific set of rules (algorithm) for classi-
fying subjects as insulin resistant or insulin
sensitive from GDR (11). This method
makes no assumptions about the underly-
ing distribution of data and takes into ac-
count interactions among covariates and
outcome variables. An advantage of the
classification tree method is that it allows
observations with missing values in a data-
set, as opposed to traditional logistic regres-
sion analysis, which removes observations
with missing predictor values. Tree-based
methods recursively partition the predictor
variables into a set of decision points or
classification “nodes.” A binary decision
tree is fully grown when classification rules
are completely diagrammed. Without
pruning, a large and complex tree can
be built at the cost of overfitting the data
(12). Thus, pruning the tree is imple-
mented so that we can select a tree size
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that minimizes the cross-validated error
and avoids overfitting.

Decision rules for classifying subjects
can be obtained by assigning each termi-
nal node a class label as either “1” (pres-
ence of insulin resistance) or “0” (absence
of insulin resistance). The choice of a class
label is based on a defined cutoff point
and also the proportion of true event oc-
currences at that terminal node. For ex-
ample, if “0.25” or above is chosen as a
cutoff point, then only terminal nodes
with true event occurrence proportion
equal to or larger than “0.25” are classified
as “insulin resistant” and the remaining are
classified as “0” or insulin sensitive. The
proportion displayed at each terminal
node can be considered as a “risk score”
for insulin resistance.
Single Classification Tree Method. In
order to select the best-performing mod-
els for exploring the relationship between
insulin sensitivity and clinical variables,
subjects were randomly split into a train-
ing subset for building the model (n =
125) and a testing subset for evaluating
the performance of the model (n = 42) at a
ratio of 3:1.

The Single Classification Tree Method
was chosen as the statistical exploratory
method because it outperformed other
approaches such as logistic regression and
boosting regression trees in terms of sensi-
tivity, specificity, and area under the ROC
curve, denoted aROC (10), on the testing
dataset. Thus, aROC is used as ameasure of
average prediction performance of different
classification algorithms. Because aROC
represents area of a portion under a unit
square, its value ranges between 0 and 1.
Random guessing results in an aROC ap-
proximately equal to 0.5. A realistic classi-
fication method should have an aROC
.0.5, and a classification rule with aROC
.0.70 is generally considered adequate;
aROC very close to 1 indicates exception-
ally good performance. Our goal was to
examine the selected decision trees for pre-
dicting insulin resistance to accommodate
different clinical/research settings where
values for all variables would not necessar-
ily be available.

The tree analysis was performed with
data from 167 whites. The main outcome
variable used in this analysis was GDR
adjusted for FFM+17.7 (GDRadj) because
we believe that this adjustment is the best
available method accounting for meta-
bolic size (2). Covariates included sex,
age, weight, height, BMI, BSA, FFM,
self-reported family history of diabetes,
fasting glucose, fasting insulin, cholesterol,

HDL, LDL, triglycerides, FFA, and homeo-
stasismodel assessment of insulin resistance
(HOMA-IR) [fasting insulin (mU/mL) 3
fasting glucose (mg/dL)/405]. Three classifi-
cation tree models were developed to an-
swer different questions. Model 1 was
constructed with all available input vari-
ables, mimicking a clinical situation where
body composition and blood markers were
all included. Model 2 uses only fasting glu-
cose and insulin concentrations, BMI, age,
and sex as input variables. Model 3 is amin-
imalist model constructed using age, sex,
and BMI.

RESULTS

Subject characteristics
Our white cohort comprised 51 subjects
with diabetes and 116 subjects without
diabetes (Table 1). Subjects with diabe-
tes were significantly older (age 57.2 6
8.6 vs. 44.2 6 13.2 years, P , 0.001)
and had higher LDL (P = 0.05) and glu-
cose levels (by study design; P , 0.001)
than subjects without diabetes. There
were no significant sex differences be-
tween subjects with and without diabe-
tes (P = 0.10).

Distribution and optimal cutoff for
determination of insulin resistance
The distribution of GDR, whether it was
adjusted for weight, BSA, FFM, or FFM+17.7
was bimodal (summarized in Table 2).
As expected, GDR was lower in subjects
with diabetes compared with subjects
without diabetes, regardless of how

GDR was adjusted for metabolic size. For
GDRadj, the mean was 7.4 6 2.7 mg/
kgFFM+17.7 z min in subjects without di-
abetes and 4.6 6 1.7 mg/kgFFM+17.7 z
min in subjects with diabetes. A cutoff of
5.6 mg/kgFFM+17.7 z min provided the
maximum theoretical sensitivity (75%)
and specificity (71%) with an aROC of
80% for defining insulin resistance. In
other words, the optimal cutoff for iden-
tifying insulin-resistant individuals from
the 120 mU/m2 z min clamp was 5.6
mg/kgFFM+17.7 zmin. Using this criterion
in the whole group, 44.3% of individuals
fell below this cut point and could be con-
sidered insulin resistant. The same cutoff
(5.6 mg/kgFFM+17.7 z min) was observed
when this analysis was performed in the
whole cohort (n = 267) (data not shown).
When GDR was adjusted for body weight,
BSA, or FFM, the cutoff value for insulin
resistance was 4.9 mg/kg weight zmin, 212
mg/m2 z min, and 7.3 mg/kgFFM z min,
respectively (Table 2).

As a subanalysis, we also compiled
data from86hyperinsulinemic-euglycemic
clamps performed at 80 mU/m2 z min.
Similar to the 120-mU insulin dose, the
distribution of GDR was bimodal with
lower GDR in subjects with diabetes (n =
11) compared with subjects without dia-
betes (n = 75). The average data and cutoff
points for GDR expressed by weight, BSA,
FFM, or FFM+17.7, and the subject char-
acteristics for this cohort are provided in
Supplementary Tables 1 and 2. In sub-
jects without diabetes, the mean GDRadj

was 8.2 6 3.0 mg/kgFFM+17.7 z min

Table 1dSubject characteristics for whites undergoing hyperinsulinemic-euglycemic
clamp studies at 120 mU/m2 · min

Subjects without diabetes
(n = 116)

Subjects with diabetes
(n = 51) P

Sex 66 females, 50 males 22 females, 29 males 0.10a

Age, years 44.2 6 13.2 (18–67) 57.2 6 8.6 (35–70) ,0.001b

Weight, kg 93.3 6 20.6 (52.3–140.1) 92.1 6 12.7 (65.2–12.1.0) 0.66c

BMI, kg/m2 32.7 6 6.9 (19.7–46.7) 31.9 6 4.4 (24.0–40.7) 0.41b

% Fat 35.6 6 9.6 (10.4–53.4) 34.0 6 8.0 (18.6–51.2) 0.16b

HDL, mg/dL 50.5 6 12.7 (26.9–94.8) 48.6 6 12.2 (24.4–82.6) 0.54b

LDL, mg/dL 125.2 6 38.8 (54.0–324.6) 111.9 6 37.9 (43.0–248.8) 0.05c

Triglycerides,
mg/dL 155.5 6 93.5 (42.0–613.0) 180.6 6 131.2 (59.0–698.0) 0.38b

Cholesterol,
mg/dL 206.3 6 41.6 (142.0–411.0) 196.0 6 46.9 (103–356) 0.16c

FFA, mmol/L 0.6 6 0.2 (0.06–1.13) 0.6 6 0.2 (0.3–1.0) 0.43c

Fasting glucose,
mg/dL 96.2 6 7.9 (82.0–123.0) 119.1 6 19.3 (75.0–187.0) ,0.001b

Data are presented as mean6 SD (range). Diabetes status was defined by self-report or fasting glucose values
$126 mg/dL. ax2 test. bMann-Whitney U test. cIndependent samples t test.
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compared with 3.3 6 0.7 mg/kgFFM+
17.7 z min in subjects with diabetes,
and the cutoff for defining insulin resis-
tance was 4.1 mg/kgFFM+17.7 z min
with a maximal sensitivity and specificity
of 83 and 96%, respectively (aROC=0.98).
When GDR was adjusted for body weight,
BSA, or FFM, the cutoff value for insulin
resistance was 4 mg/kgweight z min, 192
mg/m2 z min and 5 mg/kgFFM z min, re-
spectively (Supplementary Table 2). Tree
model analyses were not performed at the
80-mU insulin dose because of the rela-
tively small sample size and unbalanced
proportion of subjects with and without
diabetes.

Tree models for predicting insulin
resistance using all predictors
As indicated in RESEARCHDESIGNANDMETHODS,
tree models and decision rules were de-
veloped to predict GDRadj based on a ran-
domly selected training set (n = 125)
followed by evaluating the performance
of the models in the remaining testing set
(n = 42).
Model 1: all predictors. In the tree
model based on all predictors (Model 1),
the following predictors were statistically
significant: HOMA-IR, HDL, and fasting
glucose resulting in an aROC of 87%.
Figure 1 depicts the classification tree
model using these predictors. The number
of insulin-resistant individuals and the
number of insulin-sensitive individuals
are shown in Fig. 1. Using an arbitrary
cutoff of 0.25 as the “risk score” of having
insulin resistance, nodes $25% (propor-
tion of insulin-resistant individuals) pre-
dict insulin resistance and nodes ,25%
predict insulin sensitivity. Therefore, in
Fig. 1, the associated decision rules for
predicting an individual as being insulin
resistant is either having the following: 1) a
HOMA-IR .5.9 or 2) HOMA-IR = 2.8–
5.9 and HDL ,51 mg/dL. Use of other
choices for the predictive cutoff value (e.g.,
50%) yielded similar sensitivity (89%) and
specificity (67%) results (data not shown).

Model 2: anthropometry, fasting glu-
cose, and insulin measurements. The
next tree model was performed using only
body composition, fasting glucose, insu-
lin, and age and sex as predictor variables.
Only fasting insulin and glucose were
significant predictors in building the tree
model with an aROC of 86% in the test-
ing subset (Fig. 2). Similar to the above
treemodel using all predictors, we assigned
an arbitrary cutoff of 0.25 as the “risk score”
of being classified as insulin resistant.
Therefore, in Fig. 2, the associated decision

rule for predicting an individual to be in-
sulin resistant is a fasting insulin concen-
tration .10.6 mU/mL. This decision rule
has an estimated sensitivity of 100% and
specificity of 54%.
Model 3: age, sex, and BMI. The last
tree model we tested for predicting in-
sulin sensitivity from the clamp only used
age, sex, and BMI as predictor variables.
Again based on an arbitrary cutoff of
0.25% for detecting insulin resistance,
the only significant predictor variable
was BMI with an aROC of 61% and a

Table 2dGDR values at 120 mU/m2 · min for subjects with and without diabetes adjusted for metabolic size, including body
weight, BSA, FFM, and FFM+17.7 kg

Subjects without
diabetes (n = 116)

Subjects with
diabetes (n = 51)

Cutoff value for insulin
resistance Sensitivity (%) Specificity (%) aROC

GDR/kg body weight 6.4 6 2.8 4.0 6 1.8 4.9 67 64 0.76
GDR/m2 BSA 275.6 6 98.4 177.3 6 69.6 212.2 70 69 0.79
GDR/kg FFM 9.8 6 3.8 6.0 6 2.3 7.3 71 72 0.80
GDR/kg FFM+17.7(GDRadj) 7.4 6 2.7 4.6 6 1.7 5.6 75 71 0.80

Data are presented as mean 6 SD, unless otherwise indicated.

Figure 1dTree model for insulin resistance determined using all available body composition and
blood measures. HOMA-IR and HDL were the only significant determinants in this model. The
model is built on a randomly selected training cohort of 125 subjects and tested in 42 subjects.
An arbitrary risk score of 0.25 is calculated. Therefore, if a terminal node has a .25% pro-
portion, those subjects are more likely to be insulin resistant (dashed lines). The decision nodes
for being insulin resistant are as follows: 1) HOMA-IR.5.9 and 2) 2.8, HOMA-IR,5.9 and
HDL ,51 mg/dL.
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BMI .24.7 kg/m2 predicting insulin re-
sistance. As expected, as the number of
predictor variables decreases, the aROC
and sensitivity and specificity results
worsen.

The same tree-based model analysis
was also performed in a larger, more
ethnically diverse cohort of 263 individuals
(167 whites, 94 African Americans, one
Hispanic, and one other). As expected,
with a greater number of subjects, higher
aROCs, and sensitivity and specificity re-
sults were obtained in the larger cohort
(data not shown).

CONCLUSIONSdThehyperinsulinemic-
euglycemic clamp technique is the gold
standard for assessing insulin sensitivity
in humans. This method is widely used in
research studies to examine the effects of
an intervention, such as low-calorie diet
or pharmacological therapy. Unfortunately,
few data exist on what is considered a
“normal” glucose infusion rate, i.e., normal
insulin sensitivity. Moreover, the ability
to compare results from clamp studies is
clouded by the fact that GDR results are
expressed as a function of body weight,
BSA, or FFM. The goal of the current study
was to provide cutoff values for defining
insulin resistance and insulin sensitivity
in clamps performed at an insulin dose of

120 mU/m2 z min and to provide decision
trees for predicting insulin resistance from
routinely measured clinical and biochemi-
cal parameters. Similar to a previous study
(4), we found that the distribution of
whole-body glucose disposal rate is bi-
modal. This bimodality allowed us to use a
statistical approach to determine a cutoff for
defining insulin resistance or insulin sensi-
tivity. We found that a GDR or M value of
5.6 mg/kgFFM+17.7 z min in whites gives
an almost 80% probability of predicting
insulin resistance. In other words, indi-
viduals with a GDR ,5.6 mg/kgFFM+
17.7 z min have an 80% chance of being
insulin resistant. The same cutoff was found
in a larger, more ethnically diverse cohort
(data not shown).

In a smaller sample of clamps per-
formed at 80 mU/m2 zmin, a cutoff of 5.3
mg/kgFFM+17.7 z min (98% prediction
probability) was determined for defining
insulin resistance. That is, subjects with a
GDR ,5.3 mg/kgFFM+17.7 z min have a
98% probability of having insulin resis-
tance. To expand the applicability of these
findings to the investigators who do not
measure body composition, we deter-
mined cut points for insulin resistance
for GDR expressed by weight, BSA, or
FFM. These data allow researchers per-
forming hyperinsulinemic-euglycemic

clamps at the 80 and 120 mU/m2 zmin insu-
lin infusion rates to gain valuable clinical
information on a subject’s insulin sensitiv-
ity and translate findings from a primarily
research setting to a clinically relevant mes-
sage. A summary of our results at 80 and
120 mU/m2 z min and results from other
studies at 40mU/m2 zmin (3,4) is provided
in Supplementary Table 3.

Given the demanding nature, expense,
and time involved in performing hyper-
insulinemic-euglycemic clamps, we aimed
to develop models for predicting insulin
resistance by the clamp from routinely
measured anthropometric, body composi-
tion, and biochemical markers. Our first
classification model (Model 1) included all
available variables (listed in RESEARCHDESIGN

AND METHODS) and found that subjects
with a 1) HOMA-IR .5.9 or 2) HOMA-IR
between 2.8 and 5.9 and HDL,51 mg/dL
predicted insulin resistance with good
specificity and sensitivity. The finding
that HOMA-IRwas the strongest predictor
of GDRadj is not surprising given the strong
correlation between HOMA-IR and insulin
sensitivity derived from the clamps demon-
strated previously (13). In addition, our
findings are similar to those from the study
by Stern et al. (4) in which they generated
classification trees from clamps performed
at 40 mU/m2 z min. Stern et al. (4) found
HOMA-IR, BMI, waist circumference, and
LDL as significant predictors of insulin re-
sistance, with similar sensitivity and speci-
ficity results (our study: aROC = 0.87; Stern
et al.: aROC = 0.90). Model 2 used only
anthropometry, fasting glucose, insulin,
and age and sex. Similar to Model 1, we
found that only fasting insulin was a sig-
nificant predictor of GDRadj, with a fasting
insulin .10.6 mU/mL defining insulin re-
sistance. Model 3 used only age, sex, and
BMI to predict GDRadj. This model gave
poor specificity and sensitivity results that
highlighted the well-known fact that insu-
lin resistance is a heterogeneous disorder
that is not only dependent on weight, sex,
and age (14). Coupled with previous stud-
ies defining insulin resistance from clamps
performed at 40 mU/m2 z min (3,4), our
results at 80 and 120 mU/m2 z min insulin
doses contribute substantially to the litera-
ture determining insulin resistance from
clamps (Supplementary Table 3).

To account for the metabolic mass
that uses insulin during a clamp proce-
dure, GDR derived from the clamp must
be adjusted for metabolic size. The ma-
jority of studies in the literature tend to
use total body weight or kilograms of FFM
with a smaller number of studies using

Figure 2dTree model for insulin resistance using only fasting glucose, insulin, age, sex, and
BMI. Only fasting insulin was a significant determinant in the model. The model is built on
a randomly selected training cohort of 125 subjects and tested on 42 subjects. An arbitrary risk
score of 0.25 is calculated. Therefore, if a terminal node has a .25% proportion, those subjects
are more likely to be insulin resistant (dashed lines). The decision node for being insulin resistant
is having a fasting insulin .10.6 mU/mL.
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BSA. However, total body weight is not
a completely appropriate method for
comparing individuals, because obese
subjects have a greater proportion of low-
metabolizing mass (adipose tissue) and
females have a greater percentage of fat
than men. BSA also poses a sex difference
problem (2). Fromstudies ofmetabolic rate
in the Pima Indians, Lillioja and Bogardus
(2) showed that metabolic rate is directly
proportional to FFM+17.7 kg, suggesting
that this measure can be equated to meta-
bolic size. On the basis of this finding, we
have chosen this normalization method
in our classification analysis. However,
we have also considered that not all re-
searchers may have access to measuring
body composition (DXA) and have also re-
ported on these insulin resistance cutoffs
normalized by weight and BSA. Finally, it
needs to be noted that dividing GDRs
during a clamp by resting metabolic rate
would really represent the best way to
compare values from people with differ-
ent body sizes.

Limitations of this study may be the
small sample size of clamp studies at 120
mU/m2 zmin, and particularly at 80mU/m2 z
min. However, we were able to achieve
good statistical sensitivity and specific-
ity results (.80% prediction probability)
in this cohort. We also demonstrated the
same cutoff points in a larger, more ethni-
cally diverse population. Another poten-
tial limitation may be that we did not use
radiolabeled glucose tracers to quantify
endogenous glucose production. How-
ever, the high insulin infusion doses re-
ported in this study generally suppress
most, if not all, the baseline splanchnic
glucose output (15).We also acknowledge
that there is considerable overlap in insu-
lin sensitivity (M) between subjects with
and without diabetes (2). An alternative
approach would have been to divide our
cohort into subjects with normal glucose
tolerance, impaired glucose tolerance, or
type 2 diabetes; however, this would have
further diminished our sample size.

In conclusion, our study provides
novel data for defining insulin resistance

from hyperinsulinemic-euglycemic clamps
performed at insulin doses of 120 and 80
mU/m2 zmin. Moreover, we have provided
classification trees for predicting insulin
resistance from routinely measured bio-
chemical markers. Together, our findings
extend the hyperinsulinemic-euglycemic
clamp from what is largely considered a
research tool to providing clinically mean-
ingfulmessages for patients, thus providing
greater likelihood of earlier detection of in-
sulin resistance.
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